
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

AirNet: A Calibration Model for Low-Cost Air
Monitoring Sensors Using Dual Sequence Encoder Networks

Haomin Yu,1 Qingyong Li,1∗ Yangli-ao Geng,1 Yingjun Zhang,1 Zhi Wei2

1Beijing Key Laboratory of Transportation Data Analysis and Mining, Beijing Jiaotong University, Beijing, China
2New Jersey Institute of Technology, Newark, NJ 07102, USA

{17112085, liqy, gengyla, zhangyj}@bjtu.edu.cn, zhiwei@njit.edu

Abstract

Air pollution monitoring has attracted much attention in re-
cent years. However, accurate and high-resolution monitoring
of atmospheric pollution remains challenging. There are two
types of devices for air pollution monitoring, i.e., static sta-
tions and mobile stations. Static stations can provide accurate
pollution measurements but their spatial distribution is sparse
because of their high expense. In contrast, mobile stations of-
fer an effective solution for dense placement by utilizing low-
cost air monitoring sensors, whereas their measurements are
less accurate. In this work, we propose a data-driven model
based on deep neural networks, referred to as AirNet, for cal-
ibrating low-cost air monitoring sensors. Unlike traditional
methods, which treat the calibration task as a point-to-point
regression problem, we model it as a sequence-to-point map-
ping problem by introducing historical data sequences from
both a mobile station (to be calibrated) and the referred static
station. Specifically, AirNet first extracts an observation trend
feature of the mobile station and a reference trend feature of
the static station via dual encoder neural networks. Then, a
social-based guidance mechanism is designed to select pe-
riodic and adjacent features. Finally, the features are fused
and fed into a decoder to obtain a calibrated measurement.
We evaluate the proposed method on two real-world datasets
and compare it with six baselines. The experimental results
demonstrate that our method yields the best performance.

Introduction
Air pollution has become a common problem in the process
of urbanization and industrialization (Lin and Zhu 2018). It
may lead to various respiratory problems including bron-
chitis, emphysema and asthma (Mabahwi, Leh, and Omar
2014). Thus, the demand for monitoring air quality is be-
coming increasingly essential. Generally, static stations pro-
vided by the government are equipped with instruments spe-
cialised for monitoring a number of air pollutants, such as
carbon monoxide (CO), nitrogen dioxide (NO2), sulphur
dioxide (SO2), ozone (O3) and particulate matter (PM10 and
PM2.5) (Kumar et al. 2015). However, the spatial distribu-
tions of these static stations are sparse due to the high cost
for installation and maintenance.

∗Corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Static station
Mobile station

T
he

 S
en

so
r 

re
ad

in
gs

 o
f m

ob
ile

 st
at

io
n

0                  5                 10                15               20

The Sensor reading 
to be calibrated

Reference result

Learning the map-
ping

Traditional method Our method
(Point-to-point mapping) (Sequence-to-point mapping) 

Reference data
Observation data

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

T
he

 S
en

so
r 

re
ad

in
gs

 o
f m

ob
ile

 st
at

io
n

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

T
he

 m
ea

su
re

m
en

ts
 o

f s
ta

tic
 st

at
io

n 

1

2

3

4

5

6

7

T
he

 m
ea

su
re

m
en

ts
 o

f s
ta

tic
 st

at
io

n 
1

2

3

4

5

6

7

T
he

 m
ea

su
re

m
en

ts
 o

f s
ta

tic
 st

at
io

n 

1

2

3

4

5

6

7

0                  5                 10                15               20
Time (hour)

0                   5                 10                 15                 20
Time (hour)

0                   5                 10                 15                 20 0                   5                 10                 15                 20
Time (hour) Time (hour)

Figure 1: A sketch map of calibration task. The traditional
methods formulate the calibration model as a point-to-point
regression model. But our method introduces historical se-
quence data of static station and mobile station to formulate
the calibration problem as sequence-to-point mapping prob-
lem.

To complement the accurate but costly static stations, the
field has developed low-cost, mobile-enable air monitoring
devices that are suitable for dense placement (Devarakonda
et al. 2013; Piedrahita et al. 2014; Hasenfratz et al. 2015).
Nevertheless, these devices are known to suffer from weak
metrological characteristics, which makes their measure-
ments less reliable (Spinelle et al. 2017). To improve accu-
racy of these devices, many scholars have developed low-
cost calibration methods, which mainly formulate calibra-
tion task as a point-to-point regression problem (Spinelle et
al. 2014; 2015; 2017; Saukh, Hasenfratz, and Thiele 2015;
Lin et al. 2015; Barcelo-Ordinas et al. 2018; 2019). As
shown in Fig.1, the point-to-point calibration methods are to
establish a mapping from a sensor reading (to be calibrated)
to a reference value. Spinelle et al. (Spinelle et al. 2014;
2015; 2017) utilized linear regression, multivariate linear re-
gression and artificial neural networks to calibrate low-cost
sensor. Saukh et al. (Saukh, Hasenfratz, and Thiele 2015)
proposed using geometric mean regression for calibration.
Their algorithm is especially optimized for calibrating large
networks of heterogeneous sensors with different noise char-
acteristic. Lin et al. (Lin et al. 2015) calibrated Aeroqual se-
ries 500 portable gas sensors by using ordinary least square
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linear regression and major axis linear regression. Barcelo-
Ordinas et al. (Barcelo-Ordinas et al. 2018) utilized mul-
tivariate estimation techniques to calibrate the gas sensor
devices. Although various methods have been proposed to
overcome the weaknesses of low-cost sensors, the calibra-
tion of low-cost gas sensors in actual deployment remains
challenging due to several factors as summarized below.
• Cross interference issue. Every sensor faces the prob-

lem of cross interference. For example, the readings of
a sensor for monitoring O3 depends not only on the O3

concentrations, but also on the other air pollutants and
environmental factors (e.g. CO, temperature and humid-
ity) (Barcelo-Ordinas et al. 2019; Anusankari et al. 2019;
Lewis et al. 2016). This issue can lead to a relatively high
degree of sensor response drift (Smith et al. 2019).

• Numerical scale difference. Different measurement
modes bring on different numerical scales of the readings
between static stations and mobile stations. For exam-
ple, the measurement range of TGS 5042 A00 manufac-
tured by Figaro for monitoring CO is 0-10000 μmol/mol
(Spinelle et al. 2017). However, the measurement range of
static station for CO is 0-150 mg/m3. Furthermore, due to
the the influence of the cross interference, the difference
of numerical scales exhibits dynamic and complex non-
linearities. Such difference would increase the difficulty
of calibration.

• Limited available features. In the actual deployment of
sensors, the atmospheric environment is uncontrollable.
There are many factors that affect the sensor readings,
such as temperature, air pressure and sensor life. How-
ever, restricted by the equipment of mobile stations, only
limited features are available, as described in Table 1.
To overcome the above challenges, we propose to ex-

ploit historical sequences of both the mobile station and
the static station for optimizing the calibration task. Specifi-
cally, we convert the point-to-point regression problem into
a sequence-to-point mapping problem, which will learn the
mapping from sequence data captured from both the mobile
station and the static station to a reference result. In particu-
lar, we propose AirNet, a low-cost air pollution monitoring
sensor calibration model, to solve the sequence-to-point cal-
ibration problem. AirNet first extracts reference trend fea-
ture of the static station and observation trend feature of
the mobile station via dual encoder neural networks. Next,
to better integrate social related information, a social-based
guidance mechanism is introduced to select periodic and ad-
jacent similarity features. Finally, these features are fused
and fed into a decoder to produce the calibration results.
AirNet has demonstrated superior performance for low-cost
sensor calibration. Our major contributions are summarized
as follows:
• We formulate the low-cost sensor calibration task as a

sequence-to-point mapping problem instead of the point-
to-point regression adopted by the established studies.
The new formulation empowers our model to exploit un-
derlying temporal correlations between the source domain
and the target domain, which is demonstrated to be useful
in improving the calibration results.

• We propose dual sequence encoder networks for the
sequence-to-point calibration task. The proposed net-
works allow to combine the sequence information of both
a mobile station and the referred static station, which
proves effective in withstanding numerical scale devia-
tions.

• We design a social-based guidance mechanism to mine
the periodic and adjacent correlation of pollutants under-
lying social regularities and further to assist the calibra-
tion task.

Problem Reformulation

In this section, we first introduce the initial features that are
available from the air monitoring stations, including a mo-
bile station to be calibrated and a referred static station, and
then present our novel formulation for the monitoring sensor
calibration problem.

Initial Features

Given a target pollutant (CO or O3), its initial features in-
clude internal features associated with the aimed pollutant
itself, and external features affecting sensor readings of the
target pollutant.

The internal features consist of two parts. The first part
is about the sensor readings of the aimed pollutant obtained
from the mobile station.The second part is about the histori-
cal reference data of the aimed pollutant of the static station.

The external features, which refer to the features of other
factors that affect the target pollutant sensor readings, are
acquired by other sensors equipped in the mobile station.
The external features comprise three parts.

• Other gaseous pollutant measurements. The mobile sta-
tions are equipped with monitoring sensors for other
gaseous pollutants , including O3 (or CO), NO2, SO2 and
particulate matters (PM10 and PM2.5). Thus, we utilize
the readings of these sensors to solve cross interference
phenomenon up to a point.

• Climate related indicators. The mobile stations can also
provide the temperature and humidity information, which
is introduced into the initial features since it is related to
the sensor sensitivity.

• Empiric Features. Some features derived from experience
are added to our scenario to enhance our solution.

The key information and notations of initial features are
presented in Table 1.

Problem Formulation

Linear regression has been commonly used for the cali-
bration task in many existing studies (Spinelle et al. 2014;
2015; 2017). Basically, these regression methods treat the
mobile value to be calibrated as independent variables,
and the target static value as dependent variables. Sup-
pose we observe data pairs at n time points and call them
(xint

t , yintt ), t = 1, ..., n, where xint
t is the mobile station

reading, and yintt is the static station measurement. We can
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Table 1: Key information and notations of initial features.
Types of features Notation Feature source Feature Data descriptions

Internal features (IF) xint ∈ R Mobile station (Observation data) Aimed pollutant CO (or O3)
yint ∈ R Static station (Reference data) Aimed pollutant CO (or O3)

External features (EF) xext ∈ R
lext Mobile station (Observation data)

Other gaseous pollutants O3 (or CO), NO2, SO2, PM2.5, PM10
Weather related data Humidity, Temperature

Empiric Features PM05N, PM1N, PM25N, PM10N,PM ZUFEN,
PMN SUM,PM10N ratio,PM25N ratio
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Figure 2: Framework of the proposed AirNet.

describe the underlying relationship between yintt and xint
t

with an error term εt by a linear regression (LR) model

yintt = β0 + βxint
t + εt. (1)

We can include external features as covariates (xext) and
extend the above LR model to a multiple linear regression
(MLR) model

yintt = β0 + βintxint
t + βextxext

t + εt. (2)

More generally, we are interested in learning a mapping
function F

ỹintt = FΘ(x
int
t ,xext

t ), (3)

where Θ is the collection of the F function parameters. We
will estimate Θ by minimizing a certain loss function L

Θ̃ = argmin
Θ

∑
t

L(yintt , ỹintt )

= argmin
Θ

∑
t

L(yintt , FΘ(x
int
t ,xext

t )).
(4)

The loss function can be, for example, Mean Square Er-
ror (MSE) , and Mean Absolute Error (MAE). Most exist-
ing methods differ at specifying different forms of F . For
instance, F can be a linear function for regression meth-
ods, or more complex functions defined by artificial neural
networks, decision trees, etc. We call all these existing ap-
proaches as point-to-point methods, which mean that when
making calibration at a certain time point, we only consider
the input and the output are the same time point.

However, we note that such a point-to-point regression
may not be optimal because it ignores the (strong) tempo-
ral dependency among data. For example, concentrations of

atmospheric pollutants have a certain degree of periodicity
and continuity affecting by social activities. To exploit the
temporal dependency of data for improving calibration ac-
curacy, we propose to integrate a sequence of historical mo-
bile features within a time window of length ω1, namely,
{xint

t }Tt=T−ω1
and {xext

t }Tt=T−ω1
. At the same time, to over-

come the numerical scale difference, we also consider a se-
quence of historical static features within a time window of
length ω2 ({yintt }T−1

t=T−ω2
). In contrast to the point-to-point

regression, we formulate the calibration task as a sequence-
to-point problem. Formally, we are interested in learning a
mapping function F

ỹintT = FΘ({xint
t }Tt=T−ω1

, {xext
t }Tt=T−ω1

, {yintt }T−1
t=T−ω2

).
(5)

Adding the two sequences of historical data would be
helpful, but it is not trivial to model them. We expect the
mapping function F be complex for the calibration task,
so deep neural networks may be an ideal candidate for it.
Therefore, we develop novel dual sequence encoder net-
works to accommodate the sequence data, as detailed in the
following section.

The Model

As shown in Fig. 2, the proposed AirNet consists of four
modules including an observation encoder, a reference en-
coder, a social-based guidance module and a calibration de-
coder. We detail each module as follows.

Observation Encoder

The observation encoder is in charge of extracting the ob-
servation information derived from the mobile station. This
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Figure 3: The operation of convolution layer. (a) The set-
ting of the convolution filter height; (b) The concatenation
operation after convolution.

module can capture observation trend and contribute to alle-
viate cross interference. To obtain the time series features of
the sensor to be calibrated, we feed its mobile internal fea-
tures {xint

t }Tt=T−ω1
into a gated recurrent unit (GRU) (Cho

et al. 2014) :

{h1
t}Tt=T−ω1

= GRUbasic({xint
t }Tt=T−ω1

), (6)

where h1
t denotes the hidden state at time t. The last hidden

state h1
T , which we call the basic trend feature, encapsulates

the trend information of mobile internal features. However,
it does not take into account the cross interference challenge.

To handle the dynamic cross interference influence, we
stitch the mobile internal and external features within a time
window ω1 into a matrix X ∈ R

(lext+1)×(ω1+1), where lext
denotes the dimension of the mobile external features. Then,
a convolution layer is applied on this matrix to learn the
dynamic cross interference among features. Specifically, we
utilize d filters with height h and width c to sweep through
the input matrix X . Note that h is set to lext + 1, as shown
in Fig. 3 (a), so as to model the cross interference among all
mobile features. The process can be formulated as:

sk = φ(Wk ∗X + bk), k = 1, . . . , d, (7)

where ∗ represents the convolutional operation, and φ is
an activation function (ReLU is utilized in our work). We
treat {sk}dk=1 as row vectors and stack them into a matrix
S ∈ R

d×(ω1+1) (See Fig. 3 (b)) . The t-th columns st of S
encompasses the cross inference information of time t.

Then we send {st}Tt=T−ω1
into a GRU to code their tem-

poral information:

{h2
t}Tt=T−ω1

= GRU cross({st}Tt=T−ω1
), (8)

where h2
t represents the hidden state at time step t. h2

t en-
closes dynamic cross interference trend information, so we
call it cross trend feature. Then, we concatenate the basic
trend feature and the cross trend feature at time step t:

ht = [h1
t ;h

2
t ], t = T − ω1, . . . , T. (9)

where ht represents final hidden state of moment t extracted
by the observation encoder. Particularly, we call the hidden
state of the last moment (i.e. hT ) observation trend feature,
which encapsulates the trend information of all observation
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Figure 4: Calibrated readings without introducing the static
station information. The horizontal axis represents time, and
the vertical axis represents the concentration value.

features. The observation trend feature contains not only the
rising and falling trend of the aimed pollutant, but also the
cross interference information. However, it cannot obtain the
reliable numerical scale of the referred measurements. As a
solution, we introduce the historical measurement sequence
of the referred static station to acquire this information.

Reference Encoder

The reference encoder is responsible for encoding historical
information of the target pollutant from the referred static
station. As shown in Fig. 4, without the historical informa-
tion of the static station (i.e. only the observation encoder is
utilized), the calibrated readings inevitably occur numerical
scale shift. Thus, we design a simple yet effective prediction
strategy to obtain useful information of the referred static
station containing reliable numerical scales.

Specifically, a historical sequence from the static station
{yintt }T−1

t=T−ω2
is fed into a GRU to obtain reference features:

{gt}T−1
t=T−ω2

= GRUglobal({yintt }T−1
t=T−ω2

), (10)

where gt denotes the hidden state of moment t. We call the
hidden state of the last moment (i.e. gT−1) reference trend
feature, which encodes the dynamic scale information of the
referred measurements. The reference trend feature can not
only reveal the inherent regularity of the target pollutant, but
also compensate for numerical scale difference.

Social-based Guidance Module

In this module, we first present the motivation and details
of the social-guidance mechanism. Then, a feature fusion
operation is introduced to balance extracted features.

Social-based Guidance Mechanism Social regularities
generally have periodicity and continuity, such as going to
work on weekdays, resting on weekends, sleeping at night
and working during the day. Air pollutant concentrations
may sometimes be affected by social regularities. As shown
in the example in Fig. 5, the concentrations of O3 at 22:00
demonstrate a strong correlation among weekdays, while
there is no evident correlation between weekdays and week-
ends. Meanwhile, the concentrations of adjacent times also
show similarity due to the continuity of social activities.
However, periodic and adjacent similarity relationships do
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Figure 5: The illustration of social-based guidance mecha-
nism.

not necessarily exist at all times. Thus, the proposed module
is expected to be able to learn this information automatically.

To make full use of social knowledge, the periodic and
adjacent similarities are treated as a priori strategy to fil-
ter the final hidden states obtained by observation encoder,
as shown in Fig. 5. Then the reference trend feature is uti-
lized to automatically learn the impact of the filtered hidden
states. Specifically, the impact of the filtered hidden state at
time t is calculated based upon the correlation with the ref-
erence trend feature gT−1:

Ia = [T, T − 1, · · ·, T − (la − 1), T − la],

Ip = [T, T − p, · · ·, T − (lp − 1) · p, T − lp · p],
at = σ(v� tanh(WgT−1 +Uht)), t ∈ Ia ∪ Ip,

r =
∑
t∈Ia

atht+
∑
t∈Ip

atht,

(11)

where Ia and Ip denote adjacent time slot set and periodic
time slot set, respectively. p is periodic interval, which is set
as 24 according to the 24-hour biological cycle. la and lp
represent the number of adjacent hidden states and the num-
ber of periodic hidden states ( la is set as 6, and lp is equal
to

⌊
ω1+1
24

⌋
), respectively. W , U , v are the learnable param-

eters, σ is the softmax function, and at represents the im-
pact score between reference trend feature and hidden state
at time t. We call r relevant feature which encloses periodic
information and adjacent information.

Feature Fusion The observation encoder can capture ris-
ing and falling trend information, but fails to obtain the cor-
rect numerical scale information. The reference encoder can
compensate numerical scale difference, yet it is difficult to
predict sudden changes of air pollutant concentrations. Fur-
thermore, the social-based attention mechanism can mine
potential information related to social regularities. For tak-
ing advantage of complementary information acquired by
each module, the observation trend feature hT , the reference
trend feature gT−1 and the relevant feature r are fused via a
fully connected layer:

hfuse = FCfuse([r; gT−1;hT ]) = Wf [r; gT−1;hT ] + bf ,
(12)

Table 2: The detailed settings of AirNet.
Module Parameter Value

Observation encoder
Filter size and number of CNN 16×5,100

Stride of CNN 1
Hidden dimension of GRUbasic 50
Hidden dimension of GRUcross 80

Reference encoder Hidden dimension of GRUglobal 50
Social-based guidance Output dimension of FCfuse 120

Calibration decoder Output dimension of FCdec 1

Table 3: The statistics of two datasets. Note that the number
of instances is different because of missing values and error
data.

Dataset Lanzhou dataset Fuzhou dataset
Target sensors CO and O3 CO and O3

Time spans 2017/11/2-2018/10/2 2017/11/2-2018/10/2
Time intervals 1 hour 1 hour
# of instances 7674 7753

where Wf and bf are the weight and bias to be learned.

Calibration Decoder

After the feature fusion, we feed the fused vector hfuse along
with the mobile internal feature xint

T into a decoder to cali-
brate the readings of aimed sensor with:

ỹintT = FCdec(f(hfuse, xint
T )) = wT

d f(h
fuse, xint

T ) + bd,
(13)

where f represents a GRU cell. wd and bd are learnable pa-
rameters.

Implementation Details

The proposed method is implemented with Pytorch, and the
code is made publicly available1. The model is trained by
minimizing the mean absolute loss function.

During the training procedure, the learning rate is set as
0.001 and the batch size is set as 128. The model param-
eters are optimized by Adam optimizer (Kingma and Ba
2014). To prevent overfitting, we further apply the dropout
method with probability 0.2. The historical sequence win-
dow lengths of the mobile station and the static station (i.e.
ω1 and ω2) are set to 167 and 24, respectively. For clarity,
Table 2 summarizes other parameter settings in AirNet.

Experiments

In this section, we evaluate the performance of the proposed
AirNet model. All experiments are conducted on a 64-bit
Ubuntu 16.04 computer with 18 Intel 2.68GHz CPUs, 256
GB memory, and 8 NVIDIA TITAN X GPUs. All methods
are repeated five times, the optimal result for each method is
selected as its final result.

Setting

Datasets Experiments were carried out over two different
datasets, as shown in Table 3. Meanwhile, we divide the total
dataset by a ratio of 8:1:1 for training, validation and testing

1https://github.com/yuhaomin/AirNet
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Table 4: The feature details of baselines and AirNet. IF M,
IF S and EF M denote mobile internal feature, static internal
feature and mobile external features, respectively. CF and
HF represent feature at current time (time to be calibrated)
and historical sequence features, respectively.

Definition Method IF M IF S EF M
CF HF CF HF CF HF

Point-to-point
LR � - - - - -

MLR � - - - � -
XGBoost � - - - � -

Sequence-to-point

ELC � � - - - -
LSTNet � � - - � �

DA-RNN � � - � � �
AirNet � � - � � �

in chronological order. Here we briefly introduce these two
datasets as below:
• Lanzhou dataset. Lanzhou is one of the most seriously

air-polluted cities in China, due to its special valley to-
pography and industrial structure (Tao et al. 2014). Note
that the higher level of air pollution, the more serious the
influence of the cross interference among sensor readings.

• Fuzhou dataset. Fuzhou has always been ranked ahead
of China’s cities in air quality, so the cross interference
factors have less effects on the readings of the sensors in
Fuzhou.

Evaluation Metrics We evaluate the calibration quality of
all the methods under test by two measures:
• Symmetric mean absolute percentage error (SMAPE)

SMAPE =
100%

τ

τ∑
j=1

⎛
⎝

∣∣yintT,j − ỹintT,j

∣∣
(
∣∣∣yintT,j

∣∣∣+
∣∣∣ỹintT,j

∣∣∣)/2

⎞
⎠, (14)

• Mean absolute error (MAE)

MAE =
1

τ

τ∑
j=1

∣∣yintT,j − ỹintT,j

∣∣, (15)

where τ refers to the number of testing sequences. yintT,j and
ỹintT,j represent reference measurement and the calibration re-
sult for the j-th testing sequence, respectively.

Methods for Comparison

We compare AirNet with the following baselines.
• LR: Linear regression (LR) is a linear approach to model

the relationship between a scalar response and a reference
result, and it is widely applied in sensor calibration field
(Spinelle et al. 2014; 2015; 2017).

• MLR: Multiple linear regression (MLR), which is com-
monly used for sensor calibration (Spinelle et al. 2014),
attempts to learn the mapping from two or more explana-
tory variables to a reference result.

• XGBoost: XGBoost (Chen and Guestrin 2016) is an im-
plementation of gradient boosted decision trees, which
shows strong competitiveness in many competitions. The
XGBoost of Scikit-Learn with default parameters is em-
ployed.

Table 5: Calibration results for the Lanzhou dataset and
Fuzhou dataset.

Method
Lanzhou Dataset Fuzhou Dataset

CO O3 CO O3

SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE
LR 46.47% 0.467 62.1% 15.069 24.15% 0.133 48.88% 26.099

MLR 29.9% 0.256 59.77% 13.469 18.56% 0.102 28.6% 14.174
XGBoost 27.14% 0.219 48.8% 12.411 20.03% 0.110 32.38% 16.42

ELC 32.54% 0.300 54.41% 13.931 23.05% 0.126 41.86% 20.739
LSTNet 34.36% 0.279 59.57% 13.926 19.48% 0.106 24.25% 11.429

DA-RNN 17.42% 0.131 38.16% 9.662 5.55% 0.029 14.66% 6.925
AirNet 15.82% 0.122 28.26% 6.911 3.92% 0.021 10.06% 4.261

• ELC: Ensemble of LSTM & CNN (ELC) (Zhao et al.
2018) leverages time-frequency features and global fea-
tures extracted by LSTM.

• LSTNet: LSTNet (Lai et al. 2018) proposes a novel
recurrent-skip component that leverages the periodic pat-
tern to capture long-term dependencies.

• DA-RNN: DA-RNN (Qin et al. 2017) is a dual-staged at-
tention model for time series prediction problem.

Note that ELC, LSTNet and DA-RNN were originally uti-
lized to solve the time series prediction problem, and we
apply them to our sensor calibration scenarios. Their param-
eters are set based on the recommendations in their original
papers. The initial feature settings for all methods are shown
in Table 4, where the initial feature setting for each base-
line is set according to its own architecture. Furthermore, to
fully study the performance gained from each component of
AirNet, four other versions of AirNet are implemented:

• AirNet-O: An incomplete AirNet in which the observa-
tion encoder is removed. Note that AirNet-O turns the cal-
ibration task into a prediction task. After the observation
decoder is removed, the guidance mechanism is not avail-
able. Thus, the guidance mechanism is removed.

• AirNet-R: An incomplete AirNet in which the reference
encoder is removed. Namely, the reference trend feature
is removed. Note that after the reference decoder is re-
moved, the guidance mechanism is not available. Thus,
the guidance mechanism is also removed.

• AirNet-C: An incomplete AirNet in which the convolu-
tion part is removed. That is, the cross trend feature is
removed.

• AirNet-G: An incomplete AirNet in which the social-
based guidance mechanism is removed.

Experimental Results

Table 5 and Table 6 present the numerical results of base-
lines and ablation studies, respectively. Figure 6 visualizes
the results of two competitive baselines and AirNet. Next,
we will analyze the experimental results in detail.

Comparison results with Baselines The left part of Table
5 shows that our AirNet achieves the best performance for
the Lanzhou dataset. The calibration results of most base-
line methods are not ideal, demonstrating the challenge of
calibration in heavy air pollution scenario. By comparison,
the methods that utilize mobile external features generally
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Figure 6: Calibration results for different methods applied to the (a) Lanzhou dataset and (b) Fuzhou dataset. (The horizontal
axis represents time, and the longitudinal indicates the concentration value.)

Table 6: Ablation study results for the Lanzhou dataset and
Fuzhou dataset.

Method
Lanzhou Dataset Fuzhou Dataset

CO O3 CO O3

SMAPE MAE SMAPE MAE SMAPE MAE SMAPE MAE
AirNet-O 17.02% 0.131 28.29% 7.908 5.29% 0.028 13.3% 6.25
AirNet-R 28.09% 0.225 41.91% 10.825 19.2% 0.106 23.06% 11.494
AirNet-C 16.09% 0.124 27.39% 7.489 4.23% 0.024 10.43% 4.391
AirNet-G 16.87% 0.128 26.84% 6.976 3.98% 0.021 11.2% 5.043

AirNet 15.82% 0.122 28.26% 6.911 3.92% 0.021 10.06% 4.261

obtain better calibration results than methods that do not in-
troduce external features (LR and ELC). Among them, XG-
Boost, which is suitable for modeling the nonlinear relation-
ships, is superior to linear models such as LR and MLR. Be-
sides, LSTNet does not perform well because it utilizes skip-
links for all hidden states to capture long-term dependen-
cies and periodic pattern, which may introduce much noise.
DA-RNN, which introduces the features captured from both
the mobile station and the static station, achieves competi-
tive performance compared with AirNet. However, it cannot
handle the sudden changes of pollutant concentrations very
well, as shown in Fig. 6(a). The proposed AirNet obtains the
best results, because it considers both information from two
types of stations and the influence of social regularities.

The calibration performance for the Fuzhou dataset is
shown in the right part of Table 5. The calibration results
of Fuzhou are generally better than that of Lanzhou. This is
because the sensor in Fuzhou is less affected by the cross
interference phenomenon. More specificially, LR and ELC,
which only take the mobile internal feature into account, do
not perform well. In comparison, MLR, XGBoost and LST-
Net achieve improved performance since they consider ex-
ternal features. As a point-to-point calibration method, al-
though XGBoost achieves small calibration errors for CO,
its deviation is actually large as shown in Fig. 6(b). DA-
RNN is competitive compared with AirNet. On the whole,
the results of AirNet are superior to the baseline methods,
and AirNet appears suitable for different sensors in different
regions.

Ablation Study Table 6 lists ablation studies for the five
configurations on the two datasets. Both AirNet-O and
AirNet-R are used to test the importance of the reference
encoder. Note that AirNet-O only retains the reference en-
coder but AirNet-R removes the reference encoder. By com-
paring the performance of two methods, it is clear that the
prediction strategy designed to introduce historical static in-
ternal features plays a crucial role in our methods. AirNet-C,
which removes the convolutional layer, has slightly worse
performance. This is because it ignores the effect of cross
interference on the sensor readings. For the test of the con-
tribution of the social-based guidance mechanism, we can
see from the results that AirNet works better than AirNet-G
for calibrating CO sensor. However, the advantage of Air-
Net is not obvious when calibrating O3 for Lanzhou, since
the O3 sensor equipped in Lanzhou is subject to large exter-
nal interference.

In summary, this ablation study justifies the efficacy of
our architecture design. All components have contributed to
the excellent performance of AirNet.

Conclusions

In this paper, we presented a new formulation (i.e. sequence-
to-point mapping) for calibrating low-cost air monitoring
sensors. With the new formulation, we proposed an end-to-
end neural network model (AirNet) to solve the calibration
problem. AirNet exploits dual sequence encoder networks
to extract temporal information for both the static station
and the mobile station, which proves useful in improving
the calibration results. Furthermore, inspired by the tempo-
ral regularity of social activities, we designed a social-based
guidance mechanism, which reveals the periodic and adja-
cent correlations among the features of different times and
further enhances the calibration performance. The experi-
mental results on two real-world datasets verified the effec-
tiveness of the proposed formulation and method.

In future research, there are some topics that we will in-
vestigate. Firstly, we will study spatio-temporal calibration
models by integrating multiple near mobile stations. Sec-
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ondly, we will try to deploy AirNet on the web server to
provide calibration service for low-cost sensors.
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