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Abstract

Portfolio management (PM) is a fundamental financial plan-
ning task that aims to achieve investment goals such as max-
imal profits or minimal risks. Its decision process involves
continuous derivation of valuable information from various
data sources and sequential decision optimization, which
is a prospective research direction for reinforcement learn-
ing (RL). In this paper, we propose SARL, a novel State-
Augmented RL framework for PM. Our framework aims to
address two unique challenges in financial PM: (1) data het-
erogeneity – the collected information for each asset is usu-
ally diverse, noisy and imbalanced (e.g., news articles); and
(2) environment uncertainty – the financial market is versa-
tile and non-stationary. To incorporate heterogeneous data
and enhance robustness against environment uncertainty, our
SARL augments the asset information with their price move-
ment prediction as additional states, where the prediction can
be solely based on financial data (e.g., asset prices) or de-
rived from alternative sources such as news. Experiments on
two real-world datasets, (i) Bitcoin market and (ii) HighTech
stock market with 7-year Reuters news articles, validate the
effectiveness of SARL over existing PM approaches, both in
terms of accumulated profits and risk-adjusted profits. More-
over, extensive simulations are conducted to demonstrate the
importance of our proposed state augmentation, providing
new insights and boosting performance significantly over
standard RL-based PM method and other baselines.

Introduction
An investment portfolio is a basket of assets that can
hold stocks, bonds, cash and more. In today’s market, an
investor’s success heavily relies on maintaining a well-
balanced portfolio. Despite the recent trend of big data and
machine intelligence have triggered resolution to the invest-
ment industry, portfolio management is still largely based
on linear models and the Markowitz framework (Papen-
brock 2016), known as Modern Portfolio Theory (MPT).
MPT relies on accurate prediction of market prices and re-
stricted assumptions such as past probability distribution of
assets’ returns fully representing the future. Accurate mar-
ket price forecast is extremely challenging, if not impossi-
ble, due to its highly noisy, stochastic and chaotic nature
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(Tsay 2010). Essentially, PM involves sequential decision
making of continuously reallocating a number of funds into
assets based on the latest information to achieve the invest-
ment goal. It is natural to leverage reinforcement learning
(RL) to model the decision making process for asset reallo-
cation (Almahdi and Yang 2017; Jiang, Xu, and Liang 2017;
Liang et al. 2018). Although some attempts have made to
apply RL for financial PM, there are still several challenges
remain unsolved: 1) data heterogeneity: the collected infor-
mation for each product may be sparse, noisy, imbalanced,
and diverse (e.g., financial time series vs unstructured data,
news articles), and therefore it is difficult to incorporate dif-
ferent information within the single model. 2) Environment
uncertainty: the non-stationary nature of financial markets
induces uncertainty and often causes a distribution shift be-
tween training and testing data.

To address the aforementioned challenges, in this paper,
we propose a novel State Augmented RL (SARL) frame-
work for PM. The proposed SARL aims to leverage ad-
ditional diverse information from alternative sources other
than classical structured financial data, such as asset prices,
to make market trend prediction. Such prediction will then
be incorporated into our RL framework for state augmenta-
tion. SARL is a general framework in the sense that it can
incorporate different sources of information into the aug-
mented states. It is also not restricted to any particular mar-
ket. Throughout this paper, the information sources mainly
include the asset price, the exemplary financial data, and
news articles of different products (companies), the exem-
plary alternative data.

To evaluate the performance of SARL, we test it on
two real-world datasets: the Bitcoin cryptocurrency dataset
(Jiang, Xu, and Liang 2017) and the HighTech stock
dataset (Ding et al. 2014). As an example, SARL is able
to achieve 140.9% improvement over the state-of-the-art
method (Jiang, Xu, and Liang 2017) in terms of accumula-
tive return on the Bitcoin dataset. SARL also outperforms all
PM baselines including CRP, OLMAR, WMAMR in terms
of portfolio value and the Sharpe ratio (Sharpe and Pnces
1964). In addition, we show that due to market uncertainty,
the standard RL based PM approaches are difficult to gen-
eralize while SARL is much more generalizable and eas-
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ier to be adaptive to new environments. For instance, SARL
achieves 11.73% and 40.45% improvement in Sharpe Ra-
tio (SR) on Bitcoin and HighTech datasets respectively. Our
contributions are listed as follows:

• We propose a novel State Augmented RL framework
(SARL) for PM, where additional information from dif-
ferent sources can be leveraged to make market predic-
tion and such prediction will be embedded as augmented
states in the RL framework to improve PM performance.

• We evaluate the proposed SARL on two real-world
datasets and show that SARL outperforms the state-of-
the-art method by 140.9% on the Bitcoin dataset and
15.7% on the HighTech dataset.

• We perform in-depth analysis for the standard RL based
PM approach and SARL and show that SARL is more
generalizable than the former regarding data distribution
shift. We also conduct simulations for justification.

• We conduct extensive experiments and find that: 1) The
exploitation of diverse information can reduce the impact
of environment uncertainty. 2) We show that high-density
(more frequent) external information can help boost the
overall PM performance even when the information is
noisy. 3) Low-density but high-accuracy external infor-
mation can also improve the PM performance.

Related Work

With the availability of large scale market data, it’s natu-
ral to employ deep learning (DL) model which can exploit
the potential laws of market in PM. Prior arts (Heaton, Pol-
son, and Witte 2017; Schumaker et al. 2012; Nguyen, Shirai,
and Velcin 2015) in training a neural network (NN) model
for market behavior prediction have shown their effective-
ness in asset price prediction and asset allocation. However,
DL models which have no interaction with the market has a
natural disadvantage in decision making problem like PM.
Reinforcement learning algorithms have been proved effec-
tive in decision making problems in recent years and deep
reinforcement learning (DRL) (Chen et al. 2019), the inte-
gration of DL and RL, is widely used in the financial field.
For instance, (Almahdi and Yang 2017) proposed a recurrent
reinforcement learning (RRL) method, with a coherent risk-
adjusted performance objective function named the Calmar
ratio, to obtain both buy and sell signals and asset alloca-
tion weights. (Jiang, Xu, and Liang 2017) use the model-
free Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al. 2015) to dynamically optimize cryptocurrency portfo-
lios. Similarly, (Liang et al. 2018) optimize asset portfolios
by using the DDPG as well as the Proximal Policy Opti-
mization (PPO) (Schulman et al. 2017). (Buehler et al. 2019)
presents a DRL framework to hedge a portfolio of deriva-
tives under transaction costs, where the framework does not
depend on specific market dynamics. However, they mainly
tackle the PM problem by directly utilizing the direct obser-
vation of historical prices for RL training, which may largely
overlook data noise and overestimate the model’s learning
capability.

Background and Problem Formulation

Portfolio management (PM) is a fundamental financial plan-
ning task that aims to maximize forecasted profits (or mini-
mize calculated risks) via asset allocation. A market is made
up of many assets and their related information, e.g. prices
and other factors that affect the market. We assume the mar-
ket is sufficiently liquid such that any transactions can be
executed immediately with minimal market impact. For PM,
we consider the scenario that there’s a machine learning al-
gorithm that can gather all viable information from the mar-
ket and then gradually improves its trading strategy by trial-
and-error. Here the market consisting of all the assets for PM
and other available information is called the environment.
Based on the liquidity hypothesis, the algorithm which ob-
serves the environment and then makes decisions to interact
with the market and rebalance the portfolio can be defined
as an agent.

Throughout this paper, we consider the setup that the en-
vironment will provide asset prices as an internal data source
and will also provide financial news articles (when available)
as an external data source. The agent has access to all histor-
ical prices and news articles up to the current time step for
making low-level predictions such as price changes or high-
level predictions such as asset movements (up/down). Intu-
itively, an agent that gives accurate asset price change pre-
dictions is ideal, but it is hard to be trained in practice due to
market uncertainties and possible distribution shifts between
training (past market) and testing (future market) environ-
ments. On the other hand, predicting high-level changes
such as asset movements may be an easier task, which in
turn gives a more reliable predictive information when aug-
mented with the asset prices for reallocating portfolios.

Let vi,t, i = {1, . . . , n} denote the closing price of the ith
asset at time t, where n is the number of assets to be con-
sidered for PM. The price vector vt consists of the closing
prices of all n assets. Similarly, vH

t and vL
t denote the high-

est prices and the lowest prices at time step t, respectively.
For instance, t is an index of asset trading days. It is worth
noting that in PM problems, the assets are not always fully
invested.

In addition to the portfolio of n assets, we introduce an
additional dimension (the first dimension indexed by 0) in
vt, v0,t, to denote the “cash price” at time instance t. As we
normalize all temporal variations in vt with respect to cash
value, v0,t remains constant for all t.

By modeling the PM problem as a Markovian decision
process which indicates that the next state only depends on
current state and action. We can formulate the PM problem
as a triplet (S,A, r), where S is a set of states, A is a set of
actions, and r : S ×A→ R is the reward function.

To be akin to asset price changes over time, we denote
yt =

vt+1

vt
as the relative price vector. More precisely,

yt =
vt+1

vt
= (1,

v1,t+1

v1,t
, . . . ,

vn,t+1

vn,t
)T (1)

To formulate the process of asset reallocation in PM,
we introduce the reallocation weight fraction wt =
(w0,t, w1,t, . . . , wn,t)

T in our framework. wi,t, t �= 0 is the
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Figure 1: The framework of our proposed State Augmented Reinforcement Learning (SARL) method. Asset prices (e.g., stock
prices) represent the internal features constituting the original state s∗, and Financial News represent the external information
to be encoded and augmented to the final state s for SARL. The asset movement signal δ is used for state augmentation and the
policy network will generate the portfolio management strategy from the augmented state s.

weight fraction of the ith asset and w0,t is the weight frac-
tion of cash at the end of time step t. The asserts are reallo-
cated based on the weight assigned to each asset. Thus, we
have

∑n
i=0 wi,t = 1.

In our implementation, the RL agent sells or buys assets
based on the difference of wt and wt−1 between time steps
t− 1 and t to reallocate the portfolio.

SARL: A Framework of Deep RL with

Augmented Asset Movement Prediction States

As we formulate the PM problem as a decision making pro-
cess with heterogeneous data, we propose a hierarchical ap-
proach which binds supervised learning and RL into a uni-
fied framework such that it can be trained with standard RL
methods, as illustrated in Figure 1. We employ an end-to-end
network to extract asset movement information from either
internal source (e.g., Price Up/Down Predicted label from
historical prices) or external source (e.g., News embedding).
We then integrate it with the prices of assets for state aug-
mentation. Finally, we adopt a deterministic policy gradient
algorithm based on the augmented state for learning the pol-
icy of PM. We note that our SARL framework can easily
incorporate different data sources through the use of an en-
coder for state augmentation.

Augmented Asset Movement Prediction State

It is common in practical PM methods to integrate human-
engineered features with asset prices for better prediction
and asset reallocation. In our SARL framework, we have
made it generic to be capable of incorporating heteroge-
neous data into the standard RL training pipeline. As illus-
trated in Figure 1, we propose an encoder δ that takes dif-
ferent types of data sources and transforms their contents
into informative representations to be augmented to the as-
set prices for training an RL agent. For example, the encoder
δ can be a classifier that takes past asset prices over a certain
period as inputs and produces asset movement predictions,
or it can be a feature extraction function derived from a text
classifier, which is trained on the word embeddings of news
for asset movement prediction. Overall, the augmented state
is defined as

s = (s∗, δ) (2)

where s∗ is the observable state (i.e., current asset prices)
related to low-level observations and δ is the encoder sum-
marizing high-level observations (i.e., asset movement pre-
diction from past asset prices or news).

In our SARL framework, we offer the flexibility to either
adopt the internal or the external information to augment the
state. For internal information, we use past prices to predict
the asset movement and then integrate the prediction result
into the state. The intuition is that in PM problems, the as-
set price is the most critical information. Augmenting asset
movement prediction from past asset prices can offer some
additional high-level and robust information to improve de-
cision making, which may not be apparent or sufficiently
expressed when merely using raw asset prices for RL.

Specifically, we train a recurrent neural network with long
short-term memory (LSTM) (Hochreiter and Schmidhuber
1997) to predict the asset movement. The binary output
(price up/down) will guide the model to choose a better strat-
egy. For external feature, we collect financial news articles
related to the assets selected for PM since they provide new
but possibly correlated information for asset movement pre-
diction in addition to asset prices. We use different kinds of
Natural Language Processing (NLP) methods as encoders to
embed the news and then feed the embedding into a hierar-
chical attention network (HAN) (Yang et al. 2016) to train a
binary classifier to predict the price movement. The features
in the last layer before the softmax layer are extracted to rep-
resent the embedding of the news. Finally, we integrate the
embedding into the state for augmentation. One advantage
of our state-augmented RL is its generality in incorporating
heterogeneous data sources via encoders and its compatibil-
ity with standard RL training algorithms via state augmen-
tation. As will be evident in the Experiments section, state
augmentation with either internal or external information in-
deed significantly improves the performance of PM.

Deterministic Policy Gradient

Deterministic Policy Gradient (DPG) learns a deterministic
target policy using deep neural networks. A policy is a map-
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ping from the state space to the action space, πθ : S → A.
Policy gradient represents the policy by a parametric prob-
ability distribution πθ(a|s) = P (a|s; θ) that selects action
a from action space in state s according to parameter vec-
tor θ. For a deterministic policy a = μθ(s), the selection is
deterministically produced by the policy from a state. Since
the return rγt is defined as the total discounted reward from
time-step t onwards reward, rγt =

∑∞
k=t γ

k−tr(sk, ak)
where r is the reward function and γ is the discount fac-
tor where 0 < γ < 1. We define the performance objective
as J(μθ) = E[rγ1 |μ], which is the expectation over the dis-
counted state distribution ρμ(s) defined as

J(μθ) =

∫
S

ρμ(s)r(s, μθ(s))ds

= Es∼ρμ [r(s, μθ(s))]

(3)

Considering the time interval from 1 to T , the correspond-
ing performance objective function is

JT (μθ) =
T∑

t=1

γtr(st, μθ(st)) (4)

The objective in (4) is the typical Markovian decision pro-
cess objective function. However, we note that this type of
function doesn’t match the portfolio management task due to
the property that the assert accumulated by time t would be
reallocated in time t+ 1 (Jiang, Xu, and Liang 2017; Liang
et al. 2018; Kanwar and others 2019). We follow (Liang et
al. 2018) to modify the objective function, which makes it
more suitable for the portfolio management task. To be spe-
cific, we replace the summation by the accumulated product
of the portfolio value PT =

∏T
t=1 P0rt. Thus, the perfor-

mance objective becomes

JT (μθ) = J0

T∏
t=1

r(st, μθ(st)), (5)

where J0 is a constant.

Action and Reward for Portfolio Optimization

Action(a). As we illustrated before, we use fraction
vector of the total assets at time step t, wt =
{w0,t, w1,t, . . . , wn,t}T to represent the allocation of the as-
sets. What the agent should do is to reallocate the assets into
assets, that is, adjust wt+1. The desired reallocating weights
at time step t, at = {a0,t, a1,t, . . . , an,t}T , with the con-
straint

∑n
i=0 ai,t = 1, is the action vector in our model. By

taking the action at time step t, the asset allocation vector
would be influenced by the price movement yt. At the end
of the time period, the allocation vector wt+1 becomes

wt+1 =
yt�at

yt · at
(6)

where � is the element-wise multiplication.
Reward(r). The reward function of each time step can be

defined in a standard way based on profit the agent made.
The fluctuation of the value of the assets for each asset is
at,i·yt,i. Thus the total profit at time step t is at · yt. Taking

transaction cost β =
∑n

i=1 |ai,t − wi,t| into consideration,
the immediate reward at time step t can be represented as:

rt = r(st, at) = at · yt − β

n∑
i=1

|ai,t − wi,t| (7)

The introduction of transaction cost makes the formulation
close to the real market operation but brings more difficulty
in mathematical formalism. Obviously, this reward function
is not differentiable in this form. Applying the approxima-
tion of β in (Jiang, Xu, and Liang 2017) which approximate
βt with portfolio vectors of two recent periods and the price
movement vector, we get βt = βt(wt−1,wt,yt). A fixed
constant commission rate for non-cash assets trading is ap-
plied. We set cb = cs = 0.25% where cb and cs is the con-
stant commission rate of buy and sell. Follow the setting of
the modified DPG, the target of the agent is to maximize the
accumulated product value, which is equivalent to maximize
the sum of the logarithmic value. Finally we get the modified
reward function at time step t:

rt = r(st, at) = ln (βtat · yt) (8)

and the accumulative return R:

R(s1, a1, . . . , sT , aT ) = JT =
1

T

T∑
t=1

ln (βtat·yt) (9)

Considering the policy μθ, our goal is to maximize the ob-
jective function parameterized by θ, we can formally write
it as below:

μθ∗ = argmax
μθ

JT (μθ)

= argmax
μθ

1

T

T∑
t=1

ln (βtat·yt)
(10)

∇θμθ(τ) =
1

T

T∑
t=1

∇θ lnμθ(at, st) (11)

θ ← θ + λ∇θμθ(τ) (12)

where λ is the learning rate. Due to the existence of the de-
nominator T , the equation is properly normalized for data
with different length T , which also makes mini-batch train-
ing over a sampled time period feasible.

Experimental Results

In this section, we compare the performance of SARL with
other methods on two datasets: Bitcoin and HighTech. We
will summarize these two datasets, specify their data chal-
lenges, define the evaluation metrics, introduce the baseline
PM methods for comparison and perform extensive exper-
iments and simulations to validate the importance of state
augmentation in SARL for PM.
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Datasets

We use the following two datasets from different markets.
Bitcoin (Jiang, Xu, and Liang 2017) contains the prices of
10 different cryptocurrencies from 2015-06-30 to 2017-06-
30. For every cryptocurrency, we have 35089 data points
representing prices recorded in a half-hour interval. To
evaluate the performance, we split the dataset into train-
ing (32313 data point) and testing (2776 data point) parts
chronologically.
HighTech (Ding et al. 2014) consists of both daily closing
asset price and financial news from 2006-10-20 to 2013-11-
20. Even we select the companies with as much news as pos-
sible, the distribution of the news articles of chosen compa-
nies in Figure 2 shows that we can’t have everyday news
for a particular company. In order to have sufficient exter-
nal information to justify the use of state augmentation in
a real market, we choose 9 companies which have the most
news from our dataset. There are in total 4810 articles re-
lated to the 9 stocks filtered by company name matching.
These news articles cover 72.48% (1293/1784) of the trad-
ing days in this dataset. We split the dataset into 1529 days
for training and 255 days for testing chronologically.

0 250 500 750 1000 1250
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Figure 2: The distribution of news in HighTech dataset.

Evaluation Metrics

We report two widely-used metrics for measuring the perfor-
mance of a particular PM strategy. The most intuitive metric
is to analyze the accumulative change of assets’ values over
the test time, which is called Portfolio Value (PV). To take
the risk factor into consideration, we also report the Sharpe
Ratio (SR), risk-adjusted return.

• Portfolio Value Given any PM strategy, the assets’ Port-
folio Value (PV) (Ormos and Urbán 2013) at the final time
horizon T can be calculated by:

pT = p0 exp

(
T∑

t=1

rt

)
= p0

T∏
t=1

βtat · yt (13)

PV is used to quantify the amount of profit the strategy
earns in time length T as it is an accumulative value.
Based on the liquidity assumption, without loss of gen-
erality, we normalize the portfolio with starting value
p0 = 1.

• Sharpe Ratio The Sharpe Ratio (Sharpe and Pnces 1964)
is the average return earned in excess of the risk-free rate

per unit of volatility or total risk. It is used to compare the
portfolio’s return to its risk and is defined as

Sharpe Ratio =
Rp −Rf

σp
(14)

where Rp is the return of the portfolio, Rf is the risk-
free rate and σp is the standard deviation of the portfolio’s
excess return. Here we use Rp =

∑T
t=1 βtat · yt and set

Rf = 2% as a typical bank interest value.

Baselines

• CRP. Constant rebalanced portfolio (CRP) (Cover 2011)
is an investment strategy which keeps the same distribu-
tion of wealth among a set of assets from day to day. That
is, the proportion of total wealth in a given asset is the
same at the beginning of each day.
• OLMAR. On-Line Moving Average Reversion (OL-

MAR) (Li and Hoi 2012) is a method that exploits moving
average reversion to overcomes the limitation of single-
period mean reversion assumption.
• WMAMR. Weighted Moving Average Mean Rever-

sion(WMAMR) (Gao and Zhang 2013) is a method which
fully exploits past period price relatives using equal-
weighted moving averages and then learns portfolios by
online learning techniques.
• EW. Equal Weight is a naive baseline which lets the agent

uniformly invest all the stocks. The tendency of EW can
reflect the macroscopic movement of the market.
• DPM. Deep Portfolio Management (Jiang, Xu, and Liang

2017) is a method based on Ensemble of Identical In-
dependent Evaluators (EIIE) topology. DPM uses asset
prices as state and trains an agent with a Deep Neural
Network (DNN) approximated policy function to evalu-
ate each asset’s potential growth in the immediate future
and it is the state-of-art RL algorithm for PM.

Data Challenge

Before we compare different PM strategies on the Bitcoin
and HighTech datasets, we address their data challenges in-
cluding unbalanced data distribution, noisy data and envi-
ronment uncertainty, which will be used to explain the per-
formance variations of different PM methods.

Unbalanced data distribution – Although we already se-
lected the 9 companies having the most news for perfor-
mance evaluation, Figure 2 shows the distribution of finan-
cial news is highly unbalanced across companies. For in-
stance, Apple has 33 times more news than Baidu. In ad-
dition, the unbalanced news distribution also occurs across
time – each company is not guaranteed to have a related
news article every day. More generally, not every state st
will have its corresponding external feature.

Noisy external data – Since news can cover multiple
topics and we keep a news article as long as a company’s
name is mentioned regardless of the context, there could be
a lot of redundant and useless information which is irrel-
evant to portfolio management. To justify the issue of in-
herent noise in news, we train a text classifier hierarchical
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Figure 3: The portfolio value of different PM methods.
SARL is our proposed state augmentation RL method, DPM
is the state-of-art standard RL method in PM. CRP, OL-
MAR, WMAMR are baseline financial PM methods.

attention network (HAN) (Yang et al. 2016) on three dif-
ferent word embedding techniques, including Glove (Pen-
nington, Socher, and Manning 2014), Word2Vec (Mikolov
et al. 2013) and Fasttext (Joulin et al. 2016). We also adopt
Auto Phrase (Shang et al. 2018) for phrase mining and train
a random initialized embedding network. The average train-
ing and testing accuracies for stock movement prediction are
reported in Table 1, where the best training/testing accuracy
is no greater than 66%/61%, suggesting noisy information
in the collected news.

Table 1: The training and testing accuracy of the text classi-
fier for different word embedding methods.

Method Auto Phrase Glove Word2Vec Fasttext

Train 0.6592 0.6410 0.6508 0.6207
Test 0.6022 0.6099 0.6061 0.5908

Environment uncertainty – Different from game playing
tasks which have certain rules, PM is deeply influenced by
the market dynamics. The PM strategy of a standard RL
agent trained on past market dynamics may not be gener-
alizable to the future market if there are substantial changes
in market dynamics (i.e., the problem of distribution shift).
We will use the Sharpe ratio of different testing time periods
to illustrate the influence of environment uncertainty.

Table 2: Sharpe Ratio of different time period in Bitcoin
dataset.1(w:week, m:month)

Method
Sharpe Ratio

1w 2w 1m 2m

CRP 4.70 3.00 4.82 3.95
OLMAR 6.78 2.99 0.75 -2.62
WMAMR 5.33 6.93 4.88 1.30

EW 5.32 3.68 4.77 3.95
DPM 14.25 13.37 12.64 9.80
SARL 14.78 14.61 13.89 10.60

Table 3: Sharpe Ratio of different time period in HighTech
dataset. (w:week, m:month)

Method
Sharpe Ratio

2w 1m 3m 6m

CRP 6.92 3.44 2.49 2.06
OLMAR 1.51 0.41 1.61 -0.05
WMAMR 6.61 0.42 1.74 1.30

EW 4.69 0.74 0.13 1.54
DPM 6.44 3.88 2.31 2.22
SARL 7.73 3.83 2.91 2.37

Results and Discussion

Here we report the results on Bitcoin and HighTech datasets
and discuss the performance of SARL and other baselines.

Portfolio Value (PV). In Bitcoin dataset, we use the pre-
vious prices of the past 30 days to train a classifier for price
up/down prediction. We employ a neural network based on
LSTM as an encoder and the classifier has 65.08% train-
ing and 60.10% testing accuracy. In HighTech dataset, we
use the financial news related to stocks for classifier train-
ing. We choose Glove as the embedding method and employ
a HAN as an encoder to obtain a 100-dimensional embed-
ding vector of stock movement prediction for each news.
The training/testing accuracy is 64.10%/60.99%. The divi-
sion of training and testing of the classifier of each dataset
follows the aforementioned setting. In our SARL training,
we use the prices of past 30 days as standard state s∗. In
Bitcoin, we use their related prediction labels for state aug-
mentation. In HighTech, the average news embeddings of
past 12 days are used for state augmentation. In case there is
no external source at time t, we set δ to be zero. The PV at
the final horizon in testing set as shown in Figure 3a and 3b
demonstrates the effectiveness of SARL. SARL improves
PV by 140.9% and 15.7% when compared to the state-of-
art RL algorithm for PM (DPM) in Bitcoin and HighTech
respectively. Since the market of cryptocurrency has more
volatility, it’s easier for a good agent to gain more profits.

Sharpe Ratio (SR). We report the SR of different time
period in Table 2 and 3. In PM, SR often decreases over
time in testing set due to the environmental distribution shift.
Although the training objective function of SARL does not
involve a risk-related concept, SARL attains the highest SR
in most cases, suggesting its ability to learn risk-adverse PM
strategies. Moreover, the advantage of SARL over DPM also
validates the importance of incorporating external features

1In Bitcoin dataset, 48 data points are included in a day.
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Figure 4: The simulation results of labels with different ac-
curacy on Bitcoin and HighTech dataset. SARL’s perfor-
mance increases with the accuracy and it outperforms DPM
even with low (60%) accuracy.
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Figure 5: The sparsity test on Bitcoin dataset. Each subfig-
ure shows the results of SARL whose state is augmented by
simulated price prediction labels with different sparsity. LD
is label density from {20%, 50%, 80%, 100%}.

for PM, as it enhances the robustness of the agent.
Studies on prediction accuracy and sparsity. Here we

use simulated prediction labels as state augmentation to
study the effect of prediction accuracy and label density (fre-
quency of having label prediction per each time step) on PM.
Using the same label density pattern as the original datasets,
Figure 4 shows that when the accuracy is higher than 60%,
albeit noisy prediction, SARL can learn better PM strategy.
The higher the accuracy is, the better the strategy is. In ad-
dition, we also run simulations for the sparsity test when
varying label density. Figure 5 shows that the performance
of PM on the Bitcoin dataset also benefits from higher la-
bel density. With the simulation result, we can find that even
if we only have labels with density 50% but 70% accuracy,
the portfolio value still has an improvement of 90.3% when
compared to DPM. This phenomenon suggests that if we
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Figure 6: The comparison between states augmented by dif-
ferent news embedding and randomly simulated labels.

have labels with high confidence, we can improve the PM
strategy even if the labels are sparse. Similar observations
also hold for the HighTech dataset, where the figure of the
sparsity test is given in supplementary material.

Hidden Correlation in News. The simulation result in
Figure 4 shows relatively mild improvement of SARL over
DPM even when the accuracy is 60%. However, when
we use the embedding of the financial news to augment
the state, we obverse significant improvement with similar
(around 60%) accuracy in testing set. The results reveal the
hidden correlation in financial news as opposed to randomly
simulated label predictions. To validate the hidden correla-
tion from financial news that can be exploited by SARL,
we use different word embedding methods as in Table 1
and train SARL with the same simulated training/testing ac-
curacy on the HighTech dataset for comparison. Figure 6
verifies the existence of the hidden correlation in financial
news. The results show that the performance of SARL when
trained on financial news is much better than that when
trained on randomly simulated labels with the same accu-
racy. The results also corroborate that SARL is capable of
learning from external information to improve PM.

Training SARL with different RL algorithms. As our
SARL framework is compatible with standard RL training,
we employ different RL algorithms including DPG (Silver
et al. 2014), PPO (Schulman et al. 2017), PG (Sutton et al.
2000) to verify the generality of SARL. Most of SARL vari-
ants across different RL training methods indeed show con-
sistent performance gains over DPM. We refer the readers to
the supplementary material for detailed comparisons.

Conclusion

In this paper, we propose SARL, a novel and generic state-
augmented RL framework that can integrate heterogeneous
data sources into standard RL training pipelines for learning
PM strategies. Tested on the Bitcoin and Hightech datasets,
SARL can achieve significantly better portfolio value and
Sharpe ratio. We also conducted comparative experiments
and extensive simulations to validate the superior perfor-
mance of SARL in PM. We believe this work will shed light
on more effective and generic RL-based PM algorithms.
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