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Abstract

Grammatical error correction (GEC) is a promising natu-
ral language processing (NLP) application, whose goal is to
change the sentences with grammatical errors into the correct
ones. Neural machine translation (NMT) approaches have
been widely applied to this translation-like task. However,
such methods need a fairly large parallel corpus of error-
annotated sentence pairs, which is not easy to get especially
in the field of Chinese grammatical error correction. In this
paper, we propose a simple yet effective method to improve
the NMT-based GEC models by dynamic masking. By adding
random masks to the original source sentences dynamically
in the training procedure, more diverse instances of error-
corrected sentence pairs are generated to enhance the gen-
eralization ability of the grammatical error correction model
without additional data. The experiments on NLPCC 2018
Task 2 show that our MaskGEC model improves the perfor-
mance of the neural GEC models. Besides, our single model
for Chinese GEC outperforms the current state-of-the-art en-
semble system in NLPCC 2018 Task 2 without any extra
knowledge.

Introduction

Grammatical error correction (GEC) has attracted much in-
terest as a natural language processing (NLP) application in
recent years. The definition of the grammatical error correc-
tion task is: given a sentence which may contain grammat-
ical errors, one is required to detect and correct the errors
presented in the sentence, and return its error-free natural
language representation. Regarding the incorrect sentences
as source language and the corrected sentences as target lan-
guage, the GEC task can be treated as a machine translation
(MT) task. For example, English GEC can be converted to
the translation from “bad” English to “good” English.

With the rapid development of deep learning, neural ma-
chine translation (NMT) approaches based on sequence-
to-sequence (seq2seq) models have become mainstream
in the field of machine translation. Recently, quite a few
works (Yuan and Briscoe 2016; Ji et al. 2017; Chollampatt
and Ng 2018) have applied the neural seq2seq models to
the grammatical error correction tasks and have made some
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Figure 1: An example of error-corrected sentence pairs and
the generated noisy sentence pairs during the whole training
time. The placeholder ’@’ denotes any possible word that is
chosen as a replacement.

progress. However, these NMT-based models for GEC face
a problem. Due to the limited size of the parallel corpus of
error-corrected sentence pairs, the seq2seq models for GEC,
which usually contain millions of parameters, are difficult to
be trained sufficiently. Therefore, even if a test case sentence
is just slightly different from a training instance, the models
may fail to correct it.

In order to overcome the drawback of neural grammati-
cal error correction models which is mentioned above, we
propose a simple yet effective dynamic masking method to
enhance the performance of neural GEC models.

In the training procedure, We add various kinds of random
noises to the inputs via masking to generate noisy source
sentences dynamically, but keep the target sentences un-
changed. By pairing the new source sentences with the cor-
responding target sentences, we can obtain more abundant
error-corrected sentence pairs, as Figure 1 shows. For the
sake of convenience, we call the newly constructed error-
corrected sentence pairs through random noising noisy sen-
tence pairs. Rather than use the aforementioned noisy sen-
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Figure 2: An illustration of the training process of our dynamic masking approach for Chinese grammatical error correction.
The seq2seq architecture is Transformer. ‘@’ is a placeholder which denotes a possible substitution word. ‘<s>’ and ‘</s>’
refer to ‘BOS’ (begin of sentence) and ‘EOS’ (end of sentence), respectively.

tence pairs as additional training instances, we substitute the
original sentences with the noisy ones on the source side di-
rectly. In this way, our grammatical error correction model
can obtain more samples of error-corrected sentence pairs
during the whole training process, without increasing the
size of the training set. By the introduction of noise, the gen-
eralization ability of the grammatical error correction model
is enhanced in our approach.

Experiments demonstrate that grammatical error correc-
tion model with the proposed dynamic masking method out-
performs the baseline seq2seq model, and achieves state-of-
the-art results in the Chinese GEC task.

In short, this paper makes the following contributions:

• We propose a simple yet effective dynamic masking
method to address the limitation of the Chinese neural
GEC model. To the best of our knowledge, it is the first
work to introduce dynamic masking technique to Chinese
GEC tasks.

• Our model achieves state-of-the-art results in NLPCC
2018 Task 2 without additional resources, which proves
the effectiveness of our approach in the Chinese GEC
task.

Model

Neural GEC Model

A seq2seq model basically consists of an encoder-decoder
architecture. Seq2seq models have been proven to be ef-
fective in many NLP tasks, such as machine transla-
tion (Sutskever, Vinyals, and Le 2014), text summariza-
tion (Rush, Chopra, and Weston 2015), dialogue sys-

tems (Serban et al. 2016), and so on. To correct the poten-
tial errors, GEC systems have to understand the meaning of
the sentences. It could be hard as long distance dependen-
cies may exist between the words in a natural language sen-
tence. Recurrent neural networks (RNNs) are good at model-
ing word sequences and capturing the context of sentences.
Therefore, RNN is mostly adopted by former neural mod-
els for GEC (Yuan and Briscoe 2016), especially for its va-
riety gated recurrent unit (GRU) network (Xie et al. 2016;
Ge, Wei, and Zhou 2018). Because most of the grammatical
errors are localized and dependent on the nearby words, it
is essential for GEC systems to capture local contexts. Con-
volutional neural networks (CNNs) are able to capture lo-
cal information effectively by window operations. Through
hierarchical multi-layer convolutional network (Chollam-
patt and Ng 2018), wider contexts between distant words
can also be captured by higher layers. Attention mecha-
nism (Bahdanau, Cho, and Bengio 2014; Luong, Pham, and
Manning 2015) has led to great achievements on sequence
learning tasks since proposed. Recent neural grammatical
error correction models (Xie et al. 2016; Ji et al. 2017;
Chollampatt and Ng 2018; Ge, Wei, and Zhou 2018) have
introduced attention mechanism to let the models concen-
trate on the relevant parts with the grammatical errors in the
sentences.

Most former neural GEC models use RNN or CNN as en-
coder and decoder, while Transformer (Vaswani et al. 2017)
is a new kind of encoder-decoder framework. Transformer,
proposed by Google recently, is based solely on attention
mechanisms. Transformer has demonstrated its strong abil-
ity to model word sequences, and has achieved the best per-
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Algorithm 1 Dynamic masking method
1: Initialize the neural grammatical error correction model

Θ with random weights.
2: for each training epoch t do

3: S(t) ← ∅.
4: for each (X,Y ) ∈ S do

5: Establish a noisy sentence pair (X̃(t), Y ) by apply-
ing a noising scheme f to X .

6: S(t) ← S(t) ∪ {(X̃(t), Y )}.
7: end for
8: Update model Θ with S(t).
9: end for

formance in the machine translation task.
Our grammatical error correction model adopts the Trans-

former as the NMT framework. It is worth mentioning that
the choice of the NMT framework is not a focus of this pa-
per. We expect that other seq2seq models would benefit from
our approach.

Given a source sequence

X = (x1, x2, . . . , xm) (1)

and its corresponding corrected sequence

Y = (y1, y2, . . . , yn) (2)

where m and n are the lengths of sequence X and Y re-
spectively, the grammatical error correction model needs to
estimate the following conditional probability:

P (Y |X) =

n∏
i=1

P (yi|y1, . . . , yi−1, X;Θ) (3)

where Θ is model parameters. The model is trained by max-
imum likelihood estimate (MLE), i.e. minimizing the nega-
tive log likelihood (NLL) loss:

l(Θ) = −
n∑

i=1

log (P (yi|y1, . . . , yi−1, X;Θ)) (4)

Dynamic Masking

For neural network models, the size of a training corpus is
usually one of the key factors of the model performance. In
order to obtain more training samples conveniently and ef-
ficiently, we add noises to source sentence X with a certain
probability in the j-th epoch of the training process dynam-
ically (Figure 2), and get the noisy text

X̃(j) = (x̃
(j)
1 , . . . , x̃

(j)
i , . . . , x̃(j)

m ) (5)

where the i-th word in X̃(j) is given by:

x̃
(j)
i =

{
f(xi), p ≤ δ
xi, p > δ

(6)

where f is a word substitution function, p is a random num-
ber generated by a uniform distribution over the interval
[0.0, 1.0], and δ is the threshold of substitution probability1.

1we set δ = 0.3

Figure 3: Some examples of grammatical errors in Chi-
nese texts caused by confusions between homophones. Their
parts of speech are also listed to show the universality of this
error type.

During the t rounds of iteration, a group of noisy source
texts {X̃(1), X̃(2), . . . , X̃(t)} are generated. Our GEC model
is required to map this group of noisy texts to the target sen-
tence Y . We describe our noise training method in Algo-
rithm 1, where S is the set of original error-corrected sen-
tence pairs in the training corpus, and S(t) is the set of noisy
sentence pairs in epoch t.

Different noising schemes may have different impacts on
the model performance. We consider the following noising
schemes and conduct a set of experiments to compare them:

Padding Substitution: Every word in the source sentence
has a certain probability δ to be chosen and substituted with
a padding symbol ‘<pad>’ . Through padding substitution,
we can increase the training samples exponentially in the
training process of the GEC model, and decrease the repeti-
tion of training instances. Besides, we can reduce the GEC
model’s dependency on specific words by replacing some
words with padding symbols. In this way, the GEC model
is forced to learn the meaning of the substituted words from
the context in hidden layers, which helps to boost the perfor-
mance.

Random Substitution: Similarly to padding substitution,
the GEC model randomly picks out some words from the
source sentence with a probability δ. However, the model
uses the random words from the vocabulary V to replace
them, instead of the padding symbols. The words for substi-
tution are uniformly sampled from the vocabulary V with a
probability of 1/ |V |, where |V | is the size of V . Random
substitution is more suitable for GEC task than padding sub-
stitution, as it can make the model generate noisy samples
which are closer to the real wrong texts.

Word Frequency Substitution: Generally, the grammati-
cal errors in natural language tend to mistake high frequency
words for low frequency ones. Therefore, we believe that
words with higher frequencies should appear in the incorrect
source sentences as substitution errors more often. Accord-
ingly, we propose a substitution method which is based on
word frequency. Our GEC model counts the occurrences of
each word in the target sentences within the training corpus
to get the word frequency. Then it calculates the probability
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Split # Sent. # Token src. # Token tgt.

Train 1.2 M 23.7 M 25.0 M
Dev 5,000 99.3 K 104.1 K
Test 2,000 58.9 K -

Table 1: Overview of NLPCC-2018 dataset

distribution Prob(V ) of the vocabulary V . In the training
procedure, the GEC model samples the words for substitu-
tion according to word frequency rather than uniformly.

Homophone Substitution: Errors caused by homophony
phenomenon account for a large proportion in grammati-
cal errors in Chinese text. There exist lots of homophones
in Chinese characters. They have the same pronunciation,
but differ in shapes and meanings. Figure 3 demonstrates
some grammatical errors caused by this phenomenon. We
use pypinyin2 to obtain the characters’ corresponding pinyin,
the official romanization system for standard Chinese. Then
we categorize the words in the target sentences according to
their pinyin, and count word frequencies based on the pinyin
categories. Thus we can get the probability distribution of
words of each pinyin type. While training the model, we
choose the words to be replaced by means of the method
described before. Then we look up the pinyin of these words
and select homophones for substitution based on the corre-
sponding word frequency distribution.

Mixed Substitution: In addition to the single noising
schemes above, we also propose a mixed substitution
method. For each training instance, our Chinese GEC model
randomly select a single noising scheme or the empty
scheme (keep it unchanged), and apply it to the training
procedure. In this way, we integrate all the single noising
schemes and obtain more diverse noisy sentence pairs.

Experiments

Setup

To validate the effectiveness of our approach in the Chi-
nese grammatical error correction task, we conduct a set of
experiments on the dataset of NLPCC 2018 Task 2 (Zhao
et al. 2018)3. The statistics of the dataset are given by Ta-
ble 1. This shared task provides the first and latest bench-
mark dataset for Chinese GEC. The corpus of this task is col-
lected from the Lang-84 website, a language learning plat-
form where native speakers correct what you write. The es-
says in the corpus are written by CSL (Chinese as a Sec-
ond Language) students and corrected by native speakers in
China. It should be noted that our model does not use any
additional natural language resources.

As an incorrect sentence may have several corrected ver-
sions in this dataset, we combine the source sentence with

2https://github.com/mozillazg/python-pinyin
3http://tcci.ccf.org.cn/conference/2018/taskdata.php
4https://lang-8.com

each corrected sentence one by one to build the parallel cor-
pus. In this way, we get 1.2 million sentence pairs in all.
Since there is no official development data, we randomly
sample 5,000 sentence pairs as our development set from
the training set following prior work (Ren, Yang, and Xun
2018). The official test set contains 2,000 sentences ex-
tracted from PKU Chinese Learner Corpus, which is com-
posed of essays written by foreign college students. Two
groups of annotations are provided to give out the gold edits
of grammatical errors in these sentences.

We use the official MaxMatch (M2) (Dahlmeier and Ng
2012) scorer to evaluate our GEC models and compare them
to previous systems in this shared task. Given a source sen-
tence and a system hypothesis, M2 scorer computes all the
possible sequences of phrase-level edits between them, and
finds the edit sequence that achieves the highest overlap with
the gold standard annotation. Then the optimal sequence
is used to compute the value of precision, recall and F0.5.
The official evaluation metric is the F0.5 value given by M2

scorer with all groups of annotations taken into considera-
tion.

Model and Training Details

We implement our Chinese grammatical error correction
model using OpenNMT-py5, a neural machine translation
toolkit developed in PyTorch6. The details for the training
process and our GEC model are as follows: the architecture
of the seq2seq model is the base model of Transformer. The
encoder is a stack of 6 identical layers with two sub-layers,
which are a multi-head self-attention layer and a position-
wise fully connected feed-forward network. The decoder is
also a stack of 6 identical layers. However, in the middle of
each layer there is a third sub-layer which performs multi-
head attention over the output of the encoder stack. The
number of heads for Transformer self-attention is set to 8.
The size of hidden Transformer feed-forward is 2,048. Both
the dimension of word vectors on the source side and the tar-
get side are 512. The parameters of our model are initialized
with Xavier’s method (Glorot and Bengio 2010). Position
encoding is applied as suggested. In the Chinese grammati-
cal error correction task, we use the tokenization script from
the BERT project7 to tokenize the Chinese texts and keep the
non-Chinese words unchanged. We apply dropout (Srivas-
tava et al. 2014) operations on the encoders and decoders,
with a probability of 0.1. Our model adopts the Adam op-
timizer with an initial learning rate of 2, and a beta value
of (0.9, 0.998). We use Noam’s learning rate decay scheme
(Vaswani et al. 2017), warmup steps = 8,000. We add la-
bel smoothing with a epsilon value of 0.1. The batch size is
set to 4,096 tokens. The beam size is 12 during the time of
model inference. We adopt the early-stopping technique and
choose the best models according to the validation perplex-
ity on the development set.

5https://github.com/OpenNMT/OpenNMT-py
6https://pytorch.org
7https://github.com/google-research/bert
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System Model type Resources P R F0.5

YouDao (Fu, Huang, and Duan 2018) Ensemble LM, SCS 35.24 18.64 29.91
AliGM (Zhou et al. 2018) Ensemble LM, Emb. 41.00 13.75 29.36
BLCU (Ren, Yang, and Xun 2018) Single Emb. 41.73 13.08 29.02
BLCU (ensemble) (Ren, Yang, and Xun 2018) Ensemble Emb. 47.63 12.56 30.57

Char-Transformer Single - 36.57 14.27 27.86
Dropout-Src (Junczys-Dowmunt et al. 2018) Single - 39.08 18.80 32.15

Ours Single - 44.36 22.18 36.97

Table 2: Performance of systems on the NLPCC-2018 dataset. Ours refers to applying dynamic masking method with the mixed
substitution noising scheme based on Char-Transformer. In the Resources column, LM denotes language model, SCS denotes
similar character set, Emb. denotes pre-trained word embeddings.

Baselines

We compare our models to all previous systems for Chinese
grammatical error correction in the NLPCC 2018 Task 2.

The best performing systems evaluated on NLPCC-2018
dataset are listed as follows:

• YouDao (Fu, Huang, and Duan 2018): The Chinese GEC
system developed by NetEase Youdao Co., LTD. Five dif-
ferent hybrid models correct sentences stage by stage in-
dependently. A language model is used to re-rank the out-
puts for ensembling.

• AliGM (Zhou et al. 2018): The Chinese GEC system
developed by Alibaba, which combines NMT-based ap-
proaches, SMT-based approaches and a rule-based ap-
proach together with various modules.

• BLCU and BLCU (ensemble) (Ren, Yang, and Xun
2018): The Chinese GEC systems developed by BLCU.
The former system is based on a multi-layer convolutional
seq2seq model, and the latter is an ensemble of four single
models with different initialization.

In order to verify the effectiveness of our dynamic mask-
ing method on Chinese neural grammatical errors correction
models, we implement a character-based Transformer model
(Char-Transformer) for Chinese GEC as our baseline.

Based on the Char-Transformer, we also re-implement
the source-word dropout method proposed by Junczys-
Dowmunt et al. (2018). Following their work, we set the full
embedding vector for a source word to 0 with a probability
psrc, all other embedding values are scaled with 1/(1−psrc).
They presented that dropout over source words can bring
gains for neural grammatical error correction. By the intro-
duction of corruption on the source side, the model is taught
to reduce trust into the input and to apply corrections more
aggressively.

Results

We compare our best model Char-Transformer with dy-
namic masking using the mixed substitution scheme to the
state-of-the-art systems evaluated on NLPCC-2018 dataset.
Table 2 demonstrates the evaluation results of our approach
and prior systems on this Chinese GEC benchmark dataset
using the official scorer.

Masking strategy P R F0.5

Static 43.73 21.71 36.35
Dynamic 44.36 22.18 36.97

Table 3: Comparison between static and dynamic MaskGEC
models on the NLPCC-2018 dataset.

The Char-Transformer model gets an F0.5 score of 27.86.
There is a fairly big gap between this baseline model and the
leading Chinese GEC systems of the shared task. However,
after applying dynamic masking with the mixed substitution
scheme, our model reaches 36.97 F0.5 score. The result sig-
nificantly outperforms the YouDao system (F0.5 = 29.91),
which ranks first in the contest, by a large margin of 7.06
F0.5. On the basis of BLCU system, Ren, Yang, and Xun
build an ensemble model and achieve an F0.5 score of 30.57,
which is the best published result in NLPCC 2018 Task 2 so
far. Despite this, the proposed model for Chinese GEC yields
a higher F0.5 than this current best one, which establishes a
new state-of-the-art result on the NLPCC-2018 dataset. It
is noteworthy that all the top three models in NLPCC 2018
Task 2 are ensemble models, but our single model still sur-
passes them. Our proposed approach is totally orthogonal
to these ensembling methods, which means that our GEC
model may achieve better results through these methods.

The approach of Junczys-Dowmunt et al. (2018) reaches
32.15 F0.5, an improvement of 4.29 F0.5 over the Char-
Transformer model. Despite this, our dynamic masking
model still beats it by a significant margin of 4.82 F0.5. The
reason is that our proposed dynamic masking method yields
more diverse noisy sentence pairs, which may benefit the
generalization ability of our GEC model.

Effect of Dynamic Masking

Different timings to perform masking operations lead to two
kinds of noising strategies.

The static masking strategy performs masking once dur-
ing data preprocessing, resulting in a single static mask.
Training data can be duplicated k times to avoid using the
same mask for each training instance in every epoch. There-
fore, each source sentence is masked in k different ways
over the dozens of epochs of training. Each training instance
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Model Precision Recall F0.5

(official)
F1

(unofficial)

Char-Transformer 36.57 14.27 27.86 20.53
+ padding 41.59 18.21 33.09 25.33
+ random 37.87 20.47 32.37 26.58
+ word frequency 32.25 23.80 30.11 27.39
+ homophone 34.69 18.95 29.75 24.51
+ mixed 44.36 22.18 36.97 29.57

Table 4: Performance of our NMT-based models for Chinese grammatical error correction with different noise training schemes
on the NLPCC-2018 dataset.

is seen with the same mask several times during the whole
training procedure.

By contrast, the dynamic masking strategy generates a
new random masking pattern every time we feed a source
sentence into the encoder. As a result, each training instance
may be seen with a different mask in different epochs. It’s
vital when we need to pretrain models for more steps or with
larger datasets.

Table 3 shows that our MaskGEC model with dynamic
masking performs better than the static one in the Chinese
grammatical error correction task.

Effect of Noising Schemes

We also investigate the influence of various noising schemes.
The results are shown in Table 4.

It can be observed that all the proposed noising schemes
improve the performance over the normal NMT-based Chi-
nese GEC model via comparing by rows in Table 4. Take
the simplest padding substitution noising scheme as an ex-
ample. Our model based on the padding scheme gets a preci-
sion rate of 41.59 and a recall rate of 18.21, which means an
increment of 5.02 precision and 3.94 recall over the baseline
model. The result shows that our dynamic masking method
allows the neural GEC model to detect more errors as well
as correct errors better than the original one.

One reason for the improvement on the precision metric
is that the substitution of words reduces the GEC model’s
dependency on wrong patterns like specific words or col-
locations. As a result, the neural GEC model is forced to
capture the context information of the replaced or missing
words through the noise training process, which may con-
tribute to the correction of grammatical errors.

On the other hand, the introduction of random noises
raises the number of training samples exponentially in
the training procedure, and avoids the over-fitting problem
caused by meaningless repetition of training instances. Con-
sequently, our dynamic masking approach also gets higher
recall rates in Chinese GEC task, since extremely diverse in-
correct sentences are generated to allow the model to detect
errors more aggressively.

The system performance among our neural GEC models
applying the four single noising methods is quite different.
The padding substitution scheme achieves the highest preci-
sion rate of 41.59, while its recall rate (18.21) is lowest. By
contrast, the word frequency substitution scheme gets the

Figure 4: The effect of δ on dynamic masking.

lowest precision rate of 32.25, but the highest recall rate of
23.80. It seems that sampling words as replacements from
the vocabulary according to the word frequency does help
the GEC model pick out more sentence errors. However, if
too many high frequency words appear in a sentence, the
GEC model may be confused, resulting in a decrease of pre-
cision. The homophone substitution noising scheme which
is specially designed for the Chinese GEC task obtains a
relatively unsatisfactory score. Homophone noising gener-
ates more realistic wrong sentences, as a large proportion of
grammatical errors in Chinese are related to the homophony
phenomenon. It’s harder for the model to decide whether a
word should be corrected. Besides, due to a limitation of
word choices, homophone noising can not generate as many
noisy sentence pairs as the random noising and word fre-
quency noising. As a consequence, the recall rate of homo-
phone noising model falls behind. Lastly, the random sub-
stitution noising scheme keeps a balance between the preci-
sion (37.87) and the recall (20.47), and it obtains the second
highest F0.5 score as a result.

After mixing the five noising schemes (including no sub-
stitution) above, our model achieves the best result of 36.97
F0.5 score. This mixed noising method increases the preci-
sion further and maintains a relatively high recall.

Effect of Threshold δ

We explore the effect of hyper-parameter δ in Equation 6
on dynamic masking. The result is illustrated in Figure 4.
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Model P R F0.5

Subword-Transformer 34.06 12.05 24.94
Char-Transformer 36.57 14.27 27.86

Table 5: Performance of subword-based and character-based
Chinese GEC models on the NLPCC-2018 dataset. The
seq2seq architecture is Transformer.

δ ranges from 0 to 1. From Figure 4, we can see that the
model achieves the best performance when δ is 0.3. When δ
decreases, the diversity of generated noisy source sentences
is drastically reduced, making the dynamic masking gradu-
ally degrade to normal seq2seq learning. When δ increases,
the exponential growth of noises will harm the training pro-
cedure. Therefore, the threshold of substitution probability
should be carefully selected to strike a balance between gen-
eralization ability and robustness.

Effect of Word Segmentation

Because of the characteristics of Chinese, our grammatical
error correction model adopts the character-based NMT ap-
proach. We also implement a subword-based Transformer
model (Subword-Transformer) for comparison.

In the Subword-Transformer model, BPE (byte pair en-
coding) (Sennrich, Haddow, and Birch 2016) algorithm is
applied to segment the rare words into subword units. Ac-
cording to the performance on the development set, the
number of BPE operations is set to 8,000. The result
is demonstrated in Table 5. We can find that the Char-
Transformer model gets an F0.5 score of 27.86, outperform-
ing the Subword-Transformer model (24.94 F0.5) by 2.92
F0.5 score. The reason may be that, by regarding Chinese
characters as segmentation units, the vocabulary can be re-
duced to a suitable size for GEC task. Besides, segmentation
errors may lead to a decline of model performance.

Related Work

Early grammatical error correction systems use type-specific
classifiers (De Felice and Pulman 2008; Rozovskaya et
al. 2014). The emergence of statistical machine translation
(SMT) approaches promotes the development of grammat-
ical error correction systems (Behera and Bhattacharyya
2013; Junczys-Dowmunt and Grundkiewicz 2016). Besides,
SMT-based systems can be easily joined with manually de-
signed rules (Felice et al. 2014), classifiers (Rozovskaya and
Roth 2016) and neural models (Chollampatt, Hoang, and Ng
2016; Chollampatt, Taghipour, and Ng 2016), which helps to
improve their performance in GEC tasks.

Recently, many neural machine translation (NMT) ap-
proaches have been proposed for GEC tasks. Typical neu-
ral GEC approaches use RNN-based seq2seq models (Xie et
al. 2016; Yuan and Briscoe 2016; Ji et al. 2017). However,
CNN-based NMT models also demonstrate impressive re-
sults in grammatical error correction tasks (Schmaltz et al.
2017; Chollampatt and Ng 2018). As a powerful encoder-
decoder architecture, Transformer is also introduced into

the NMT approaches of GEC task in recent times (Junczys-
Dowmunt et al. 2018).

In order to address the problem of data sparsity, several
methods are proposed for synthesizing parallel corpus in the
tasks of grammatical error correction (Felice and Yuan 2014;
Xie et al. 2016). This process is also known as error gener-
ation, which creates artificial data as a method of data aug-
mentation. Ge, Wei, and Zhou (2018) propose a novel flu-
ency boost learning and inference mechanism, allowing the
model to generate fluency-boost sentence pairs. Xie et al.
(2018) propose a noising and denoising scheme to synthe-
size “realistic” static parallel data for grammatical error cor-
rection by back-translation. Experiments show that the arti-
ficial data synthesized by their model have the same effect
as the additional non-synthesized data. The main difference
between our dynamic masking method and the approaches
above is that our method serves as a kind of regularization
to some extend while training the seq2seq model. We do not
synthesize new training data explicitly. Instead, our dynamic
masking approach is more like a token-level dropout.

Until the release of NLPCC-2018 dataset, Chinese Gram-
matical Error Diagnosis (CGED) (Lee, Yu, and Chang 2015;
Lee et al. 2016; Fung et al. 2017; Rao et al. 2018) has been a
focus in the field of automatic CSL error correction. CGED
can be treated as a sequence labeling problem (Zheng et al.
2016; Yang et al. 2017) and solved by using the LSTM-CRF
architecture, which combines the traditional method of con-
ditional random fields (CRF) and long short-term memory
(LSTM) network to predict the sequence of output labels.

Conclusion

In this paper, we present that dynamic masking methods
can promote the normal neural machine translation (NMT)
approaches for Chinese grammatical correction (GEC). To
address the drawbacks of neural approaches for GEC, we
propose five noising schemes to be applied in the train-
ing procedure on the source side of the seq2seq model.
Our proposed noising schemes are able to generate ex-
tremely diverse error-corrected sentence pairs, which im-
proves the performance over normal seq2seq GEC mod-
els significantly. Our simple yet effective dynamic mask-
ing method of NMT-based models enables our Chinese GEC
systems to exceed all published results on the NLPCC-2018
benchmark datasets and establish a new state-of-the-art for
the challenging task.
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