
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Towards Hands-Free Visual Dialog Interactive Recommendation

Tong Yu, Yilin Shen, Hongxia Jin
Samsung Research America
Mountain View, CA, USA

{tong.yu, yilin.shen, hongxia.jin}@samsung.com

Abstract

With the recent advances of multimodal interactive recom-
mendations, the users are able to express their preference by
natural language feedback to the item images, to find the de-
sired items. However, the existing systems either retrieve only
one item or require the user to specify (e.g., by click or touch)
the commented items from a list of recommendations in each
user interaction. As a result, the users are not hands-free and
the recommendations may be impractical.
We propose a hands-free visual dialog recommender system
to interactively recommend a list of items. At each time, the
system shows a list of items with visual appearance. The user
can comment on the list in natural language, to describe the
desired features they further want. With these multimodal
data, the system chooses another list of items to recommend.
To understand the user preference from these multimodal
data, we develop neural network models which identify the
described items among the list and further predict the desired
attributes. To achieve efficient interactive recommendations,
we leverage the inferred user preference and further develop
a novel bandit algorithm. Specifically, to avoid the system
exploring more than needed, the desired attributes are uti-
lized to reduce the exploration space. More importantly, to
achieve sample efficient learning in this hands-free setting,
we derive additional samples from the user’s relative prefer-
ence expressed in natural language and design a pairwise lo-
gistic loss in bandit learning. Our bandit model is jointly up-
dated by the pairwise logistic loss on the additional samples
derived from natural language feedback and the traditional
logistic loss. The empirical results show that the probability
of finding the desired items by our system is about 3 times as
high as that by the traditional interactive recommenders, after
a few user interactions.

Introduction

In traditional interactive recommender systems, the user
feedback (i.e., rating or click) is continuously collected to
improve the recommendations. The recent advances of rec-
ommenders enable the users to comment on the item im-
ages via natural language, to express their preference (Guo
et al. 2018; 2019; Vo et al. 2019; Yu, Shen, and Jin 2019;
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Figure 1: An example in our hands-free recommender sys-
tem. In each round, the user provides one comment to the
recommended list, and the system is not aware of which
item(s) among the list are commented. The system predicts
which parts are commented by the user, understands the user
preference, and provides another list of recommendations.

Yu et al. 2019). However, the existing systems either retrieve
only one item or require the user to specify (e.g., by click or
touch) the commented items in each user interaction. As a
result, the recommendations are less efficient and the users
are not hands-free. In certain user scenarios of personal as-
sistants, such as Amazon echo show1 and Google home hub2,
the hands-free feature is very desirable. For instance, when
the users prepare foods or take care of babies, it is unrealistic
to expect the users to easily touch or click the screen.

In this paper, (i) we design a hands-free interactive rec-
ommender system, based on which (ii) we further develop a
bandit algorithm to efficiently find the desired items. In our
hands-free system, without touching or clicking the screens,
the users find the items by providing natural language feed-
back to the item images. At each time, the user is provided
a list of recommended items. Then, the user provides one
comment to the list of items, to approach the desired item.
Figure 1 shows an example. The recommendations are pro-
vided to a user with multiple rounds. Assume the user wants
black flats with open toe and floral pattern. In the first round,
the user is recommended with a list of shoes. The user views
the list and provides a comment ‘I prefer shoes in black
color’. Then, the system updates and give recommendations
in the second round. The user gets more recommendations of
black shoes, and makes another comment ‘I prefer flats with

1https://www.amazon.com/All-new-Echo-Show-2nd-Gen/dp/
B077SXWSRP

2https://store.google.com/product/google home hub
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open toe’. With this comment, the system updates again. To
build a fully hands-free system, the inputs should be raw
speech signals. In this work, we simplify this step and as-
sume we already have the spoken language output from an
automatic speech recognition component.

To understand the user preference from these multimodal
data, we develop neural network models which identify the
described items among the list and further predict the desired
visual attributes. To achieve efficient interactive recommen-
dations, we leverage the inferred user preference and further
develop a bandit algorithm, sleeping pairwise ranking ban-
dit (SPR bandit). Specifically, to avoid the system explor-
ing more than needed, the desired attributes are utilized to
reduce the exploration space. More importantly, to achieve
sample efficient learning in this hands-free setting, we de-
rive additional samples from the user’s relative preference
expressed in natural language and design a novel pairwise
logistic loss in bandit learning. Our bandit model is jointly
updated by the pairwise logistic loss on the additional sam-
ples derived from natural language feedback and the tradi-
tional logistic loss.

In summary, we make three major contributions.

• We propose a novel hands-free multimodal interactive
recommender which enable the users to find the desired
items by natural language, without requiring the users to
touch the screens.

• We develop multimodal neural networks to effectively un-
derstand the user natural language feedback on the visual
appearance of a list of items.

• With limited positive data samples in this hands-free set-
ting, we propose SPR bandit to achieve more sample ef-
ficient learning, compared to traditional bandits.

Related Work

Interactive Recommenders with Multimodal Data

Multimodal data, such as natural language and image, have
been leveraged in recommender systems. With the recent ad-
vances of deep learning and reinforcement learning, conver-
sational interactive recommendations are becoming increas-
ingly popular (Christakopoulou, Radlinski, and Hofmann
2016; Greco et al. 2017; Sun and Zhang 2018; Li et al. 2018;
Zhang et al. 2018). A recent work (Guo et al. 2018) enables
user natural language feedback to candidate items’ visual
appearance for interactive item retrieval. (Yu, Shen, and Jin
2019) further extends this approach to interactively recom-
mend a list of items. More advanced ways of combining the
text and image inputs for image retrieval are proposed and
compared in (Vo et al. 2019; Guo et al. 2019). However,
these multimodal systems either retrieve only one item or
require the user to specify (e.g., by click or touch) the com-
mented items from a list of recommendations. As a result,
the users are not hands-free. In certain user scenarios of per-
sonal assistants (e.g., Amazon echo show and Google home
hub), the hands-free feature is very desirable. For instance,
when the users prepare foods or take care of babies, it is
unrealistic to expect the users to touch or click the screen.

Interactive Recommenders by Bandits

Multi-armed bandits balance exploration and exploitation in
traditional interactive recommender systems (Chapelle and
Li 2011). There are different online algorithms maximiz-
ing the rewards online, such as Upper Confidence Bound
(UCB) and Thompson Sampling (TS) (Auer, Cesa-Bianchi,
and Fischer 2002; Russo et al. 2018). Cascading bandits are
proposed to interactively recommend a list of items (Kveton
et al. 2015; Zong et al. 2016). Sleeping bandits are studied in
the setting where the set of available arms varies arbitrarily
with time (Kleinberg, Niculescu-Mizil, and Sharma 2010;
Chatterjee et al. 2017). Traditional bandit algorithms update
the models mainly based on simple user feedback, such as
ratings or clicks. In the early time steps, these algorithms
usually explore more than needed (Liu et al. 2018b), due to
the random initialization of the confidence interval in UCB
or prior distribution in TS. However, it is very important to
recommend suitable items in the early time steps. In this pa-
per, we improve the interactive recommender’s performance
in the early time steps by leveraging the multimodal data and
proposing a sample efficient bandit algorithm. Augmenting
bandits with deep learning models has recently been studied
in (Riquelme, Tucker, and Snoek 2018; Weber et al. 2018;
Liu et al. 2018a).

A Hands-free Multimodal Recommender

In this section, we introduce our system. Our system and
the data inputs are shown in Figure 2. The data inputs in-
clude the recommended lists and the user feedback. There
are three components in our system: item identifier, visual
dialog encoder, and SPR bandit. At each time, the user
is provided with a list of recommendations. Then, the user
gives a comment on the visual appearance of the items in
the list. The system receives the item images, and user com-
ments in natural language. When a user finds a desired item,
the user describes a sentence to notify the system. The item
identifier predicts which items are commented. Based on the
commented items’ visual appearance and the comment in
natural language, the visual dialog encoder infers the user
preference. Based on the inferred preference, SPR bandit
provides another list of recommendations.

Item Identifier to Predict Described Items

In this section, we introduce the item identifier component,
which predicts the commented items within the list of rec-
ommendations. In our system, in each round the user pro-
vides a comment to a list of items. The system is not aware
which parts of items are commented by the user. We need
to know which items the user is talking about in the list, to
further infer the user preference.

It is very challenging to predict the exact commented
items, because the same comment can apply to multiple
items. For example, assume the recommended list includes
blue clogs and yellow sandals. If a user describes ‘I pre-
fer red shoes’, the user may want either red clogs or red
sandals. Alternatively, we identify and retain the items not
containing the visual feature described by the user. As an
example, assume the recommended list includes blue clogs,
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Figure 2: The components and data inputs of our system.

yellow sandals and red boots. If a user describes ‘I prefer red
shoes’, the user typically want red clogs or red sandals rather
than red boots, since red boots already contain the described
feature (i.e., red). If a user desires red boots, the user will
either like the recommended item or describe some visual
attributes other than color. We remove the red boots before
we use visual dialog encoder to infer the user preference.

The item identifier consists of an image encoder, a text en-
coder and an identification classifier, as shown in the green
block of Figure 3. We encode each item by an image en-
coder. Specifically, following (Guo et al. 2018), we encode
the image of item et−1 by ResNet101 and then a linear map-
ping, where the output is denoted as ImgEnc(et−1). The
ResNet101 is pre-trained on ImageNet. Given each pair of
candidate item et−1 and desired item e∗, the user describe
their difference ot−1 in natural language. We encode each
comment by a text encoder. Specifically, we encode this
feedback ot−1 by one-hot encoding, a linear mapping and
then a CNN (Kim 2014), where the output is denoted as
TxtEnc(ot−1). Then, ImgEnc(et−1) and TxtEnc(ot−1) are
concatenated and embedded through a linear transformation
to be further used as the input of the identification classi-
fier, which is a 3-layer fully connected neural network. Item
et is derived by considering the features in both et−1 and
ot−1. Therefore, et−1 does not contain the feature described
by ot−1, while et contains the feature described by ot−1.
Given inputs of et−1 and ot−1, the neural network outputs
Iden(et−1, ot−1), which should be 1. Given inputs of et
and ot−1, the neural network outputs Iden(et, ot−1), which
should be 0. We train the item identifier by minimizing a
cross-entropy loss function.

Visual Dialog Encoder to Infer Desired Attributes

The visual dialog encoder component understands the de-
sired attributes. Specifically, this component outputs the
item which looks similar to the desired items, given the in-
puts of one candidate item and its received comment.

To develop the visual dialog encoder, there are various
operators to fuse the image and text inputs with various loss
functions (Vo et al. 2019; Guo et al. 2019; 2018). We fol-
low the approach in (Guo et al. 2018). The visual dialog
encoder has an image encoder and text encoder. The im-
age encoder and text encoder in this component shares the
same architecture and parameters with the image encoder
and text encoder in the item identifier. As shown in Fig-
ure 3, ImgEnc(et−1) and TxtEnc(ot−1) are concatenated

and embedded through a linear transformation to be further
used as the input of a state tracker, which is a GRU fol-
lowed by a linear mapping. The output of the state tracker
is denoted as VisDiaEnc(et−1, ot−1), the final encoding of
the item image et−1 and its comment ot−1. The visual di-
alog encoder is trained by optimizing the triplet loss and
cross entropy loss (Guo et al. 2018). The distance between
VisDiaEnc(et−1, ot−1) and ImgEnc(e∗) is minimized dur-
ing the training, where e∗ is a desired item. As a result, we
can rely on the desired attributes VisDiaEnc(et−1, ot−1) to
find items close to the desired item e∗.

In our system, the components of item identifier and vi-
sual dialog encoder are pre-trained on a training dataset in
the offline setting with the cross-entropy loss function for
the identification classifier and the loss functions in (Guo et
al. 2018). To provide personalized recommendations based
on the output of item identifier and visual dialog encoder,
SPR bandit learns in an online setting for new users (not
necessarily existing in the training data).

SPR bandit to Make Interactive Recommendations

SPR bandit makes interactive recommendations based on
the multimodal feedback. At each time, SPR bandit selects
a list of items to recommend. Then, the user provides mul-
timodal feedback to the list of items. With this feedback,
the bandit model updates and recommend another list for
next time. SPR bandit is based on Thompson sampling
(TS), considering TS generally outperforms Upper Confi-
dence Bound (UCB) (Chapelle and Li 2011). SPR bandit is
different from the traditional bandit algorithms in that (i) it
uses a constrained exploration strategy with the constraints
learned from the visual dialog encoder, and (ii) it is jointly
optimized by a traditional loss and a pairwise logistic loss, to
achieve sample efficient learning in this hands-free setting.

Model and Online Leaning Setting Following (Chapelle
and Li 2011), we assuming there exists θ∗ ∈ R

d×1 such
that, for any item e, the probability of it being desired is
σ(x�

e θ
∗). Here xe = ImgEnc(e) ∈ R

d×1 is the encod-
ing of item e and σ(.) is the sigmoid function. The agent
is to learn θt performing similarly to θ∗ online. Assume
the size of the recommended list is K, in total there are L
items, [L] is a ground set of the L items, and ΠK([L]) is the
set of all K-permutations of set [L]. Following (Zong et al.
2016), we define the reward function f(At, θt): if at time t
the recommended list At contains at least one desired item,
f(At, θt) = 1. Otherwise, f(At, θt) = 0. We minimize the
expected cumulative regret

R(n) = E[

n∑

t=1

(f(A∗, θt)− f(At, θt))],

where A∗ = argmaxA∈ΠK([L]) f(A, θ∗) is the optimal list.
To learn the optimal list over time, we develop an online
algorithm with two special designs, as follows.

Constrained and Efficient Exploration Similar to (Yu,
Shen, and Jin 2019), we develop a bandit algorithm with
constrained explorations to find the desired items more ef-
ficiently. The traditional bandits usually explores more than
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Figure 3: The models of the item identifier and visual dialog encoder at time t−1 and time t. In this figure, we omit some linear
transformation layers for a clear overview of the model.
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Figure 4: The SPR bandit model. The left part shows the
model optimized by traditional loss, and the right part shows
the model optimized by the pairwise logistic loss. All items
are within the constrained exploration space. The detail of
the visual dialog encoder is shown in Figure 3.

needed (Liu et al. 2018b). To control the exploration, our al-
gorithm learns constraints from user feedback via the visual
dialog encoder. The constraints guide exploration to con-
sider only a subset of the items at each time. Thus, the user
can find more desired items with fewer interactions.

Specifically, we reduce the exploration space by lever-
aging the output from the visual dialog encoder. Assume
item e receives comment o. With VisDiaEnc(e, o), we can
roughly estimate the region where user desired items are in
the space of arms. In our algorithm, only the arms within
this region are available to recommend and the rest arms are
not available, that is, sleeping (Kleinberg, Niculescu-Mizil,
and Sharma 2010; Chatterjee et al. 2017). In practice, we
maintain a vector xcenter to estimate the centroid of the re-
gion. Only the set B containing the top K ′ arms closest to
xcenter is available to recommend and the rest arms are not
available. We keep updating xcenter, so that it converges to
the true centroid of the region.

Pairwise Logistic Loss for Sample Efficient Learning
Compared to the setting that a list may receive multiple
comments (Yu, Shen, and Jin 2019), in our hands-free set-
ting a list only receives one comment. (Yu, Shen, and Jin
2019) shows that the system performance degrades with

fewer comments. Besides, there are not enough samples (es-
pecially positive samples, i.e., items being desired) to learn
an accurate model in early steps of bandit learning. There-
fore, it is desirable to develop a sample efficient learning
algorithm to effectively leverage the limited number of com-
ments. To alleviate this issue, we develop a pairwise logistic
loss function to effectively derive additional data samples to
augment our bandit model and achieve high accuracy, espe-
cially in the early steps of learning. The pairwise logistic loss
function characterizes how the bandit model fits the pairwise
ranking of items based on the user natural language feed-
back. Our exploration model is jointly updated by the tra-
ditional logistic loss function and our pairwise logistic loss
function. For simplicity of exposition, we assume only one
item is commented at each time step in this section, while
multiple items could be commented at each time. Algorithm
1 presents our algorithm in a more general case.

Given an item e and its comment o, we can obtain
VisDiaEnc(e, o). Inspired by the rank logistic regression
(Lo et al. 2009; Wu et al. 2012), we develop a pairwise
logistic loss function for bandit learning. As in (Lo et
al. 2009; Herbrich, Graepel, and Obermayer 1999), opti-
mizing the pairwise logistic loss function given xe and
VisDiaEnc(e, o) is mathematically equivalent to optimizing
the logistic loss function with feature VisDiaEnc(e, o)−xe

and label 1 when θ is a linear model. That is, we minimize
the following pairwise loss

min
θ

λθ�θ −
n−1∑

t=1

log(σ((VisDiaEnc(et, ot)− xet)θ)),

(1)
where n is the total number of user interaction rounds, λ
is the weight of the regularization term, and et is the com-
mented item with comment ot at time t. This design leads to
more sample efficient learning by collecting more positive
samples with reward 1 in the early steps, when most recom-
mended items only receive reward 0. Consider an example
where the user has 10 rounds of interactions with the system.
Usually the recommendations in the first 10 rounds are not
the user’s desired items. So we assume that only 2 items are
desired by the user. In the rest 8 rounds, we only receive the
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Algorithm 1 SPR bandit

Input: λ, L, K, K′, d
1 τ = 1, τ ′ = 1, θ̄0 = 0 ∈ R

d×1, S0 = λ−1Id ∈ R
d×d,

xcenter = 0 ∈ R
d×1, B = [L]

2 forall t = 1, · · · , n do

3 Sample the model parameters θt ∼ N (θ̄t−1, St−1)
4 forall k = 1, · · · ,K do

5 at
k ← argmaxe∈B−{at

1,··· ,at
k−1

} x
�
e θt

6 end

7 Recommend items At ← (at
1, · · · , at

K)
8 if Any items in At are desired then
9 Observe the desired items Ct ⊂ [K]

10 else
11 Observe the comment ot and set Ot = ∅

12 forall k = 1, · · · ,K do

13 if Iden(at
k, ot) = 1 then Ot = Ot ∪ {k} ;

14 end

15 end
16 forall k = 1, · · · ,K do

17 e← at
k, zτ ← xe, yτ ← �{k ∈ Ct}, τ ← τ + 1

18 if k ∈ Ot then
19 zτ ←VisDiaEnc(e, ot)− xe // pairwise loss
20 yτ ← 1

21 xcenter ← xcenter×(τ ′−1)+VisDiaEnc(e,ot)
τ ′

22 τ ← τ + 1, τ ′ ← τ ′ + 1
23 end

24 end

25 forall k′ = 1, · · · ,K′ do
26 bk′ ← argmine∈[L]−{b1,··· ,bk′−1} ||xe − xcenter||
27 end
28 B ← (b1, · · · , bK′)

29 Update St and θ̄t
30 end

user comments to improve the undesired items. With the tra-
ditional loss, only 2 positive samples are available in the first
10 rounds. By optimizing the pairwise logistic loss, 8 extra
samples can be derived. Therefore, by jointly optimizing the
traditional loss and the pairwise logistic loss, 2 + 8 = 10
positive samples are available in the first 10 rounds, which
leads to more sample efficient learning. In the online setting,
the bandit model parameters are jointly updated by the pair-
wise logistic loss function and the traditional logistic loss,
as shown in the right part of Figure 4.

Algorithm By considering the above two designs, we
summarize SPR bandit as shown in Algorithm 1. The in-
puts are the hyper-parameter λ of the Gaussian distribution,
the total number of items L, the size of list K, a hyper-
parameter K ′ and the dimensionality of the image feature
vector d. From line 3 to line 7, we sample the model pa-
rameters, select the top K items from B and recommend
them to the user. From line 8 to line 24, we collect the user
feedback. The set Ot ⊂ [K] records the indices of the com-
mented items within the recommended list. The set Ct ⊂ [K]
records the indices of the satisfying items within the recom-
mended list. In line 17, the samples are collected for bandit
learning with the traditional logistic loss. In lines 19 and 20,

based on the user relative preference expressed in natural
language, additional samples are derived for bandit learn-
ing with the pairwise logistic loss. In traditional bandits, the
samples are the bandit arms and their reward. We derive ad-
ditional samples, which are the difference between a pair
of arms and the two arms’ relative relationship expressed in
natural language. In line 21, we update xcenter. From line 25
to line 28, we update B. Only the set B containing the top K ′
arms closest to xcenter is available to recommend, to achieve
constrained exploration. In line 29, we update distribution
of the model parameter. Following (Chapelle and Li 2011;
Bishop 2006; MacKay 1992), we approximate the posterior
distribution of the model parameter by a Gaussian distri-
bution. Specifically, the posterior at time t can be approx-
imated by θt ∼ N (θ̄t−1, St−1) . The covariance matrix is
St =

(∑τ
i=1 σ(z

�
i θt)(1− σ(z�i θt))ziz

�
i + λId

)−1
. To es-

timate θ̄t, we minimize the following loss

min
θ

λθ�θ −
τ∑

i=1

(
yi log(σ(ziθ)) + (1− yi) log(1− σ(ziθ))

)
. (2)

By only considering the user comments on the undesired
items, the loss in (2) is reduced to the loss in (1).

Experiments

Dataset and Online Evaluation

We evaluate different approaches on the footwear dataset
(Berg, Berg, and Shih 2010; Guo et al. 2018). The online
evaluation of our system is non-trivial, since it is unrealis-
tic to collect the user comments on all possible list of items.
For feasible and comparable evaluations, we follow the eval-
uation protocol used in (Guo et al. 2018; Yu, Shen, and Jin
2019). By generating user comments in natural language3, a
relative captioner is used to act as a surrogate for real human
users. The inputs of the relative captioner is a pair of (i) can-
didate image and (ii) desired image. The output of the rel-
ative captioner describes the visual differences between any
pair of candidate image and desired image. Following (Yu,
Shen, and Jin 2019), in each user session we assume the user
finds a target category of shoes (e.g., ‘wedding shoes’, ‘ath-
letic shoes’ and ‘boots’). We further assume that the users
randomly comment on one candidate item from the recom-
mended list. With the above settings, the user comments on
all possible list of items are available.

Similar to (Guo et al. 2018), we train the item identifier
and visual dialog encoder on 10, 000 images, and evaluate
our recommender in the online setting on another dataset
with 4,658 images. Following (Chapelle and Li 2011; Kve-
ton et al. 2015; Zong et al. 2016; Yu, Shen, and Jin 2019), we
evaluate different approaches by the average cumulative re-
ward, which is defined as R′(n) = 1

n

∑n
t=1 rt. At time step

t, if at least one item belongs to the target category, rt = 1.
Otherwise, rt = 0. For each experiment, we run 20 times,
and report the average results and the standard errors. We
show the results up to n = 100 steps. Except the user case
and user study sections, the size of the list is K = 10.

3The authors of (Guo et al. 2018) release the captioner codes in
Github: https://github.com/XiaoxiaoGuo/fashion-retrieval.
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Improvements by Multimodal Data

To validate the advantages of utilizing multimodal data, we
compare our system to iterative recommenders only relying
on user click feedback to recommend a list of items. Specif-
ically, we compare SPR bandit to CascadeUCB1 (Kve-
ton et al. 2015) and a parametric extension CascadeLinTS
(Zong et al. 2016). CascadeUCB1 extends UCB1 (Auer,
Cesa-Bianchi, and Fischer 2002) in solving traditional ban-
dit problems. In each step of CascadeUCB1, the upper con-
fidence bounds (UCBs) of the first clicked item and all items
up to the first clicked item in the list are updated. The items
with the top K highest UCBs form the recommended list.
Instead of treating each item independently, CascadeLinTS
extends CascadeUCB1 by learning a predictor of the attrac-
tion probabilities of items from their features. Following the
cascade setting (Kveton et al. 2015; Zong et al. 2016), we
only consider the first desired item in each list, such that
the only difference between SPR bandit and (Kveton et al.
2015; Zong et al. 2016) is that SPR bandit has the extra
input of the items’ visual appearances and user feedback in
natural language. Another potential baseline is the contex-
tual bandit, where the output of the visual dialog encoder
is used as extra input of the traditional bandit model. By
incorporating context, we develop C-CascadeLinTS. Note
that our system is not directly comparable to (Yu, Shen, and
Jin 2019), since the data inputs are different. (Yu, Shen, and
Jin 2019) requires the users to touch the screen and point out
(i.e., click) the commented items, while our system is hands-
free and no click data is needed. See more discussions in the
following pairwise logistic loss experiment.

We report the results in Figure 5a. With multimodal data,
SPR bandit performs much better than CascadeUCB1 and
CascadeLinTS. With parameterization, CascadeLinTS
outperforms CascadeUCB1. When n = 10, SPR bandit
achieves 3 times reward, compared to CascadeUCB1 and
CascadeLinTS. This demonstrates a significant advantage
of our system when n is small. C-CascadeLinTS fails to
outperform CascadeLinTS. Our problem is essentially dif-
ferent from the contextual bandit problem. In each user ses-
sion, the user finds desired items with similar characteristics.
As a result, the context embedding is always very similar
and does not provide extra information in the model learn-
ing. Instead, with context the model has more parameters
and converges more slowly.

In the hands-free setting, the user comment is not re-
stricted on a specified item in the list. Therefore, in real
world, user comments can be misleading or even erroneous.
We further evaluate the robustness of our system by ran-
domly introducing noisy comments. With some probability,
we randomly sample a user comment as the response to list
of items. By adjusting the probability, we evaluate the sys-
tem robustness in tasks with different difficulty levels in Fig-
ure 5b. With moderate amount of noise (25% or 50%), our
approach still performs well. Note in line 21 of Algorithm 1,
the cumulative moving average of the visual dialog encoder
outputs can effectively smooth out some noisy comments.
We also evaluate our system’s robustness with items ran-
domly identified from the list (i.e., without using the iden-
tification classifier). Similarly, due to the cumulative mov-

ing average, only minor performance decrease is observed
in the simulated evaluation with moderate noise. We further
observe that in certain cases the user comments are direct
reference of the desired images such that the information
from the candidate images become less important, which is
similar to the observation in (Guo et al. 2019).

Improvements by SPR bandit

Constrained and Efficient Exploration To validate the
exploration strategy of our algorithm, given the same mul-
timodal inputs we compare SPR bandit to other common
search strategies, including random, greedy and ε-greedy
(Sutton and Barto 2018). We design a simple greedy ap-
proach by extending (Guo et al. 2018) to recommend mul-
tiple items. At each step, we identify the commented item
from the list. Based on the item and its feedback, the visual
dialog encoder generates an item looking similar to the de-
sired item. With KNNs, the top K candidate items closest to
the generated item are recommended in the next step. Based
on the greedy approach, we further develop a ε-greedy base-
line. With probability ε, the K recommendations are ran-
domly sampled. Otherwise, the above greedy approach is
adopted. We report the results by ε-greedy when ε = 0.1.

The results are reported in Figure 5c. With the benefit of
the multimodal data, greedy, ε-greedy, and SPR bandit all
perform similarly well before n = 10. After n = 10, greedy
and ε-greedy cannot efficiently learn, while SPR bandit
learns steadily and achieve much better performance than
greedy and ε-greedy. With the simple exploration, ε-greedy
fails to outperform greedy because of the large number of
arms (i.e., actions). On the contrary, with our careful design,
SPR bandit effectively handles exploration and exploitation
and performs much better than the baselines.

Pairwise Logistic Loss for Sample Efficient Learning
We validate the sample efficient learning by the pairwise lo-
gistic loss. We compare SPR bandit with its variant with-
out using pairwise loss. In addition to the above evaluation
setting, we further evaluate them on a harder task when the
positive samples are very limited. In this task, the user aims
to find rare items which only belong to a small portion of the
items in each shoes category. Specifically, in this hard task,
only 10 items (sampled from each target category of shoes)
are desired by the user in each session.

The results are reported in Figure 5d. There is a clear gap
between the performance of SPR bandit with pairwise lo-
gistic loss and SPR bandit without pairwise logistic loss.
In the early steps of algorithms or in the hard task, the pos-
itive samples (i.e., desired items) are especially limited. In
the both two cases, we observe the improvements by pair-
wise logistic loss become more significant. The results val-
idate the sample efficient learning by the pairwise logistic
loss. The algorithm in (Yu, Shen, and Jin 2019) can not
be directly compared to SPR bandit. However, for (Yu,
Shen, and Jin 2019), we can predict the commented items in
each list without the desired items. With this extra informa-
tion, the algorithm (Yu, Shen, and Jin 2019) can be reduced
to SPR bandit without pairwise logistic loss. Therefore,
SPR bandit with pairwise logistic loss can achieve more
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Figure 5: The experimental results: (a) the improvements by multimodal data, (b) the system robustness in the hands-free
setting, (c) the results by different search strategies, and (d) more sample efficient learning by the pairwise logistic loss.

sample efficient learning than (Yu, Shen, and Jin 2019).

A Use Case from Logged Experimental Results

Based on our logged results, we show an example of how the
user interacts with our recommender system to achieve the
desired items in Figure 6. In this example, the desired items
belong to a specific type of sport shoes. We show the logged
recommended items and the user feedback in rounds (i.e.,
steps of algorithms) 1, 3, and 5. Due to the limited space,
we show the results when K = 4. With more rounds of rec-
ommendations, we observe that more recommendations are
visually similar to the desired items (marked by the green
check). In round 1, the user comments ‘I prefer white sneak-
ers with low top sneakers’. In rounds 3 and 5, there are more
sneakers which are white or have while components. We do
observe that some shoes in rounds 3 and 5 do not perfectly
meet the user’s previous comment(s). This is caused by the
exploration strategy of the bandits in early steps of learning.

A User Study of Interactive Recommender Systems

In the above experiments, we follow the evaluation protocol
in (Guo et al. 2018) and evaluate all approaches with a rela-
tive captioner. Although the quality of the adopted captioner
has been comprehensively evaluated by real humans in (Guo
et al. 2018), it is still very interesting to conduct user study
to compare our system to the interactive recommender sys-
tem only relying on traditional user feedback (i.e., clicks).
Specifically, we compare our system to the system based
on CascadeLinTS, considering that CascadeLinTS outper-
forms CascadeUCB1 in the above experiments. For each sys-
tem, we conducted 400 runs of user study. In each run of
user study, the user aims to find a particular type of shoes
and has at most 30 rounds of interactions with the system.
We adopt the setting where K = 4. With K = 4, we can
easily display the images of the recommended items in the
screen of mobile devices, and still enjoy the advantages of
recommending multiple items in each user interaction.

We report the results under two metrics. The first metric is
the total number of desired items found within the 30 rounds
of interactions. The second metric is the number of rounds
used to find the desired items for the first time. With our
system, in average the users find 11.8 items and they find
the first desired item after 6 rounds. On the contrary, with the
traditional recommender, in average the users find 4.7 items
and they find the first desired item after 13 rounds. These

Figure 6: A use case example from the logged results. The
green check marks the desired items found by our system.

results further validate the advantages of our recommender
compared to the traditional interactive recommender.

Conclusion

With the recent advances of multimodal recommenders, the
users are able to express their preference by natural language
feedback to the item images, to find the desired items. How-
ever, the existing systems either retrieve only one item or
require the user to specify (e.g., by click or touch) the com-
mented items from a list of recommendations in each user
interaction (Guo et al. 2018; Yu, Shen, and Jin 2019). As
a result, the users are not hands-free. However, in certain
user scenarios of personal assistants, the hands-free feature
is very desirable. For instance, when the users prepare foods
or take care of babies, it is unrealistic to expect the users
to touch or click the screen. In this hands-free setting, we
further propose a sample efficient bandit algorithm to in-
teractively recommend a list of items. The empirical results
validate that the probability of finding the desired items by
our system is about 3 times as high as that by the traditional
interactive recommenders, after a few user interactions.
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