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Abstract

With the proliferation of blockchain projects and applica-
tions, cryptocurrency exchanges, which provides exchange
services among different types of cryptocurrencies, become
pivotal platforms that allow customers to trade digital as-
sets on different blockchains. Because of the anonymity and
trustlessness nature of cryptocurrency, one major challenge of
crypto-exchanges is asset safety, and all-time amount hacked
from crypto-exchanges until 2018 is over $1.5 billion even
with carefully maintained secure trading systems. The most
critical vulnerability of crypto-exchanges is from the so-
called hot wallet, which is used to store a certain portion
of the total asset of an exchange and programmatically sign
transactions when a withdraw happens. Whenever hackers
managed to gain control over the computing infrastructure of
the exchange, they usually immediately obtain all the assets
in the hot wallet. It is important to develop network security
mechanisms. However, the fact is that there is no guarantee
that the system can defend all attacks. Thus, accurately con-
trolling the available assets in the hot wallets becomes the key
to minimize the risk of running an exchange. However, deter-
mining such optimal threshold remains a challenging task be-
cause of the complicated dynamics inside exchanges. In this
paper, we propose SHORELINE, a deep learning-based thresh-
old estimation framework that estimates the optimal threshold
of hot wallets from historical wallet activities and dynamic
trading networks. We conduct extensive empirical studies on
the real trading data from a trading platform and demonstrate
the effectiveness of the proposed approach.

Introduction

Ever since the introduction of the blockchain design in
early 2013 (Nakamoto and others 2008), the technology
has attracted significant interests from various companies
and is transforming many industries. Notably, its immutabil-
ity and tamper detection provide a revolutionary infrastruc-
ture for the supply chain management that provides trust-
less verification among different parties. Also, it leads to
the revolution of finance that provides real-time and low-
cost transactions built upon its decentralized governance and
trustless transactions. Facebook’s recent payment oriented

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

blockchain system Libra (Facebook 2019) further paves the
way to mass adoption of blockchain in individual users.

The economic foundation of blockchain projects is the
cryptocurrencies, which are digital assets being transacted
on the blockchains. The market value of the cryptocurrency
principally reflects the economic value of a blockchain. At
cryptocurrency exchanges, those who possess cryptocurren-
cies can use the currency in blockchains to exchange other
digital assets and ‘cash out’ fiat. As such, exchanges are in
the center of the blockchain economy and enable the liquid-
ity of cryptocurrencies to flow among different parties.

Similar to traditional exchanges, such as stock brokerage
exchanges and foreign exchange markets, a blockchain ex-
change manages accounts to accept deposits from, and is-
sue withdraws to its customers, builds and maintains order
books for the customers to trade at specific prices. How-
ever, different from traditional financial systems where fi-
ats transactions are being settled between real persons, each
blockchain transaction is between two addresses and is con-
sidered finalized once the sender signs the transaction by the
corresponding private key. Such anonymity has brought sig-
nificant security risks to crypto exchanges. For example, if
a hacker managed to control a compromised server of the
crypto exchange and steals the private key, the hacker can
immediately withdraw all the assets in the exchange by sign-
ing a transaction to one of his/her addresses using the stolen
private key.

The private key that is stored in the exchange server and
programmatically signs transactions when a customer re-
quests a withdraw is referred to as a hot wallet. The hot
wallet has been the most critical vulnerability of crypto-
exchanges, and it has been reported that all-time amount
hacked from crypto-exchanges until 2018 is over $1.5 bil-
lion (Larcheveque 2018). Technically, the private key is a
random number, and the signing is a deterministic algorithm,
which means signing a transaction can be done completed in
a disconnected computer, and the signed transaction can be
broadcasted to the blockchain nodes in another computer.
This offline signing technique is called cold storage, and the
offline private keys are usually called cold wallets.

Even though the cold wallets can be almost impossible
to hack, the hot wallet cannot be entirely replaced by cold
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wallets: 1) withdraw from cold storage has substantial oper-
ational costs, the programmatic withdrawal from hot wallets
ensures efficient operations, 2) signing from cold storage in-
creases the exposure of private keys and thus increases sys-
tematic risk of getting leaked, e.g., from social engineering.
Thus, one of the popular design of exchanges is to reserve
part of assets in the hot wallet for high-frequency trading
considering operational efficiency to avoid frequent time-
consuming refilling and store the rest in the cold wallet
for security. When the hot wallet is empty, the cold wal-
let will refill the hot wallet. It is extremely difficult to de-
fend all attacks with current systems (Singhal and Ou 2017;
Ding et al. 2018), especially for online systems like the
hot wallet. Due to the existence of system vulnerability,
exchanges need to set a threshold to determine how much
funds should be reserved in hot wallets to balance theft risk
and operational efficiency. The risk should be under control,
even when the private keys of the hot wallet are leaked.

In this paper, for the first time, we provide a data-
driven framework called SHORELINE to estimate the opti-
mal threshold for a specific exchange, leveraging its histor-
ical data using machine learning techniques. There are two
major components included as shown in the Figure 1: a) Dy-
namic Networks Embedding. In this component, we embed
each cryptocurrency into a low-dimensional vector space
temporally, based on the sampled sequences from tempo-
ral random walks on dynamic trading networks. b) Optimal
Threshold Estimation. To estimate the threshold, we com-
bine multiple data modalities from exchanges, such as the
historical trading observations, withdraw and deposit his-
tory, currency embedding features. The goal is to predict the
threshold of optimal reserves by a long-short-term memory
network. We conduct extensive empirical studies to demon-
strate the efficiency of the embedding method and the effec-
tiveness of SHORELINE on real-world exchange data.

Related Work
Cryptocurrency and Exchange Security. A cryptocur-
rency transaction is a message propagated in the blockchain
network signed by the private key of the sender, which speci-
fies the volume of the type of currency transferred to a target
address (Bamert et al. 2014). Once the message is signed by
the private key, broadcasted to the blockchain, and acknowl-
edged by other blockchain nodes, the transaction is persisted
and considered settled, and anyone will not be able to tamper
the records. This means when a private key is compromised
or stolen, all the funds controlled by the key will be lost.
Recently, most of the related works aim at tackling the prob-
lem based on encryption algorithms (Goldfeder et al. 2014;
Gennaro, Goldfeder, and Narayanan 2016; Ziegeldorf et
al. 2018). One recent approach aims at solving the prob-
lem from the statistical perspective. In (Jain, Felten, and
Goldfeder 2018), the authors proposed a threshold control
mechanism on the hot wallet to reduce the number of refill-
ing from the cold wallet to the hot wallet, avoiding expo-
sure expectation of cold wallet private keys during transfer.
However, it neglects the operational differences among ex-
changes. The proposed SHORELINE provides a data-driven
approach to enable exchange-specific thresholding, by con-

Figure 1: The overview of the proposed SHORELINE frame-
work for optimal reserves threshold estimation.

sidering historical trading and withdraw/deposit activities in
an exchange.
Networks Embedding. There is a burst of embedding meth-
ods proposed to transform nodes (Perozzi, Al-Rfou, and
Skiena 2014; Grover and Leskovec 2016), sub-graphs (Ad-
hikari et al. 2017; Yanardag and Vishwanathan 2015; Ad-
hikari et al. 2018), and graphs (Narayanan et al. 2017)
features into low dimensional vector representations in the
static condition. One of the popular pipelines is first sam-
pling sequences based on random walks, and then embed-
ding objects by skip-gram (Mikolov et al. 2013), which is
a natural language processing model capturing the relation
between one word and its co-occurrence context. (Wang,
Cui, and Zhu 2016) proposed a deep auto-encoder based em-
bedding method by adjacency matrix reconstruction. (Tang
et al. 2015) used a specific embedding objective function
combining first-order and second-order embedding similar-
ity. Recent years have witnessed increasing attention to the
general embedding of temporal networks (Li et al. 2017;
Kumar, Zhang, and Leskovec 2018; Goyal, Chhetri, and
Canedo 2018) such as social networks, citation networks,
and economic networks. (Mahdavi, Khoshraftar, and An
2018) described a temporal extension of the random walk
with skip-gram based embedding approaches. (Goyal et al.
2018) extends (Wang, Cui, and Zhu 2016) by introducing
Net2WiderNet (Chang et al. 2015) tackling the appearance
of new nodes. In (Li et al. 2018), a deep neural network with
gated recurrent units is built to capture the changing trend
of the adjacency matrix for the link prediction task. In this
work, we propose an effective method to embed trading ac-
tivity network, which is shown to greatly improve the thresh-
old estimation performance.

Dynamic Networks Embedding

One cryptocurrency trading pair is two exchangeable dig-
ital currencies following a temporal rate. For example,
BTC/VET pair represents the exchange relations between
BITCOIN (Grinberg 2011) and the VECHAIN cryptocur-
rency. In one specific exchange, the amount of BTC is de-
fined as trading volume v, and the amount of VET is defined
as trading funds f . Formally, one trading pair at time t be-
tween currency i and j is defined as ptij = (vti , f

t
j ). A trad-
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Figure 2: Inputs of neural networks for dynamic embedding.

ing network Gt at time t is constructed by all trading pairs
with their associated currencies. The temporal network can
be considered as the collection of snapshots at different time
G = {Gt0 , Gt1 , . . . , Gtn}.

The temporal trading network keeps evolving as time goes
on. The fluctuation of the market transitions will further
affect users taking different actions, including deposit and
withdrawal. In this section, we demonstrate our embedding
approach for temporal networks to capture the evolution of
digital currency transitions. We first sample a series of node
(digital currency) sequences following the trading history
from the temporal trading network constructed by the his-
torical trading pairs and learn the contextual embedding of
each digital currency based on deep neural networks.

Temporal Random Walk

It is a conventional approach to acquire the structural char-
acteristics of a graph based on sampled nodes sequences
by random walks (Sarkar and Moore 2011). Recently, the
random-walk-based node embedding becomes prevalent and
well-explored due to its low calculation complexity for static
graphs (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016). In order to extend the static embedding
to dynamic embedding, it is necessary to design a temporal
random walk strategy sampling nodes temporally to capture
dynamic patterns.

We demonstrate our temporal walk procedure in Figure 2.
The temporal random walk sequence is 1t0 → 2t0 → 2t1 →
5t1 → 5t2 → 4t2 . The temporal random walk requires a po-
tential temporal transition from one node at a specific time
step to nodes in the future. The temporal edges connect snap-
shots at different time steps together as an integrated graph.
We create directed temporal edges from historical nodes to
their future states between adjacent snapshots with weights
derived based on adjacency considering chronology. For-
mally, we define the weight of one temporal edge as:

weightnt→nt+1
= γ

∑
(nt,j)∈Gt

adj(nt, j),

where γ ∈ (0, 1], nt ∈ Gt, and nt+1 ∈ Gt+1. The weight of
the edge from node nt to nt+1 is proportional to the weight
summation of edges with nt as one endpoint, which means
that there is an assigned probability to walk through nt to its
adjacent future state.

�
�����
�������	 � � � � 	

���� ���� ���� ���� ���� ����
�����

��������	

�������������� � � � � � 	

Figure 3: Illustration of contextual node embedding.

After temporal integration, we can adopt random walk
strategies for static graphs (Grover and Leskovec 2016) as
temporal random walks. Let ni denote ith node in the walk,
starting at n0. Then generation probability distribution of
nodes ni can be defined as:

Pr(ni = x | ni−1 = k, ni−2 = u) = βpq(u, x)
gkx
Z

,

βp,q(u, x) =

⎧⎨
⎩

1/p, if dux = 0

1, if dux = 1

1/q, if dux = 2

,

where gvx is the weight of edge (k, x); Z is a normalizing
constant; dux is the shortest distant between u and x; p and
q are two parameters for the random walk preference.

The weight gkx is assigned based on the trading informa-
tion, which is proportional to trading volume v. It can be
defined as:

gkx = vk,x/
∑

j∈adj(k)
vk,j ,

where j is all currency can be exchanged with currency k.
The inputs of embedding are obtained by element wise

summation of time encoding and node encoding indicating
the temporal location of each sampled node as shown in Fig-
ure 2, where both encodings are trainable linear transforma-
tions.

Contextual Embedding

In previous node embedding methods (Grover and Leskovec
2016; Wang, Cui, and Zhu 2016), nodes are embedded
based on the co-occurrence pairs from sampling inspired by
WORD2VEC (Mikolov et al. 2013). The embedding from
these approaches preserve first- and second-order proxim-
ity (Zhang et al. 2018), but ignore the local structure. It
is acceptable for the original WORD2VEC to embed words
without considering the local order, since the distance could
vary between two related words with different expression
preferences. For example, the meaning is the same of sen-
tences “I have a cute cat,” and “I have a cat, and it is cute.”
The order and distance are different of sense related word
“cute” and “cat” in the two sentences. It is easy to find
similar sentences with same meaning but different struc-
tures out of a given training dataset. The embedding with-
out considering the local structures benefits from the flex-
ible language structure. However, such freedom can not
be achieved by random walks once the graph is given.
Therefore, it is important to consider the local structure in
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the node embedding, which is usually neglected by previ-
ous work. In this paper, we use Bidirectional LSTM (Bi-
LSTM) embedding nodes fusing features from its neigh-
bors based on temporal random walk sequences to cap-
ture the graph structure from both spatial and temporal di-
mensions inspired by its successful applications in natural
language process (NLP) tasks recently (Peters et al. 2018;
Devlin et al. 2018).

As in Figure 3, given a sequence of sampled currency
nodes from temporal random walks (v0, v1, . . . , vn), a for-
ward LSTM models the probability of the sequence by the
probability production of vi, 0 ≤ i ≤ n, which is determined
by the occurrence of its preceded nodes (v0, . . . , vi−1),

−→
Pr(v0, . . . , vn) =

∏n

i=0
Pr(vi|v0, . . . , vi−1).

Similarly, a backward LSTM captures the context features
in the opposite direction,

←−
Pr(v0, . . . , vn) =

∏n

i=0
Pr(vi|vi+1, . . . , vn).

For simplicity, we use
−→
Pr(vi) and

←−
Pr(vi) to indicate the

modeling probability based on forward and backward con-
texts. Consequently, we design a deep neural network based
on Bi-LSTM modeling the probability of one sequence by
context from both sides of vi jointly by maximizing the fol-
lowing objective:

∑n

i=0
log
−→
Pr(vi; θx,

−→
θF , θS) + log

←−
Pr(vi; θx,

←−
θF , θS),

where θx represents the trainable parameters for time encod-
ing and node encoding; θS represents the trainable parame-
ters of one fully connected layer with the Softmax activa-
tion function to classify the learned embedding, the hidden
states of Bi-LSTM units, into one-hot node ID;

−→
θF and

←−
θF

are trainable parameters for two direction LSTM layers.
The hidden states at each time step of Bi-LSTM are ex-

tracted as the embedding of each node with high-order in-
formation from its surrounding context. One node might
have different embedding features in different contexts, so
we take the mean of all embeddings.

Reserves Threshold Estimation

Trading histories include wealthy market fluctuation pat-
terns, which motivate users to adopt different operations
for profit. Two more time series are taken into account in
this component, the raw historical records from the hot wal-
let including withdraws and deposits, and trading histories,
including trading volume and funds details. Consequently,
we design a deep neural network to estimate optimal re-
serves threshold combining different time-series and embed-
ding features. Each sequence is fed into an individual LSTM
branch first and then fused by one fully connected layer to
get the threshold estimation.

We now introduce the problem setting of this paper:
Reserves Threshold Estimation. For an online hot wallet of
an exchange with potential unobserved secure defects, given
the trading history of pairs {pt0ij , . . . , ptnij }, the withdraw and
deposit history {wt0

i , . . . , wtn
i } and {dt0i , . . . , dtni }, i, j ∈

C, the objective is to predict the optimal threshold μi which
is the maximum reserve of currency i in the hot wallet to
balance the potential loss due to the compromise of hot wal-
let private keys and operational efficiency, where C is the set
of all supported trading pairs of the crypto-exchanges. The
unobserved secure defects exist in most cases, otherwise it
is unnecessary to develop the offline cold wallet anymore.
Objective Function. The output of the estimation frame-
work is the thresholds of the hot wallet. Ideally, the lowest μ̂
can be assigned as the net withdraw amount nw. However,
as the threshold grows higher, the potential theft risk also
becomes higher when malicious third parties compromise
the hot wallet. In other words, when the actual net withdraw
amount is low, we could set a relatively higher threshold
to satisfy potential accident demands. On the contrary, the
threshold should be lower than the actual demands when the
net withdraw volume is too high, even it will lead to more
time-consuming refilling operations transferring assets from
cold wallet to hot wallet. We now define the loss function of
threshold estimation at a specific time given one sample:

L =
∑

i
ReLU(nwi − μ̂i)

2 + αμ̂2
i ,

where nwi = ReLU(wi − di), ReLU(x) = max(0, x), wi

and di are withdraw and deposit amounts of currency i. The
objective function combines both security and operational
efficiency considerations. The first component means that
the operation cost emerges if the net withdraw amount is
higher than the estimated threshold μ̂i. The second compo-
nent represents the security concern that all currencies retain
online are risky to be stolen. The coefficient α is set to bal-
ance the loss from both situations. If α = 0, then the loss
from vicious attacks would not be taken into account, which
means that one can preserve infinity amount of currency on
the hot wallet, and the cold wallet is no longer needed.

Evaluation of Networks Embedding

In order to illustrate the efficiency of our proposed archi-
tecture, we start from comparing the dynamic embedding
architecture with other baselines by three general datasets,
which are usually evaluated by other embedding methods:
IA-Radoslaw-Email (Michalski, Palus, and Kazienko
2011) is a network describing internal email communica-
tion among employees of a company. The nodes represent
employees and edges represent individual emails between
two users. There are 167 nodes and 82.9k temporal edges
recorded in total, and the period is 271 days.
Fb-Forum (Opsahl 2011) is a Facebook-like forum network
extracted from an online community recording the users’
broadcasting activates to groups in the forum. The period
is 164 days with 899 nodes and 33.7k edges.
Fb-Messages (Opsahl and Panzarasa 2009) records the tem-
poral messages among members of a Facebook-like online
community. The time span is 164 days with 1.9k nodes and
59.8k edges in 216 days.

The three datasets are collected from communication net-
works, that can also be thought as the more general cases of
the trading graph. Each communication can be considered
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Dataset IA-Radoslaw-Email Fb-Forum Fb-Messages
Snapshot 1 2 3 4 5 mean 1 2 3 4 5 mean 1 2 3 4 5 mean
Deepwalk 0.793 0.829 0.823 0.830 0.810 0.817 0.793 0.787 0.788 0.826 0.730 0.785 0.796 0.677 0.703 0.667 0.690 0.707
node2vec 0.811 0.844 0.856 0.860 0.828 0.840 0.805 0.803 0.805 0.830 0.756 0.800 0.822 0.735 0.721 0.671 0.729 0.736

dynnode2vec 0.848 0.829 0.843 0.832 0.806 0.832 0.792 0.738 0.730 0.737 0.724 0.744 0.736 0.664 0.663 0.589 0.664 0.663
SDNE 0.755 0.768 0.765 0.737 0.778 0.761 0.759 0.750 0.800 0.788 0.792 0.778 0.764 0.746 0.798 0.781 0.756 0.769

DynEmb 0.750 0.753 0.771 0.757 0.781 0.762 0.754 0.770 0.793 0.776 0.783 0.775 0.773 0.724 0.791 0.785 0.747 0.764
GRUEmb 0.827 0.821 0.844 0.809 0.793 0.819 0.839 0.817 0.836 0.803 0.804 0.820 0.752 0.684 0.770 0.686 0.774 0.733

LSTM 0.895 0.901 0.906 0.914 0.873 0.898 0.904 0.882 0.870 0.907 0.902 0.893 0.779 0.797 0.769 0.787 0.801 0.787
LSTM TW 0.901 0.909 0.897 0.909 0.908 0.905 0.916 0.911 0.905 0.921 0.926 0.916 0.833 0.812 0.816 0.843 0.837 0.828

Table 1: AUC scores of link prediction task. The best performance is highlighted.

one transaction from one currency to the other one. More-
over, the communication frequency could change drastically
like the trading network.

Baselines

Architectures based on the skip-gram (Mikolov et al. 2013):
• Deepwalk. (Perozzi, Al-Rfou, and Skiena 2014) It is a

conventional embedding method for static graphs. The
node representation is attained based on a skip-gram neu-
ral network trained with sequences from random walks.
• node2vec. (Grover and Leskovec 2016) It is the general

extension of DeepWalk. Two parameters p and q are used
to control the preference of random walks.
• dynnode2vec. (Mahdavi, Khoshraftar, and An 2018). It

is the extension of node2Vec from static graphs to tempo-
ral graphs. Compared with node2vec, the model is focus
more on the latest snapshot when graphs changes drasti-
cally.
Architectures based on the deep auto-encoder:
• SDNE. (Wang, Cui, and Zhu 2016) SDNE is a deep em-

bedding method for static graph embedding considering
the first-order and second-order similarity.
• DynGEM. (Goyal et al. 2018) DynGEM can be con-

sidered as a temporary extension of SDNE by introduc-
ing (Chang et al. 2015) to handle the growth of the graph.
• GRUEmb. (Li et al. 2018) The network is proposed with

the supervised link prediction task by the gated recurrent
units.
Here are our proposed architectures:
• LSTM. This is the simplified version of our proposed em-

bedding method. One Bi-LSTM layer for nodes embed-
ding is implemented without temporal random walks us-
ing the same random walk samples of node2vec.
• LSTM TW. The contextual embedding architecture with

one Bi-LSTM layer for nodes embedding based on the
node sequences sampled temporal random walks.
In the following evaluation task, nodes are embedded into

128 dimension vectors. All hyper-parameters are tuned by
grid-search.

Link Prediction

The link prediction task is used to evaluate if the embedding
method can capture temporal patterns from historical obser-
vations. The architecture is first trained given a series of his-
torical network snapshots {G0, G1, . . . Gt}. We further train

a logistic regression model to detect if an edge e ∈ Gt′ exists
using the embedding based on observations from previous n
snapshots, where t′ > t. The edges which exist in Gt′ are
set with label 1, and the same amount of negative edges are
sampled randomly. We hold out 75% of samples from Gt′

for training a logistic regression model and the rest for test-
ing. The area under curve (AUC) is the evaluation metric.
We have five snapshots for training, n = 5, and the rest 5
snapshots for testing. Only the best performance is reported
with various edge representations based on different com-
bination of node features (Grover and Leskovec 2016). The
AUC scores of all testing snapshots are shown in Table 1.
We have the following observations:

• The proposed contextual embedding architectures LSTM
achieves better performance than baselines, which sup-
ports our claim that the local contextual order is critical
during embedding.

• The LSTM TW outperforms simple LSTM without tem-
poral random walking, achieving the best performance. It
proves that sampled sequences from the proposed tempo-
ral random walk contain wealthy temporal information.

• The performance of baselines based on the deep learn-
ing auto-encoder can not beat the simple structure Deep-
walk, including SDNE, DynEmb, and GRUEmb. It prob-
ably because the embedding non-linearity is too high to
be utilized by downstream models such as the logistic re-
gression due to the complex encoding structure. The de-
sired embedding features should be superficial enough to
be exploited by other models. It also motivates us to de-
sign the LSTM TW decoding the embedding feature at
the last layer by a simple dense classifier.

Based on the link prediction task, we show that the pro-
posed LSTM TW can achieve the best performance on gen-
eral social communication datasets compared with other
baselines. Thus, we further apply it in embedding crypto-
currencies, which can be considered as a special social net-
work.

Evaluation of Reserves Threshold Estimation

In this section, we first describe the data and the experimen-
tal settings and then show the effectiveness of our proposed
architecture. At last, we finish two case study to analyze the
performance qualitatively.

Our real trading history and the withdraw deposit records
are obtained from a real anonymous crypto-exchange to
avoid privacy leaking from 12/20/2018 to 5/11/2019. The
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Figure 4: The trading graph constructed by trading pairs.

Model Period α = 10 α = 5 α = 3 α = 0.1 α = 0.01

HA

1 0.517 0.275 0.177 0.037 0.032
2 0.697 0.379 0.252 0.068 0.062
3 0.838 0.455 0.302 0.080 0.073
4 0.960 0.510 0.330 0.069 0.061

mean 0.753 0.405 0.265 0.063 0.057

OTE-trade

1 0.739 0.417 0.209 0.035 0.016
2 0.286 0.187 0.153 0.056 0.028
3 0.212 0.193 0.168 0.062 0.027
4 0.206 0.183 0.169 0.046 0.010

mean 0.361 0.245 0.175 0.050 0.020

OTE-hist

1 1.085 0.792 0.479 0.036 0.013
2 0.227 0.184 0.148 0.060 0.024
3 0.186 0.181 0.174 0.061 0.019
4 0.180 0.175 0.171 0.055 0.013

mean 0.420 0.333 0.243 0.053 0.017

OTE-emb

1 0.391 0.229 0.164 0.036 0.017
2 0.294 0.234 0.177 0.053 0.025
3 0.315 0.273 0.222 0.064 0.027
4 0.422 0.378 0.226 0.049 0.008

mean 0.356 0.278 0.197 0.051 0.019

SHORELINE

1 0.395 0.220 0.135 0.038 0.016
2 0.142 0.138 0.129 0.053 0.016
3 0.194 0.170 0.154 0.059 0.016
4 0.227 0.179 0.156 0.051 0.013

mean 0.240 0.177 0.143 0.050 0.015

Table 2: The table shows the loss metrics E based on differ-
ent α. The best results are highlighted.

available trading pairs are illustrated in Figure 4. We use his-
torical trades of six days to predict the threshold of the fur-
ther one day. The daily trading history is used to construct
one snapshot of the temporal trading graph. We aggregate
6 hours of exchange records as one observation due to the
sparsity problem. Also, we only use nodes 7 to 10 in the em-
bedding step during temporal random walk because they are
involved late and lack of observations. Several snapshots are
shown in the Figure 1, we remove the real number to avoid
commercial secrets disclosure. The threshold is estimated
for maintaining the security and operational efficiency for
the next day, because updating threshold frequently suggests
high operation cost and high private key leakage risk of cold
wallets. Thus, we use the mean of the net withdrawal in the
next 24 hours as the reference value during training.

Performance Comparison

All records are divided into five periods chronologically. We
use tth period for training and testing on (t+1)th period with
initialized weights from (t − 1)th period if available. The
embedding dimension is 2 because we only have 10 cryp-
tocurrencies. The random walk length and number starting
from each currency node are 10.

Evaluation Metrics. The first order objective function is
used as the evaluation metrics,

E =
1

n

n∑
i=0

c∑
j=0

ReLU(nwij − μ̂ij) + αμ̂ij ,

where n is the sample size, c is the currency number, α ∈
{10, 5, 3, 0.1, 0.01} denotes different levels of concerns for
hot wallet security.

Here are the comparison models to fully evaluate each
component of the framework.
Historical Mean (HA). The historical mean of net with-
draws is used as the estimated threshold.
OTE-hist. One LSTM layer with 32 units is applied with
only historical net withdraws as its input.
OTE-emb. Based on OTE-hist, the other LSTM layer with
32 units is applied to handle the temporal vectors of digital
currencies’ embedding.
OTE-trade. It is the architecture with 3 LSTM layers with
64, 32 and 8 units to capture patterns in raw historical trading
records of all trading pairs.
SHORELINE. The final optimal reserves threshold estima-
tion framework combines all the above features and archi-
tectures by a dense layer. The dropout of 0.5 is used to avoid
possible over-fitting problem since more features are consid-
ered as inputs.

The testing results are listed in Table 2. The SHORELINE
can achieve the best testing performance under different se-
curity concerns α. The performance of OTE-trade is only
slightly better than the historical mean, although the tem-
poral trading networks for embedding are also derived from
the trading history. It further shows the effectiveness of our
proposed embedding methods. In general, as α becomes
smaller, the loss E also becomes lower as Table 2.

Case Study: Effectiveness of α

Here we present several cases for the better understanding
of our proposed framework in Figure 5. We compare the
estimation results with one baseline OTE-hist, which only
cooperate the net withdraw history to illustrate the effective-
ness of the features from trading pairs. In general, the lower
α is, the more the crypto-exchange values the operational
efficiency by reserving more funds in online hot wallets to
meet the withdraw demands. The online reserves decrease
significantly when α becomes large meaning that security
is the preliminary concern. In both situations, the SHORE-
LINE framework can estimate the precise threshold, balanc-
ing both the security and operational efficiency of a crypto-
exchange. The cases can be divided into two groups. 1) The
threshold is higher than the average net withdrawal, when α
is low, including currency #2, #3, #4, and #5. Note that
the threshold is set for the next 24 hours, there is no guar-
antee that the demand can always be satisfied immediately
given the mean net withdrawal amount. A higher amount of
currency is usually desired to meet the accident significant
withdraw if the system is secure. 2) The threshold is always
lower than the mean of net withdrawal, such as currency #1
and #6. It is reasonable to estimate a low threshold when α
is relatively large. As α grows, the withdrawal requirement
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α(weight for security concerns) - E(evaluation metrics) - T (threshold prediction)

Figure 5: The chart shows different cases of different currencies. The net withdrawal is the mean amount in 24 hours.

should not be satisfied by the pre-deposits in the hot wallet
when the demand is too high. It is beneficial to minimize the
loss if the system is corrupted.

Case Study: Theft Risks.

We further test the proposed SHORELINE given α by poten-
tial theft risks. We apply the threshold estimation framework
on the currency #1 based on the collected withdrawal and
deposit history, which is the core currency of the exchange
connecting with all the others. At first, the hot wallet is filled
as the prediction threshold for high-frequency trading. When
the reserve exceeds the threshold, the extra is transferred to
the cold wallet. The cold wallet refills the hot wallet to the
new estimated threshold, once the hot wallet is empty. In
general, one exchange can afford one time of regular refill
from the cold wallet to the hot wallet every day. Thus, we
set α = 0.1, where only a few unexpected refills will occur
due to accident massive withdraws. The probability of unex-
pected refill is less than 5% per day for all models. We don’t
compare the performance of HA here because the proba-
bility is too high, which is around 50%. We compare the
models based on two metrics, integration and surplus. The
integration is the summation of currency hourly existing in
the hot wallet in a day on average. The surplus is the aver-
age unnecessary currency remaining in the hot wallet after
one day’s trading. A higher integration value indicates that
the currency exposes online for a longer time. And a higher
surplus value represents more unused funds are reserved in
the hot wallet. Therefore, the higher the two values are, the
higher loss probably occurs if the system is compromised.
Based on Figure 6, SHORELINE achieve the lowest integra-
tion and surplus values compared with other architectures,
which means that the estimated threshold is efficient to bal-
ance theft risks and operational efficiency.

(a) integration (b) surplus

Figure 6: Risks comparison of different models, α = 0.1.

Conclusion and Future Works

In this paper, we utilized trading history to estimate the
reserves threshold of the online hot wallet for a crypto-
exchange. We propose a new dynamic networks embedding
method for temporal trading networks. Then we propose
SHORELINE combining the embedding features and with-
draw deposit history to estimate the final threshold. We con-
duct extensive experiments on the real dynamic networks
and trading data to demonstrate the effectiveness of the pro-
posed framework. In this paper, we only evaluate the pro-
posed framework on the small- and middle-sized temporal
graphs, since the size of trading networks are usually small.
It could be an interesting extension if our embedding archi-
tecture could be applied to the large scale networks embed-
ding such as social networks. Also, the embedding compo-
nent and the threshold estimation component are trained sep-
arately. The performance could be improved if the proper
combination of the two parts could be involved such as
multi-modal learning algorithms. It is critical for finial sci-
entists to make safe decisions if the meaning of the learned
features is clear, and thus the feature interpretability is also
a promising extension.
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