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Abstract

Dynamic malware analysis executes the program in an iso-
lated environment and monitors its run-time behaviour (e.g.
system API calls) for malware detection. This technique has
been proven to be effective against various code obfuscation
techniques and newly released (“zero-day”) malware. How-
ever, existing works typically only consider the API name
while ignoring the arguments, or require complex feature en-
gineering operations and expert knowledge to process the ar-
guments. In this paper, we propose a novel and low-cost fea-
ture extraction approach, and an effective deep neural net-
work architecture for accurate and fast malware detection.
Specifically, the feature representation approach utilizes a
feature hashing trick to encode the API call arguments as-
sociated with the API name. The deep neural network ar-
chitecture applies multiple Gated-CNNs (convolutional neu-
ral networks) to transform the extracted features of each API
call. The outputs are further processed through bidirectional
LSTM (long-short term memory networks) to learn the se-
quential correlation among API calls. Experiments show that
our solution outperforms baselines significantly on a large
real dataset. Valuable insights about feature engineering and
architecture design are derived from the ablation study.

1 Introduction

Cybersecurity imposes substantial economic cost all over
the world. A report (CEA 2018) from the United States gov-
ernment estimates that costs by malicious cyber activities in
the U.S. economy lay between $57 billion and $109 billion
in 2016. Malicious software (or malware) is one of the ma-
jor cybersecurity threats that evolves rapidly. It is reported
that more than 120 million new malware samples are be-
ing discovered every year (AV-TEST 2017). Therefore, the
development of malware detection techniques is urgent and
necessary.

Researchers have been working on malware detection for
decades. The mainstream solutions include static analysis
and dynamic analysis. Static analysis methods scan the bi-
nary byte-streams of the software to create signatures, such
as printable strings, n-gram, instructions, etc (Kruegel et al.
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2005). However, the signature-based static analysis might be
vulnerable to code obfuscation (Rhode, Burnap, and Jones
2018; Gibert et al. 2018) or inadequate to detect new (“zero-
day”) malware (Vinod et al. 2009). In contrast, dynamic
analysis algorithms execute each software in an isolated en-
vironment (e.g., a sandbox) to collect its run-time behaviour
information. By using behaviour information, dynamic anal-
ysis exerts a higher detection rate and is more robust than
static analysis (Damodaran et al. 2017). In this paper, we
focus on dynamic analysis.

Among behaviour information, the system API call se-
quence is the most popular data source as it captures all the
operations (including network access, file manipulation op-
erations, etc.) executed by the software. Each API call in the
sequence contains two important parts, the API name and
the arguments. Each API may have zero or multiple argu-
ments, each of which is represented as a name-value pair.
To process behaviour information, a lot of feature engineer-
ing methods are proposed. For example, if we consider the
API name as a string, then the most N (e.g., 1000) frequent
n-gram features can be extracted (n = 1, 2, · · ·) from the se-
quence. However, it is non-trivial to extract the features from
the arguments of heterogeneous types, including strings, in-
tegers, addresses, etc.

Recently, researchers have applied deep learning mod-
els to dynamic analysis. Deep learning models like con-
volutional neural network (CNN) and recurrent neural net-
work (RNN) can learn features from the sequential data di-
rectly without feature engineering. Nonetheless, the data of
traditional deep learning applications like computer vision
and natural language processing is homogeneous, e.g., im-
ages (or text). It is still challenging to process the hetero-
geneous API arguments using deep learning models. There-
fore, most existing approaches ignore the arguments. There
are a few approaches (Tian et al. 2010; Fang et al. 2017;
Agrawal et al. 2018) leveraging API arguments. However,
these approaches either treat all arguments as strings (Tian
et al. 2010; Agrawal et al. 2018) or only consider the
statistical information of arguments (Ahmed et al. 2009;
Tian et al. 2010; Islam et al. 2013). They consequently can-
not fully exploit the heterogeneous information from differ-
ent types of arguments.
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In this paper, we propose a novel feature engineering
method and a new deep learning architecture for malware
detection. In particular, for different types of arguments, our
feature engineering method leverages hashing approaches
to extract the heterogeneous features separately. The fea-
tures extracted from the API name, category, and the argu-
ments, are further concatenated and fed into the deep learn-
ing model. We use multiple gated CNN models (Dauphin et
al. 2017) to learn abstract lower dimensional features from
the high dimensional hash features for each API call. The
output from the gated CNN models is processed by a bidi-
rectional LSTM to extract the sequential correlation of all
API calls.

Our solution outperforms all baselines with a large mar-
gin. Through extensive ablation study, we find that both fea-
ture engineering and model architecture design are crucial
for achieving high generalization performance.

The main contributions of this paper include:
1. We propose a novel feature representation for system API

arguments. The extracted features from our dataset will
be released for public access.

2. We devise a deep neural network architecture to process
the extracted features, which combines multiple gated
CNNs and a bidirectional LSTM. It outperforms all ex-
isting solutions with a large margin.

3. We conduct extensive experiments over a large real
dataset1. Valuable insights about the feature and model
architecture are found through ablation study.

2 Related Work

In this section, we review the dynamic malware analysis
from the feature engineering and the deep learning perspec-
tives.

2.1 Feature Engineering for API Calls

(Trinius et al. 2009) introduce a feature representation called
Malware Instruction Set (MIST). MIST uses several levels
of features to represent a system call. The first level repre-
sents the category and name of the API call. The following
levels are specified manually for each API call to represent
their arguments. However, for different APIs, features at the
same level may indicate different types of information. The
inconsistency imposes challenges to learn patterns using ma-
chine learning models.

(Qiao et al. 2013) extend the MIST and propose a rep-
resentation called Byte-based Behaviour Instruction Set
(BBIS). They claim that only the first level (the category and
name of an API call) of MIST is effective. Besides, they pro-
pose an algorithm CARL to process consecutively repeated
API calls.

Statistical features are popular for training machine learn-
ing models. Strings from the API call’s name and its argu-
ments are extracted to calculate the frequency and distribu-
tion as the features in (Tian et al. 2010; Islam et al. 2010;
2013). (Ahmed et al. 2009) also use statistical features that

1https://github.com/joddiy/DynamicMalwareAnalysis is the
link of the code and the dataset.

capture both the spatial and temporal information. Spatial
information is extracted from arguments, such as the mean,
variance, and entropy. Temporal information is from the n-
gram API calls, including the correlation and transformation
possibility between two n-gram API calls.

(Salehi, Ghiasi, and Sami 2012) propose a feature repre-
sentation associating the API calls with their arguments. It
concatenates each argument with the name of its API call
to form a new sequence, However, this approach leads to an
extremely long feature vector and might lose the pattern of
API call sequence. (Hansen et al. 2016) propose another two
feature representations. These representations consist of first
200 API calls as well as its “argument”. However, this “ar-
gument” only indicates whether this API call is connected
with the later one, while ignoring the original arguments.

2.2 Deep Learning Based Approaches

(David and Netanyahu 2015) treat the sandbox report as an
entire text string, and then split all strings by any special
character. They count the frequency of each string and use a
20,000-bit vector to represent the top 20,000 frequent ones.
Their model is a deep belief network (DBN) which consists
of eight layers (from 20,000-sized vectors to 30-sized vec-
tors). Cross-entropy loss is used to train the model. They
attain 98.6% accuracy on a small dataset with 600 test sam-
ples.

(Pascanu et al. 2015) propose a two-stage approach, a fea-
ture learning stage and a classification stage. At the first
stage, they use RNNs to predict the next possible API call
based on the previous API call sequence. At the classifica-
tion stage, they freeze the RNNs, and feed the outputs into
a max-pooling layer to transform features for classification.
They attain 71.71% recall rate at a false positive rate of 0.1%
on a dataset with 75,000 samples.

(Kolosnjaji et al. 2016) propose an approach which com-
bines CNN with LSTM. Their approach stacks two CNN
layers, and each CNN layer uses a 3-sized kernel to simulate
the 3-gram approach. After the CNN, an LSTM with a 100-
sized hidden vector is appended to handle the time-series
sequence.

The previous papers typically ignore arguments. (Huang
and Stokes 2016) use a feature representation with three
parts, the presence of runnable code in arguments, the com-
bination of the API call name with one of its arguments (se-
lected manually), and the 3-gram of API call sequence. This
feature representation is reduced from 50,000 to 4,000 by a
random projection. (Agrawal et al. 2018) propose a feature
representation with a one-hot vector from API call name and
top N frequent n-gram of the argument strings. The model
uses several stacked LSTMs that shows a better performance
than (Kolosnjaji et al. 2016). They also claim that multiple
LSTMs cannot increase the performance.

3 System Framework

To collect the run-time API calls, we implement the sys-
tem shown in Figure 1. The system has three parts, PE files
collection, behaviour information collection, and feature ex-
traction as well as model training.
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Figure 1: System Architecture

3.1 PE Files Collection

The workflow of our system starts from the portable exe-
cutable (PE) files collection. In this paper, we focus on de-
tecting malware in portable executable (PE) file format in
Windows systems, which is the most popular malware file
format (AV-TEST 2017). This collection part has been im-
plemented by a local anti-virus company, SecureAge Tech-
nology of Singapore. In addition, the company maintains a
platform with 12 anti-virus engines to classify the PE files.
The classification results are aggregated to get the label of
each PE file for model training. Once the model is trained,
it will be added into the platform as the 13th anti-virus en-
gine. After the collection, an execution queue is maintained
to submit the PE files for execution. It monitors the storage
usage and decides whether to execute more PE files.

3.2 Behaviour Information Collection

Cuckoo2, an open-source software, is used to run the PE files
and gather execution logs. It executes PE files inside virtual
machines and uses API hooks to monitor the API call trace
(i.e., the behaviour information). Besides, Cuckoo simulates
some user actions, such as clicking a button, typing some
texts, etc. In our system, we maintain dozens of virtual ma-
chines on each server. All virtual machines are installed with
a 64-bit Windows 7 system and several daily-use software.
We leverage the snapshot feature of the virtual machine to
roll it back after execution. All generated logs are stored lo-
cally on the Cuckoo server.

3.3 Feature Extraction and Model Training

The execution logs generated by the sandbox contain de-
tailed runtime information of the PE files, whose size ranges
from several KB to hundred GB. We design a feature engi-
neering solution that can run in parallel to extract features
from the raw execution logs efficiently. Once the features

2https://cuckoosandbox.org/

are extracted, we train our deep learning model on a model
server with GPUs for malware classification.

4 Methodology

4.1 Feature Engineering

Most previous works (Qiao et al. 2013; Pascanu et al. 2015;
Kolosnjaji et al. 2016) neglect the arguments of the API
call, and only consider the API name and category. Con-
sequently, some important (discriminative) information is
lost (Agrawal et al. 2018). For example, the features of two
write operations (API calls) would be exactly the same if
the file path argument is ignored. However, the write oper-
ation might be benign when the target file is created by the
program itself but be malicious if the target file is a system
file. A few works (Trinius et al. 2009; Agrawal et al. 2018;
Huang and Stokes 2016) that consider the arguments fail to
exploit the heterogeneous information from different types
of arguments.

We propose to adapt the hash method from (Weinberger
et al. 2009) to encode the name, category and arguments of
an API separately. As shown in Table 1, our feature repre-
sentation consists of different types of information. The API
name has 8 bins, and the API category has 4 bins. The API
arguments part has 90 bins, 16 for the integer arguments and
74 for the string arguments. For the string arguments, several
specific types of strings (file path, Dlls, etc.) are processed.
Besides, 10 statistical features are extracted from all print-
able strings. All these features are concatenated to form a
102-dimension feature vector.

API Name and Category Cuckoo sandbox tracks 312
API calls in total which belong to 17 categories. Each API
name consists of multiple words with the first letter of each
word capitalized, such as “GetFileSize”. We split the API
name into words and then process these words by applying
the feature hashing trick below. For the API category, since
the category typically is a single word, for example, “net-
work”, we split the word into characters and apply the fea-
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Table 1: Feature representation overview

Feature Type Details Dim

API name Strings Internal words
hashing trick 8

API category Strings Hashing trick 4

API
Arguments

Integers Hashing trick 16

Strings

Paths

Hashing trick
with hierarchy

16
Dlls 8

Registry
keys 12

Urls 16
IPs 12

String
statistics

numStrings, avLength,
numChars, entropy,
numPaths, numDlls,
numUrls, numIPs,
numRegistryKeys,

numMZ

10

ture hashing trick. In addition, we compute the MD5 value of
the API name, category and arguments to remove any con-
secutively repeated API calls.

We use feature hashing (Weinberger et al. 2009) in Equa-
tion 1 to encode a sequence of strings into a fixed-length
vector. The random variable x denotes a sequence of ele-
ments, where each element is either a string or a character.
M denotes the number of bins, i.e., 8 for API name, and 4
for API category. The value of the i-th bin is calculated by:

φi(x) =
∑

j:h(xj)=i

ξ(xj) (1)

where h is a hash function that maps an element, e.g., xj ,
to a natural number m ∈ {1, ...,M} as the bin index; ξ is
another hash function that maps an element to {±1}. That
is, for each element xj of x whose bin index h(xj) is i, we
add ξ(xj) into the bin.

API Arguments As for API arguments, there are only two
types of values, namely integers and strings. The individual
value of an integer is meaningless. The argument name is
required to get the meaning of the value. The same integer
value might indicate totally different semantics with differ-
ent argument names. For example, number 22 with the name
“port” is different from the one with the name “size”.

We adapt the previous feature hashing method to encode
the integer’s argument name as well as its value, as shown
in Equation 2. We use the argument name to locate the hash
bin. In particular, we use all the arguments whose names’
hash value is i to update the i-th bin via summation. For
each such argument, we compute the contribution to the bin
as shown in Equation 2, where ξ(xname

j ) is a hash function
over the argument name and xvalue

j is the value of the integer
argument. Because integers may distribute sparsely within a
range, we normalize the value using the logarithm to squash
the range.

φi(x) =
∑

j:h(xname
j

)=i

ξ(xname
j ) log(|xvalue

j |+ 1) (2)

where h and ξ are the same hash functions as in Equation 1.
For strings of API arguments, their values are more com-

plicated than integers. Some strings starting with ‘0x’ con-

tain the address of some objects. And some other may con-
tain the file path, IP address, URL, or plain text. Besides,
some API arguments may even contain the content of an en-
tire file. The variety of strings makes it challenging to pro-
cess them. According to the previous work (Tian et al. 2010;
Islam et al. 2010; 2013; Ahmed et al. 2009), the most im-
portant strings are the values about file paths, DLLs, registry
keys, URLs, and IP addresses. Therefore, we use the feature
hashing method in Equation 1 to extract features for these
strings.

To capture the hierarchical information contained in the
strings, we parse the whole string into several substrings and
process them individually. For example, we use “C:\\” to
identify a file path. For a path like “C:\\a\\b\\c”, four sub-
strings are generated, namely “C:”, “C:\\a”, “C:\\a\\b”,
and “C:\\a\\b\\c”. All these substrings are processing by
Equation 1. The same processing method is applied for
DLLs, registry keys and IPs. The DLLs are strings ending
with “.dll”. The registry keys often start with “HKEY ”.
IPs are those strings with four numbers (range from 0 to
255) separated by dots. Slightly different for URLs, we
only generate substrings from the hostname of the URL.
For example, for “https://security.ai.cs.org/”, the following
substrings will be generated “org”, “cs.org”, “ai.cs.org” and
“security.ai.cs.org”. In this way, the domain and organiza-
tion information will contribute more to the feature.

For lots of other types of strings, based on the previ-
ous work(Ahmed et al. 2009; Tian et al. 2010; Islam et al.
2010), we extract statistical information from all the print-
able strings. The printable strings consist of characters rang-
ing from 0x20 to 0x7f. Therefore, all the paths, registry keys,
URLs, IPs and some other printable strings are included.
One type of strings starting with “MZ” is often a buffer that
contains an entire PE file and usually occurs in malicious
PE files such as thread injection(Liu et al. 2011). Therefore,
we additionally count the occurrences of “MZ” strings. A
10-dimension vector is used to record the number of strings,
their average length, the number of characters, the entropy
of characters across all printable strings, and the number of
paths, DLLs, URLs, registry keys, IPs and “MZ” strings.

We have not handled other arguments such as virtual ad-
dresses, structs, et al., which are relatively not so important
compared with above types of arguments. Although the pro-
posed feature engineering method is easy to be applied to
them using extra bins, we look forward to more targeted re-
searches to explore these arguments.

4.2 Model Architecture

We present a deep neural network architecture that leverages
the features from the proposed feature engineering step. Fig-
ure 2 is an overview of our proposed deep learning model.

Input Module After feature engineering, we get the input
vector whose size is (N, d), where N is the length of the API
call sequence, and d (102 bits) is the dimension of each ex-
tracted API feature. We first normalize the input by a batch
normalization layer (Ioffe and Szegedy 2015). This batch
normalization layer normalizes the input values by subtract-
ing the batch mean and dividing by the batch standard devia-
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Figure 2: An illustration of the proposed model

tion. It makes sure some dimensions of the feature vector are
not so large to affect the training; it also has a regularization
effect, which is validated in the experiments.

Gated-CNNs Module Several gated-CNNs (Dauphin et
al. 2017) are applied after the input module. Gated-CNNs
allows the selection of important and relevant information
making it competitive with recurrent models on language
tasks but consuming less resource and less time.

For each gated CNN, the input is fed into two convolution
layers respectively. Let XA denotes the output of the first
convolution layer, and XB denotes the output of the second
one; they are combined by XA ⊗ σ(XB), which involves
an element-wise multiplication operation. Here, σ is the sig-
moid function σ(x) = 1

1+e−x . σ(XB) is regarded as the
gate that controls the information from XA passed to the
next layer in the model.

Following the idea in (Shen et al. 2014), 1-D convolu-
tional filters are used as n-gram detectors. As Figure 2, we
use two gated CNNs whose filter size is 2 and 3 respectively.
All convolution layers’ filter size is 128, and stride is 1.

Bi-LSTM Module All outputs from Gate CNNs are con-
catenated together. A batch normalization layer is applied
to these outputs to reduce overfitting. We use bidirectional
LSTM to learning sequential patterns. The number of units
of each LSTM is 100.

LSTM is a recurrent neural network architecture, in which
several gates are designed to control the information trans-
mission status so that it is able to capture the long-term con-
text information (Pichotta and Mooney 2016). Bidirectional
LSTM is two LSTMs stacking together but with different
directional input. Compared to unidirectional LSTM, bidi-
rectional LSTM is able to integrate the information from
past and future states simultaneously. Bidirectional LSTM
has been proved effective at malware detection by (Agrawal
et al. 2018).

Classification Module After learning sequential patterns
from Bi-LSTM module, a global max-pooling layer is ap-
plied to extract abstract features from the hidden vectors. In-
stead of using the final activation of the Bi-LSTM, a global
max-pooling layer relies on each signal observed through-
out the sequence, which helps retain the relevant information
learned throughout the sequence.

After the global max-pooling layer, we use a dense layer
with units number 64 to reduce the dimension of the inter-
mediate vector to 64. A ReLU activation is applied to this
dense layer. Then we use a dropout layer with a rate of 0.5
to reduce overfitting. Finally, a dense layer with units num-
ber 1 reduces the dimension to 1. A Sigmoid activation is
appended after the dense layer to output the probability.

Our model is supervised with the label associated with
each input vector. To measure the loss for training the model,
binary cross-entropy function is used as Equation 3.

�(X, y) = −(y log(P [Y = 1|X]) + (1− y)log(P [Y = 0|X]))
(3)

In addition, the optimization method we take is Adam,
and the learning rate is 0.001.

5 Experiments

5.1 Dataset

As described before, 12 commercial anti-virus engines are
set up to classify the PE file. We set a PE file as positive
if 4 or more engines agree that it is malicious. And if none
of the engines classifies it as malware, we set it as negative.
For other cases, we think the results are inconclusive and
therefore exclude them from our dataset.

Table 2: Summary of the data

Dataset Positive files Negative files

April 15931 11417
May 11856 21983

The collected data are archived by the date and we pick
two months (April and May) data to conduct our experi-
ments. All these PE files are processed by our system (as
shown in Figure 1) to collect the API call sequences. Table
2 is a summary of the data, where the row represents the
statistics of the data in a month.

5.2 Model Evaluation

In order to investigate the performance improvement, we
compare the proposed model with three machine learning-
based models and three deep learning-based models.

• (Uppal et al. 2014) extract 3-gram vectors from API call
names. Then they use the odds ration to select the most
important vectors. SVM is applied as the model.

• (Tian et al. 2010) use a hash table to indicate the pres-
ence of strings. The strings come from both API names
and arguments. The generated hash table is then used as
features and the classifier is Random Forest.
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Table 3: The experimental results

Type Approach Arguments
4-fold CV Performance Test Performance Inference Time

(ms/sample)AUC(%) ACC(%) Recall(%) AUC(%) ACC(%) Recall(%)

Machine
Learning

(Uppal et al. 2014) No 96.18±0.26 90.89±0.57 1.37±0.39 94.02±0.62 86.01±0.31 1.61±0.74 98.56
(Tian et al. 2010) Yes 99.10±0.07 95.83±0.29 82.42±3.12 97.77±0.07 93.18±0.17 67.45±2.38 123.03
(Fang et al. 2017) 98.62±0.06 94.58±0.55 53.51±26.28 97.02±0.11 90.88±0.28 41.72±1.76 116.01

Deep
Learning

(Pascanu et al. 2015) No 95.35±1.65 89.06±1.80 9.16±15.61 50.69±24.64 32.21±6.40 0.67±0.61 94.23
(Kolosnjaji et al. 2016) 98.82±0.15 95.34±0.74 59.48±18.86 97.58±1.46 93.32±2.38 42.49±16.04 92.19
(Agrawal et al. 2018) Yes 99.07±0.13 95.87±0.28 77.78±9.55 98.19±0.32 94.86±0.22 60.11±6.69 257.57

Proposed Model 99.46±0.04 96.76±0.26 88.75±2.65 98.71±0.17 95.33±0.40 71.48±3.08 129.21

(a) Validation ROC curve (b) Test ROC curve

Figure 3: Comparisons of ROC curve of different models

• (Fang et al. 2017) use hashing trick to map the API call
names, return value and module name (a part of the ar-
guments) into some fixed-size bins. Then top important
features are selected and fed into XGBoost.

• (Pascanu et al. 2015) train a language model using RNN
which can predict the next API call given the previous
API calls. Then the RNN model is freezed and the hidden
features are extracted for malware detection. The input of
the model is a sequence of d-dimensional one-hot vectors
whose elements are all zeros except the position (the ele-
ment value is 1) for the corresponding API call.

• (Kolosnjaji et al. 2016) propose a model which combines
stacked CNNs and RNNs. The input is also one-hot vec-
tors for the API call sequence.

• (Agrawal et al. 2018) extract one-hot vectors from the
API call sequence and frequent n-gram vectors from the
API arguments. The model uses several stacked LSTMs.

All the experiments are conducted against our dataset. We
use 4-fold cross-validation (or CV) over the April dataset to
train the models and do the testing over the May dataset.
Considering that new malware is being generated over time,
there could be many PE files for new malware in the May
dataset. Therefore, the performance indicates the model’s
capability for detecting unknown malware in a certain de-
gree.

Three metrics are considered: ROC (receiver operating
characteristic curve) AUC (Area Under the Curve) score,
ACC (accuracy) and Recall when FP (false positive) rate
is 0.1%. The recall is defined as the ratio of the cor-

rectly detected malware PE files over all malware PE files.
The FP rate is the ratio of benign PE files incorrectly
identified as malware. Anti-virus products are required to
keep a low false alarm rate to avoid disturbing users fre-
quently (Nicholas 2017). A good model should achieve a
high recall rate for a fixed low false positive rate. We pro-
vide 95% confidence intervals for all these three metrics.
In addition, the inference time per sample, which includes
the time for feature processing and model prediction, is also
taken into account.

From the experimental results in Table 3, our proposed
model achieves the best AUC score, accuracy and recall
among all the baseline models at both CV and test dataset.

Figure 3 displays the ROC curve of all models. The
dashed curves are the ROCs of those traditional machine
learning models, while the solid lines are the ROCs of those
deep learning models. The experimental results illustrate
that the traditional machine learning approaches and deep
learning approaches are comparable. It should be noted that
the model (Tian et al. 2010) achieves quite good results by
using a basic method to extract the string information. This
indicates the importance of strings in feature processing.
Therefore, we spend a lot of effort on the feature engineering
of string data. The results also show that models with argu-
ment features generally outperform the ones neglecting ar-
guments. The argument features increase the test AUC score
of the traditional machine learning method by 3% and also
increased the test AUC score of deep learning by about 1%.
Therefore, including API arguments is necessary.

Figure 3 shows a margin between the results on validation
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and test dataset. Since the training dataset is collected before
the testing dataset so the test data is likely to include new
malware PE file. However, our proposed solution achieves
the best performance on the test dataset, which confirms the
ability in detecting new and constantly evolving malware.

As for the inference time, models with the argument fea-
tures take a slightly longer time. However, hundreds of mil-
liseconds inference time are relatively small and acceptable,
because the data collection using Cuckoo sandbox is time-
consuming, and costs 3-5 minutes per sample. The training
takes about 10 minutes per epoch, which could be easily re-
duced via distributed training (Ooi et al. 2015).

5.3 Ablation Study

The proposed model consists of several components that can
be flexibly adjusted, e.g., the Gated CNNs, Bi-LSTM and
Batch Normalization. In order to explore the effects of dif-
ferent configurations, we employ several sets of comparison
experiments by fixing other structures and only changing the
testing component. These results of these experiments serve
as the basis for the decision of our final model structure.

• Gated CNNs with three sets experiments, the Gated
CNNs only with kernel size 2 (2-GatedCNN), two
Gated CNNs with kernel size 2 and 3 (2,3-GatedCNN),
three Gated CNNs with kernel size 2, 3 and 4 (2,3,4-
GatedCNN).

• Batch Normalization with four sets experiments, the
model without any batch normalization (BN) layer, with-
out the first BN layer (after the input), without the second
BN layer (after the Gated CNNs), and with both BN lay-
ers.

• Bi-LSTM with three sets experiments, the model with
none Bi-LSTM, with one Bi-LSTM, and with two Bi-
LSTM stacked.

(a) Validation AUC (b) Test AUC

Figure 4: Comparison of AUC for Gated CNNs

Figure 4 depicts the comparisons for different numbers of
Gated CNNs. 2-GatedCNN converges slower although the
final performance is very close to the other two models. In
addition, increasing the number of gated CNN from 2,3-
GatedCNN to 2,3,4-GatedCNN does not bring any perfor-
mance improvement. The best AUC score of 2-GatedCNN
and 2,3-GatedCNN is 98.80% and 98.86% respectively.
Therefore, we choose 2,3-GatedCNN in our model.

Figure 5 displays the performance with different numbers
of batch normalization layers. Although these four curves

(a) Validation AUC (b) Test AUC

Figure 5: Comparison of AUC for Batch Normalization

(a) Validation AUC (b) Test AUC

Figure 6: Comparison of AUC for Bi-LSTM

tend to be closer at later epochs, the curve with both BN
layers shows slightly superior performance with the highest
AUC score at 98.80%.

As for various numbers of Bi-LSTM, Figure 6 shows the
performance for each configuration. Obviously, in both fig-
ures, the curve of 0-Bi-LSTM is below the other two curves
by a large margin, which indicates the Bi-LSTM is vital. The
other two curves in both figures are continuously staggered,
however, 1-Bi-LSTM is slightly better with the highest point
reaching 98.80%. In addition, the computation time of 1-Bi-
LSTM is 2 times faster than 2-Bi-LSTM. Thus, we choose
1-Bi-LSTM as the final configuration of the proposed model.

6 Conclusion

In this work, we propose a novel feature engineering method
and a new deep learning architecture for malware detection
over the API call sequence. Hashing tricks are applied to
process the heterogeneous information from API calls, in-
cluding the name, category and arguments. A homogeneous
and low-cost feature representation is extracted. Then, we
use multiple gated-CNNs to transform the high dimensional
hash features from each API call, and feed the results into
a Bi-LSTM to capture the sequential correlations of API
calls within the sequence. The experiments show that our ap-
proach outperforms all baselines. Ablation study over multi-
ple architecture variations verify our architecture design de-
cisions.
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