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Abstract

We present a novel learning framework for vehicle recognition
from a single RGB image. Unlike existing methods which
only use attention mechanisms to locate 2D discriminative
information, our work learns a novel 3D perspective feature
representation of a vehicle, which is then fused with 2D ap-
pearance feature to predict the category. The framework is
composed of a global network (GN), a 3D perspective net-
work (3DPN), and a fusion network. The GN is used to locate
the region of interest (RoI) and generate the 2D global feature.
With the assistance of the RoI, the 3DPN estimates the 3D
bounding box under the guidance of the proposed vanishing
point loss, which provides a perspective geometry constraint.
Then the proposed 3D representation is generated by elimi-
nating the viewpoint variance of the 3D bounding box using
perspective transformation. Finally, the 3D and 2D feature are
fused to predict the category of the vehicle. We present quali-
tative and quantitative results on the vehicle classification and
verification tasks in the BoxCars dataset. The results demon-
strate that, by learning such a concise 3D representation, we
can achieve superior performance to methods that only use 2D
information while retain 3D meaningful information without
the challenge of requiring a 3D CAD model.

Introduction

Traffic surveillance systems are an important part of intelli-
gent transportation, which is the core of artificial intelligence
(AI) in smart cities. A holy grail for traffic surveillance is
the ability to automatically recognize and identify vehicles
from visual information alone. Vehicle recognition enables
automated car model analysis, which is helpful for innumer-
able purposes including regulation, description, and indexing
vehicles.

One key idea shared by recent vehicle recognition algo-
rithms is to use an ensemble of local features extracted
from discriminative parts of the vehicle, which can be lo-
cated using either part annotations or attention mechanisms.
These approaches, given part annotations, (Krause et al. 2014;
He, Shao, and Tan 2015) learn the corresponding part de-
tectors and then assemble these to obtain a uniform repre-
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Figure 1: Consider the image of the car shown above. Even
though the vehicle is shown on a flat 2D image, our model
can estimate and leverage knowledge from 2D appearance
as well as the rigid 3D bounding box of the vehicle to pro-
duce a viewpoint-normalized representation, which is able to
improve vehicle recognition performance.

sentation of the vehicle, which is used for category clas-
sification. To overcome the need for part annotations, re-
cent advances (Jaderberg et al. 2015; Yang et al. 2018;
Wang, Morariu, and Davis 2018; Fu, Zheng, and Mei 2017)
make use of attention mechanisms to identify salient spatial
regions automatically. Despite these part-aware methods suc-
cessfully leveraging spatial information, they are still ‘flat’,
i.e., built on independent and 2D views.

3D-aware methods have been shown to be promising al-
ternatives to part-aware approaches. For instance, (Krause et
al. 2013; Lin et al. 2014) exploit the fact that aligning a 3D
CAD model or shape to 2D images significantly eliminates
the variation caused by viewpoint changes, which is shown as
the main obstacle for vehicle categorization. However, these
methods have limited generality as they require 3D CAD
models for vehicles.

To address these issues, we instead propose a concise 3D
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representation for vehicle recognition by directly using the
3D bounding box. Our work is summarized in Figure 1. Our
method has three components: the Global Network (GN),
the 3D Perspective Network (3DPN), and the Feature Fusion
Network (FFN). The GN detects and extracts relevant global
appearance features of vehicles from input RGB images. The
3DPN predicts the 3D bounding box under the geometric con-
straints of the vanishing points using the proposed vanishing
point loss. With the assistance of the predicted 3D bounding
box, the 3DPN further generates a viewpoint-aligned feature
representation in a geometrically correct manner. Finally, the
features generated from the GN and the 3DPN are merged in
the FFN and then used for vehicle recognition. Our contribu-
tions can be summarized as follows:
• We propose a concise 3D representation, which is termed

as 3D perspective feature, for vehicle recognition. The pro-
posed representation uses 3D information in a meaningful
and correct manner without the challenge of requiring a
3D CAD model. Based on the proposed method, a uni-
fied network architecture for vehicle recognition which
takes full advantage of the 2D and 3D representations is
presented.

• We introduce a geometrically interpretable loss (vanishing
point loss) to elegantly enforce the consistency of the pre-
dicted 3D bounding box to improve regression accuracy.

• We evaluate our proposed method on the vehicle classifica-
tion and verification tasks in the BoxCars benchmark and
achieve the state-of-the-art results.

Related Work

We review the previous works on vehicle recognition and 3D
bounding box estimation, which are related to our approach.

Vehicle Classification

Since our model uses only a single image to recognize ve-
hicles, methods which use extra information, such as 3D
CAD models, are not reviewed. 2D vehicle recognition can
be classified into two categories: part-annotation (PA) and
attention-mechanism (AM) methods.

While PA methods (Krause et al. 2014; He, Shao, and Tan
2015; Sochor, Herout, and Havel 2016) are able to achieve
high performance by extracting local feature representation
from detected vehicle parts, they are reliant on part annota-
tions. The labor intensive annotation is usually not possible
during inference when applying such methods to a real scene.
(He, Shao, and Tan 2015) detects each discriminative part of
a vehicle and then generates a uniform feature using the HOG
descriptor. (Krause et al. 2014) trains a classification CNN
by combining both local and global cues, which have been
previously annotated. Similarly, (Sochor, Herout, and Havel
2016) uses a pre-annotated 3D bounding box to generate a
2D “flat” representation.

To alleviate the essential requirement of annotations, AM
methods (Yang et al. 2018; Fu, Zheng, and Mei 2017;
Jaderberg et al. 2015; Wang, Morariu, and Davis 2018) have
been extensively researched in recent years. One common
feature of them is to locate discriminative parts of a vehi-
cle automatically using attention mechanisms. (Jaderberg

et al. 2015) aims to determine an affine transformation to
map a entire vehicle to its most discriminate viewpoint in
a global way. (Yang et al. 2018; Fu, Zheng, and Mei 2017;
Wang, Morariu, and Davis 2018) generate discriminative fea-
tures locally by searching salient primitives, and then use
them for recognition.

In contrast to previous methods, we take a further step to-
wards taking full advantages of both the 2D and 3D represen-
tation of a vehicle. Comparing with PA and AM methods, our
method is able to predict the 2D and 3D bounding box simul-
taneously. It can generate viewpoint normalization features
using appropriate geometric constraints in a geometrically
explainable way. While (Manhardt, Kehl, and Gaidon 2019;
Simonelli et al. 2019) both leverage the 3D box for feature
guidance, our method generates features from a 3D box us-
ing perspective transformations, which enhances recognition
performance. Moreover, compared to 3D-aware methods,
our method is totally free from 3D CAD models, which are
difficult to obtain in practice.

3D Bounding Box Estimation

Vehicle 3D bounding box estimation has been an active re-
search topic in recent years. (Mousavian et al. 2017) regresses
vehicles’ dimensions and constructs 3D bounding boxes us-
ing camera intrinsic parameters. (Xu, Anguelov, and Jain
2018) estimates the 3D bounding box of a vehicle using the
combination feature of the point cloud and the 2D image.
Our goal is to predict the 3D bounding box of a vehicle
only using the RGB image. Therefore we seek to predict
eight vertices directly. (Hedau, Hoiem, and Forsyth 2012;
Gupta et al. 2011) localize vertices using corner detectors
and then construct 3D bounding box through the geometric
relationships among all vertices. Following on the success of
these geometry-based methods, DeepCuboid (Dwibedi et al.
2016) regresses vertices of the 3D bounding box through a
Faster-RCNN-based model. Subsequently, vertex predictions
are refined by utilizing vanishing points (Hartley and Zisser-
man 2003). However, this refinement step is separate from the
network training stage, and the vanishing points computed
from inaccurate predictions often lead to significant error.

Unlike (Dwibedi et al. 2016), we use the proposed van-
ishing point (VP) regularization to encode the VP constraint
of the eight vertices during network training. It allows our
model to avoid any post refinement to redress vertices.

Methodology

Overview

Our goal is to design an architecture that jointly extracts
features in terms of both the 2D and 3D representation for
vehicle recognition. Figure 2 shows the overview framework
of the proposed method.

Global Network (GN)

The GN uses a variant of RetinaNet (Lin et al. 2018) to
localize the vehicle using a 2D bounding box. RetinaNet
is a dense object detector composed of a CNN-FPN (Lin
et al. 2017) backbone, which aims to extract a convolu-
tional feature map, FG, over an entire input image. Two
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Figure 2: Overview of the proposed model. The model is composed of three main components: (A) Global Network (GN), which
aims to localize the vehicle and extract its 2D features. (B) 3D Perspective Network (3DPN), which performs 3D bounding box
regression by taking the anchor from the predicted 2D bounding box and generates 3D perspective features of the three main
faces (front, roof, and side) of the vehicles. (C) Feature Fusion Network, which fuses the features from the GN and 3DPN by
applying multi-modal compact bilinear (MCB) (Fukui et al. 2016) pooling. F, R, S in the predicted 3D bounding box represents
the front/rear, roof, and side respectively.

task-specific subnetworks are attached to the backbone net-
work to perform object classification and 2D object box
regression respectively. RetinaNet offers comparable per-
formance to complex two-stage detectors (Ren et al. 2015;
He et al. 2017) while retaining the advantages of one-stage
detectors such as inference speed and model optimization.
These attributes are desirable when adopting it as one com-
ponent in an end-to-end classification framework. To adapt
the original RetinaNet as the part of our network, we make
the following modifications:

ROIAlign We add an ROIAlign layer (He et al. 2017) after
the 2D box decoding process. The detected 2D bounding
box of the vehicle is denoted B = (Bx, By, Bw, Bh), where
Bx, By are the left-top corner coordinates with respect to
x and y axis. Bw, Bh represents the width and height of B
respectively. The ROIAlign layer combined with the detected
2D bounding box coordinates is able to produce a fixed-sized
global feature representation which comprises the vehicle,
termed FB

G . In particular, this modification ensures that er-
rors in the extracted 2D coordinates can be back propagated
through the GN when trained jointly with other network com-
ponents.

3D Perspective Network (3DPN)

Figure 2 illustrates the architecture of the 3DPN. Its role is to
provide geometrically-interpretable features by normalizing
the vehicle viewpoint to account for perspective distortion.
To achieve this, the 3DPN takes as input FB

A , which is the
feature map pooled from B at FA using RoIAlign. FA is
the auxiliary feature map extracted from an off-the-shelf
CNN. We then estimate the coordinates of eight vertices’ of
the 3D bounding box, C : {ci}7i=0, using a 3D bounding
box regression network. Subsequently, C is used to generate
3D perspective feature using perspective transformation in
feature-map level. normalize the viewpoint of the vehicle in
FB

A using perspective transformation. As a result, FR, FF,
and FS, representing perspective transformed feature maps
from the quadrilaterals formed by the roof (R), front (F),

and side (S) of the vehicle, are extracted. Below we describe
the 3D bounding box regression network with the proposed
vanishing point loss, and 3D perspective feature respectively.

3D bounding box regression branch Instead of using the
absolute coordinates of the 3D box in the image space di-
rectly, we estimate them in an RoI relative coordinate sys-
tem by leveraging the 2D bounding box as an anchor. For
each {ci}7i=0 in the image coordinate system we first trans-
form those points to the 2D-bounding-box relative coor-
dinate system: ĉix = (cix − Bx − Bw/2)/Bw, and ĉiy =

(ciy −By −Bh/2)/Bh, where {ĉi}7i=0 is the training target
of this branch. The 3D bounding box regression network
takes FB

A as the input feature map. Then it applies two conv
layers (3× 3× 256) and a multilayer perceptron (512× 16)
to regress all x and y coordinates of {ĉi}7i=0 (leaky ReLu
are used as activations). The loss function used to train this
sub-network is:

L3Dbranch = Lsmoothl1(ĉ
∗, ĉ) + Lvp, (1)

where ĉ∗ is the ground-truth locations for ĉ, Lsmoothl1 is the
standard smooth-l1 loss and Lvp is the proposed vanishing
point regularization loss to ensure that C satisfies perspective
geometry (i.e., every parallel edge of C intersects at the same
vanishing point).

Vanishing point regularization A standard smooth-l1 loss
lacks the capacity to impose perspective geometry constrains
on {ci}7i=0, which constructs a projective cuboid in the image
plane. We thus propose a 3D geometric vanishing point reg-
ularization loss, which forces {ci}7i=0 to satisfy perspective
geometry during regression, as such the predicted vertices
don’t require camera calibration data or post preprocessing
for refinement (Dwibedi et al. 2016). In projective geometry,
the two-dimensional perspective projections of mutually par-
allel lines in three-dimensional space appear to converge at
the vanishing point. The required condition for convergence
of three lines is that the determinant of the coefficient matrix
is zero. The proposed vanishing point loss encodes this ge-
ometry constraint (as shown in Figure 3) by minimizing the
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Figure 3: Illustration of the vanishing point. To simplify the
visualization, only two vanishing points (in the F and S direc-
tions) are plotted. The lines lc0c3 , lc1c2 , and lc5c6 contribute
to the first part of LvpF

.

determinants of all sets of three parallel edges of the vehicle.
Formally, taking three parallel lines lc0c3 , lc1c2 , lc5c6 in F as
examples (as shown in Figure 3), the vanishing point loss and
the coefficient matrix are expressed as:

LvpF1
= (DvpF1

)2, DvpF1
=

∣∣∣∣∣
mc0c3 nc0c3 lc0c3
mc1c2 nc1c2 lc1c2
mc5c6 nc5c6 lc5c6

∣∣∣∣∣ , (2)

where mcicjx+ ncicjy + lcicj = 0 is the line equation of
lcicj , and D is the determinant of the matrix. LvpF1

is the first
part of LvpF

using the first three lines (lc0c3 , lc1c2 , and lc5c6 ;
see Figure 3 for details.). Similarly, we build the second part,
LvpF2

, using the last three lines (lc0c3 , lc4c7 , and lc5c6 ) in the
diagonal to form up the final vanishing point regularization
LvpF

= LvpF1
+LvpF2

for the F direction, and repeat for the R
and S directions. Therefore, the vanishing point loss of the
whole vehicle, Lvp = LvpR

+ LvpS
+ LvpF

.

3D Perspective Feature Up to this point, the 3D bounding
box has already been obtained. To eliminate the viewpoint
variance of the 3D bounding box, 3D perspective features are
generated in feature-map level by warping each side of the
3D bounding box onto a canonical plane. Since each side of
the 3D bounding box is a quadrilateral generated by camera
projection, warping them using homography is geometrically
correct and a natural choice. In this paper, we adapt the RoI
perspective (Sun et al. 2018) to extract fixed-size feature
by mapping each side to the canonical plane. Specifically,
suppose that we have a source feature map Fsource, which
is extracted from the input image using a standard CNN,
and a corresponding vehicle side, Q. We aim to generate
3D perspective features by mapping the feature inside Q of
Fsource to a fixed-size target feature map, Ftarget. Extracting
fixed-size feature from a given region has already been well
studied We first use a four-correspondence DLT (Hartley and
Zisserman 2003) to obtain the homography H between Q
and Ftarget:⎡

⎣ qix
qiy
1

⎤
⎦ ∼

[
H11 H12 H13

H21 H22 H23

H31 H32 1

]⎡
⎣ tix

tiy
1

⎤
⎦ , (3)

where {ti}4i=1 and {qi}4i=1 are the four corners of Ftarget and
Q respectively. Thus given the coordinate of each pixel in
Ftarget, we can obtain their corresponding sampling point

with predicted 3D bounding box

Transformed Feature

RoIPerspective

Figure 4: The process of extracting perspective corrected
features from S using perspective RoI. Fsource and Ftarget are
the source and target feature maps respectively. To improve
visualization, we show the input image overlayed with FS

to show where the predicted 3D bounding box and sampling
points (colored by pink) are.

in Fsource using H. In the feature sampling step, the exact
value of each sampling point at Fsource can be computed
easily using bilinear interpolation at four regularly sampled
locations. The sampling step details can be found in (Ren et
al. 2015). Up to this point, the feature inside Q is transformed
as a fixed-size target feature map Ftarget. Figure 4 visualizes
the process of generating 3D features from FS. FR and FF

can be obtained in a similar manner.

Feature Fusion Network (FFN)

Figure 5 visualizes the architecture of the FFN, which is
designed to merge feature maps extracted from the GN and
3DPN to recognize a given vehicle. Three 3D feature repre-
sentations FS, FR, FF and one global feature FB

G are pro-
cessed through two identity blocks (He et al. 2016), followed
by a global average pooling (GAP) layer, to generate refined
feature vectors respectively. Please note that the three feature
vectors from F, R, and S are concatenated together to form
a single perspective feature vector carrying discriminative
perspective information representing different vehicle views.
The final feature vector, whose size is 16000, is obtained
by applying multi-modal compact bilinear (MCB) (Fukui
et al. 2016) pooling on the global and perspective feature
vector. The reason for using MCB is that it is normally used
to facilitate the joint optimization of two networks generating
features which lie on different manifolds. The two feature
vectors are obtained from two different networks (GN vs.
3DPN), i.e., they lie on different manifolds. The final feature
vector is passed through two fully-connected (fc) layers of
size 2048 and the number of categories, respectively. Up to
this point, our full model, which is composed of three network
components, can be trained jointly with a single optimization
process using the following multi-task loss function:

L = λ1L2DGN + λ2L3DBranch + λ3LCrossEntropy, (4)

where L2DGN is the focal loss (Lin et al. 2018) used to train
the GN, L3DBranch is defined in Equation 1, and LCrossEntropy
is the cross entropy loss to train the last softmax layer in the
FFN.
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Figure 5: Feature Fusion Network (FFN) architecture.

Experiments

Implementation and Training Details

The RetinaNet (Lin et al. 2018) backbone used in the GN is
built on MobileNetV2 (Sandler et al. 2018). ResNet101 (He
et al. 2016) with the first 4 stages is selected as the 3DPN
architecture. We select different backbones for 3DPN and
GN because features produced from them lie on different
manifolds. This can enhance the representation of the unified
network. In this paper, we adopt a pragmatic 2-step training
approach to optimize the whole network. In the first step, we
train the GN solely so that it can output the 2D bounding
box correctly, which is important to train the 3DPN which
takes the 2D bounding box as input. In the second step, we
train all three network components, the GN, 3DPN, and FFN,
together in an end-to-end manner. λ1, λ2, λ3 are set to 1, 0.1,
and 1 respectively. SGD is chosen as our optimizer and its
momentum is set to 0.9. The initial learning rate is 0.02, and
is divided by 10 after every 15 epochs. The batch size is set to
30. The model optimisation is ceases when training reaches
45 epochs. Each batch takes approximately 2s on a NVIDIA
Tesla P100 GPU and in total the model takes about 12 hours
to converge.

Dataset

To our best knowledge, the BoxCars dataset (Sochor, Herout,
and Havel 2016) is only dataset which provides both 3D and
2D bounding box annotations for vehicle recognition in the
computer vision community. Therefore, we use it to evaluate
our model. BoxCars contains 63,750 images, which are col-
lected from 21,250 vehicles of 27 different makes. All images
are taken from surveillance cameras. BoxCars consists of two
challenging tasks: classification and verification. Regarding
the classification task, the dataset is split into two subsets:
Medium and Hard. The Hard protocol has 87 categories and
contains 37,689 training images and 18,939 testing images.
The Medium protocol is composed of 77 categories and has
40,152 and 19,590 images for training and testing respec-
tively. The main difference between the Medium and Hard
splits is that Hard considers make, model, submodel, and
model year; while Medium does not differentiate model year.
With respect to the verification task, BoxCars has three well
defined protocols that provide Easy, Medium, and Hard cases.
The Easy protocol is composed of pairs of vehicle images
recorded from the same unseen camera. Camera identities are
no longer fixed in the Medium protocol. The Hard protocol
not only draws vehicle pairs from different unseen cameras,
but also takes into account vehicle model years.

Vehicle Classification Results

Baselines Since our model recognize vehicles from a sin-
gle image, single-image based methods, including BoxCar
(Sochor, Herout, and Havel 2016), Faster-RCNN (Ren et al.
2015), RetinaNet (Lin et al. 2018), NTS (Yang et al. 2018),
DFL (Wang, Morariu, and Davis 2018), RACNN (Fu, Zheng,
and Mei 2017), STN (Jaderberg et al. 2015), are selected
to compare with our method. These methods are divided
into two evaluation categories: (1) detection-like (det-like)
networks (2DGN-det, FasterRCNN), in which localization
and classification of the vehicle are performed simultane-
ously; and (2) classification-like (cls-like) networks (NTS,
DFL, RACNN, and STN) in which vehicles are cropped us-
ing annotated bounding box before network training. With
respect to classification-like networks, all images are resized
to 224× 224. Regarding detection-like networks, images are
resized to the same scale of 256 pixels as in (Lin et al. 2017).
To make fair comparison, we use the official implementations
of these methods without any parameter changes.

det-like network results The upper half of Table 1 shows
the results of det-like networks. One can see that Ours-det
surpasses all det-like baselines by a significant margin. Since
Faster-RCNN shares the same backbone with the GN in
Ours-det and 2DGN-det is the detection part of Ours-det, we
confirm that the additional 3D feature representation signifi-
cantly improves the performance obtained compared to using
traditional 2D features. From Table 1, one can see that 2DGN-
det and Faster-RCNN do not have a top-5 accuracy recorded.
This is because 2DGN-det and Faster-RCNN output confi-
dence scores of predicted boxes. After non-maximum sup-
pression, the boxes with high confidence scores are merged,
and as such there is only a top-1 accuracy. Although non-
maximum suppression is also performed in our method, we
can still obtain top-5 accuracy due to the use of the softmax
layer in the FFN.

cls-like network results To make a comparison between
cls-like baselines and the proposed approach, we modify
the 2D processing component of our model. Specifically,
MobileNetV2-based RetinaNet is replaced with a vanilla
MobileNetV2, in which the last global average pooling layer
and following classification layer are removed. Therefore
the output of this network is used as a global feature for
the vehicle. The modified model for cls-like experiments
is denoted Ours-cls. In addition, we separate 3DPN-cls to
do isolated component testing. Since 3DPN is not able to
produce 2D bounding box, we feed ground truth 2D bounding
box to 3DPN-cls to adapt it as a classification network. Please
note that 3DPN do not have det version simply because that
it cannot produce 2D bounding box.

The second half of Table 1 showcases overall classification
accuracy (percent) for cls-like networks. We observe that
Ours-cls consistently performs better than all baseline mod-
els with respect to classification accuracy in both the Medium
and Hard splits. One can see that STN and RACNN perform
poorly among all cls-like methods, as they only search for
the most discriminative part of a vehicle. This strategy dis-
cards parts of the global feature, which captures important
pose information and other subtle details. Moreover, an affine
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Table 1: Overall classification accuracy on BoxCars dataset. M and H represent the Medium and Hard splits. Top-1 and -5
accuracy are denoted as T-1 and T-5.

Method Input Size Detection? 3D? Attention? M T-1 M T-5 H T-1 H T-5
Faster-RCNN 256× 256 � � � 67.23 - 62.73 -
2DGN-det (RetinaNet) 256× 256 � � � 66.52 - 59.4 -
Ours-det 256× 256 � � � 78.45 93.39 75.18 91.53

NTS 224× 224 � � � 80.40 92.37 76.31 90.42
DFL 224× 224 � � � 76.78 91.94 70.25 88.405
BoxCar 224× 224 � � � 75.4 90.1 73.1 89
RACNN 224× 224 � � � 72.21 88.47 67.5 86.83
STN 224× 224 � � � 64.33 81.92 59.76 80.13
3DPN-cls 224× 224 � � � 80.31 92.04 76.68 90.71
Ours-cls 224× 224 � � � 81.27 93.82 77.08 91.97
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(b) The mispredicted examples.

Figure 6: Qualitative results visualization of Ours-det on BoxCars dataset. (a): examples in which the 2D and 3D bounding box
are correctly predicted. (b): examples containing errors in prediction.

transformation used in STN significantly increases the diffi-
culty of vehicle viewpoint normalization. This is because an
affine transformation of the 2D vehicle bounding box distorts
the shape of the vehicle, and does not consider its 3D geome-
try. We next compare Ours-cls with NTS, DFL, and BoxCar
baselines, which extract discriminative features without con-
sidering the 3D geometry. From the results, we conjecture
that the combined 2D and 3D representation used in our
method has better a capability for distinguishing vehicle de-
tails than other methods. It is worthy note that 3DPN-cls
can already achieve comparable performance to previous
state-of-the-art works.

Qualitative results Figure 6 visualizes qualitative results
on BoxCars images. In Figure 6 (a), we see that Ours-det
is able to determine the correct 2D location and 3D bound-
ing box estimation of the vehicle. Figure 6 (b) shows some
mis-estimated images. The first two columns show 3D bound-
ing box regression performance, in situations where the 2D
bounidng box is incorrect, and the 3D estimation cannot re-
cover from the earlier error. The last column shows a case
where 2D location is predicted correctly and the 3D box es-
timator fails. We see that the 3D bounding box estimation
tries to compensate for errors made by the 2D bounding box
estimation. In addition, the sampling points on F, R, and
S are also shown. One can see that the sampling points per-
fectly cover the three main sides of the vehicles, and therefore

extract perspective invariant features.

Ablation experiments

An ablation study is conducted to analyze the effectiveness
of the individual proposed components including 3D perspec-
tive feature (3DPF) and the VP regularization loss in the 3D
bounding box regression component.

3D Perspective Feature vs. Attention-Based Feature In
this experiment we compare the performance of the 3D
perspective feature to the attention-based feature, which
is frequently used by previous works, on the Hard and
Medium splits. The perspective RoI layers in Ours-det are
replaced with RoI Align (Ren et al. 2015) to simulate the
attention-based feature (ABF) obtained by attention mecha-
nism. Specifically, three main sides of a vehicle are located
using 2D rectangle bounding boxes in ABF rather than ge-
ometrically correct quadrilaterals in 3DPF. The results are
shown in Table 2. It can be observed that 3DPF achieves
approximately 6.1% and 2.1% improvement on Medium and
Hard splits.

VP regularization We evaluate the proposed VP regular-
ization loss on 3D bounding box detection. Table 3 reports
the results obtained in the Hard split in terms of two met-
rics, the percentage of correct points (PCK) (Tulsiani and
Malik 2015) and the proposed cube quality (CQ). A pre-
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Figure 7: Precision-Recall (PR) curves of different models with different training epoch (e denotes training epoch x). Three
verification protocols Easy, Medium, and Hard are shown in the figure. Average Precision (AP) is given in the plot legends.
Baseline results (shown as BoxCar-ex) are taken from (Sochor, Herout, and Havel 2016).

Table 2: 3DPF vs. ABF: Classification accuracy results with
different kinds of feature types.

Feature Type M. T-1 M. T-5 H. T-1 H. T-5
ABF 73.97 91.23 73.65 91.13
3DPF 78.45 93.39 75.18 91.53

Table 3: Evaluation of 3D bounding box localization and
quality using the percentage of correct keypoints (PCK) and
the proposed cuboid quality (CQ). e stands for the number of
training epochs.

e=5 e=10 e=15
PCK CQ PCK CQ PCK CQ

Ours-det 85.35 1.48 85.66 1.98 87.15 2.12
Ours-det w/0 vp loss 85.03 1.48 85.58 1.64 86.70 1.69

dicted vertex is considered to be correct if it lies within
0.1× (max(height, width)) pixels of the ground truth anno-
tation of the vertex. CQ is computed via − logLVP. From the
results, we can see that the 3D bounding box obtained from
our method with VP regularization consistently outperforms
that of (Dwibedi et al. 2016) in terms of both metrics. Apart
from this, we also test the proposed method without using
vp loss in terms of the classification and detection tasks. The
results can be found in Table 4.

Vehicle Verification

Vehicle verification is the problem of determining whether
two gallery samples belong to the same category. It is an
important and challenging task for intelligence transportation,
especially when the system is working under new scenarios
with unseen and misaligned categories.

To demonstrate the generality and robustness of the pro-
posed method, we conduct experiments on the verification
task of BoxCars. In this experiment, we follow the same
method of (Sochor, Herout, and Havel 2016) to perform veri-
fication, i.e., 3,000 image pairs are randomly selected to test
the performance of various models in each case.

For all networks, we use the output of the second last layer
(the layer preceding the last softmax classification layer) as

Table 4: Vanishing point loss: A geometrically correct 3D
bounding box gives gain to the proposed method.

Feature Type M. T-1 M. T-5 H. T-1 H. T-5
Ours-det 78.45 93.39 75.18 91.53
Ours-det w/o vp loss 78.32 93.33 74.71 89.94
Ours-cls 81.27 93.82 77.08 91.97
Ours-cls w/o vp loss 80.92 92.88 76.84 90.50

the representation feature vector for the given image. For
each image pair, we use the cosine distance (Taigman et al.
2014) to obtain the similarity of two gallery images, which is
then used to compute precision, recall, and average precision.

The precision-recall (PR) curves presented in Figure 7
show that the proposed approach outperforms the baseline
method (Sochor, Herout, and Havel 2016) on all three dataset
protocols. The performance gain of our method provides an
absolute performance gain of 33% in Average Precision (AP)
on Easy, and an even better 36% AP on the Hard split. It
is worth noting that the size of feature vector of (Sochor,
Herout, and Havel 2016) is 4096 while ours is 2048, which
indicates a better data distribution and faster speed for model
inference.

Conclusions

In this paper, we propose a unified framework to perform
vehicle classification, which takes full advantage of both the
2D and 3D perspective representations. The proposed method
achieves the state-of-the-art results both in car classification
and verification in the BoxCars dataset. Furthermore, we
propose vanishing point regularization for cuboid detection,
which is intuitively appealing and geometrically explainable,
and avoids the need for a post detection refinement processes,
as used by existing methods. Last but not least, the proposed
3DPF is able to extract features correctly from 3D bounding
boxes which warped by perspective transformation.

References

Dwibedi, D.; Malisiewicz, T.; Badrinarayanan, V.; and Rabi-
novich, A. 2016. Deep cuboid detection: Beyond 2d bound-

1167



ing boxes. arXiv preprint arXiv:1611.10010.
Fu, J.; Zheng, H.; and Mei, T. 2017. Look closer to see
better: Recurrent attention convolutional neural network for
fine-grained image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 4438–
4446.
Fukui, A.; Park, D. H.; Yang, D.; Rohrbach, A.; Darrell,
T.; and Rohrbach, M. 2016. Multimodal compact bilinear
pooling for visual question answering and visual grounding.
arXiv preprint arXiv:1606.01847.
Gupta, A.; Satkin, S.; Efros, A. A.; and Hebert, M. 2011.
From 3d scene geometry to human workspace. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, 1961–1968. IEEE.
Hartley, R., and Zisserman, A. 2003. Multiple view geometry
in computer vision. Cambridge university press.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–
778.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Computer Vision (ICCV), 2017 IEEE International
Conference on, 2980–2988. IEEE.
He, H.; Shao, Z.; and Tan, J. 2015. Recognition of car makes
and models from a single traffic-camera image. IEEE Trans-
actions on Intelligent Transportation Systems 16(6):3182–
3192.
Hedau, V.; Hoiem, D.; and Forsyth, D. 2012. Recovering free
space of indoor scenes from a single image. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition,
2807–2814. IEEE.
Jaderberg, M.; Simonyan, K.; Zisserman, A.; et al. 2015. Spa-
tial transformer networks. In Advances in neural information
processing systems, 2017–2025.
Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L. 2013. 3d
object representations for fine-grained categorization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision Workshops, 554–561.
Krause, J.; Gebru, T.; Deng, J.; Li, L.; and Fei-Fei, L. 2014.
Learning features and parts for fine-grained recognition. In
2014 22nd International Conference on Pattern Recognition,
26–33.
Lin, Y.-L.; Morariu, V. I.; Hsu, W.; and Davis, L. S. 2014.
Jointly optimizing 3d model fitting and fine-grained classifica-
tion. In European Conference on Computer Vision, 466–480.
Springer.
Lin, T.-Y.; Dollár, P.; Girshick, R. B.; He, K.; Hariharan, B.;
and Belongie, S. J. 2017. Feature pyramid networks for
object detection. In CVPR, volume 1, 4.
Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; and Dollár, P. 2018.
Focal loss for dense object detection. IEEE transactions on
pattern analysis and machine intelligence.
Manhardt, F.; Kehl, W.; and Gaidon, A. 2019. Roi-10d:
Monocular lifting of 2d detection to 6d pose and metric shape.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2069–2078.

Mousavian, A.; Anguelov, D.; Flynn, J.; and Košecká, J. 2017.
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