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Abstract

Attributed graphs, where nodes are associated with a rich
set of attributes, have been widely used in various domains.
Among all the nodes, those with patterns that deviate signifi-
cantly from others are of particular interest. There are mainly
two challenges for anomaly detection. For one thing, we of-
ten encounter large graphs with lots of nodes and attributes
in the real-life scenario, which requires a scalable algorithm.
For another, there are anomalies w.r.t. both the structure and
attribute in a mixed manner. The algorithm should identify
all of them simultaneously. State-of-art algorithms often fail
in some respects. In this paper, we propose the scalable al-
gorithm called MixedAD. Theoretical analysis is provided
to prove its superiority. Extensive experiments are also con-
ducted on both synthetic and real-life datasets. Specifically,
the results show that MixedAD often achieves the F1 scores
greater than those of others by at least 25% and runs at least
10 times faster than the others.

Introduction

Networks are ubiquitous nowadays; examples include so-
cial networks, where links represent the friendship between
users, the web where hyperlinks connect different hypertext
documents, or paper citation networks where some papers
are cited by the others, and so on. They are often modeled
by attributed graphs where nodes (i.e., the entities of the net-
work) are associated with a rich set of attributes, such as the
profiles of the users in social networks. In contrast to the ma-
jority of nodes on the graph, those with patterns or behaviors
that deviate significantly from others are of great interest, as
detecting such anomalies has a wide range of applications,
such as finding the spammers in social networks (Yang et
al. 2012; Castillo et al. 2007), detecting the cyber-attacks in
computer networks (Ding et al. 2012), and spotting fraud-
ulent activities in financial trading networks (Chau, Pandit,
and Faloutsos 2006).

Most common networks naturally have community struc-
ture; the nodes of the network can be easily divided into
communities such that those from the same community are
densely connected with each other. We claim that there are
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Figure 1: Three types of anomalies.

three types of anomalies defined with respect to the commu-
nities. For example, a spammer may connect with as many
communities as possible for advertising. As it clearly does
not belong to any community, we call such anomalies global
anomalies (GA). A gene, though interacting with others in
its community, may have already mutated. After comparing
the patterns of their principal attribute values (i.e., those pos-
sessed by most nodes in the community) with those of others
in the community, we can detect such local attribute anoma-
lies (LAA). The topic of a paper fits well in an area but it
is cited by many papers from various areas due to its great
influence. Such nodes are named local structural anomalies
(LSA). We use a toy example to illustrate them on the graph.

Example 1. Imagine a social network with communities
representing circles of friends, as showed in Figure 1. There
are two communities {a, b, c, d, e} and {f, h, i, j} in this at-
tributed graph. The set of attributes is {gender, degree, na-
tionality, language skill, hobby}. Node g is a GA because it
does not belong to any community. Node d has many friends
in the first community, whereas it shows abnormal attribute
values “London” and “Basketball”, in contrast to the prin-
cipal values “Paris” and “Reading” possessed by the oth-
ers, so it is an LAA. For node f , though it is a “PhD” and
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Table 1: Comparison of related work

Unknown |C| Principal Values LSA LAA GA Scalability
CODA (Gao et al. 2010) �

GOutRank (Müller et al. 2013) � � �
FocusCo (Perozzi et al. 2014) � � � �

Radar (Li et al. 2017) � � �
ANOMALOUS (Peng et al. 2018) � � � �

PAICAN (Bojchevski and Günnemann 2018) � � � �
MixedAD [this paper] � � � � � �

from “London”, it only has one friend in the second commu-
nity, hence an LSA.

Lots of efforts have been made on anomaly detection
in attributed graphs (Gao et al. 2010; Müller et al. 2013;
Perozzi et al. 2014; Li et al. 2017; Peng et al. 2018;
Bojchevski and Günnemann 2018) (which will be reviewed
later). The main challenge, however, is not just to use the
elaborate approaches to detect them, but in a scalable way.
For one thing, any single pass on the large-scale networks
(with millions of nodes (Catanese et al. 2011; Ley 2002))
would incur high computational costs, which requires the al-
gorithms with time complexity basically linear in the size of
the network (i.e., the number of edges). For another, high-
dimensional attributes often hinder the recognition of pat-
terns and hence the anomaly detection, because lots of at-
tributes are irrelevant ones (e.g., the gender).

Therefore, in this paper, we propose a scalable algorithm
called MixedAD, which jointly learns the community struc-
ture and mines the principal attribute values in a single pass.
Since we need at least Ω(mD) (where m is the number of
edges and D is the number of attributes) time to inspect the
whole network, we prove that our proposed approach indeed
takes O(mD).

Related Work

Anomaly detection in attributed graphs receives much atten-
tion (Gao et al. 2010; Müller et al. 2013; Perozzi et al. 2014;
Li et al. 2017; Peng et al. 2018; Bojchevski and Günnemann
2018) and is mostly related to our work. The compari-
son is made in Table 1, where |C| represents the number
of communities. Some of them only focus on the attribute
anomaly w.r.t. the community but fail to spot the structural
anomaly (Gao et al. 2010; Müller et al. 2013; Perozzi et al.
2014). For recent works (Li et al. 2017; Peng et al. 2018;
Bojchevski and Günnemann 2018), they do notice multiple
types of anomalies, but their models usually incur high com-
putational costs in the learning processes. (Li et al. 2017;
Peng et al. 2018) all use a linear model to analyze the resid-
ual (which can be seen as the degree of difference to the
model) of the attribute values. As the operations on matri-
ces need at least Ω(n2D) time, the methods are impractical
for large data. (Bojchevski and Günnemann 2018) adopts a
probabilistic generative model to jointly perform clustering
and anomaly detection. The learning process requires sev-
eral runs to converge, which is shown to be efficient only
on data of moderate size (demonstrated in experiments). Be-

sides, it assumes that the model knows the number of com-
munities |C| in prior. We believe we are the first to detect all
three types of anomalies in a scalable way.

Anomaly detection in plain graphs (i.e., without the at-
tributes) is also widely studied. See (Akoglu, Tong, and
Koutra 2015) for a survey. Some extract graph-centric fea-
tures to find the normal patterns (Akoglu, McGlohon, and
Faloutsos 2010; Henderson et al. 2011). Others propose
the proximity-based methods (Moonesinghe and Tan 2008;
Sun et al. 2005). There are also methods which detect
anomalies when finding the communities (Chakrabarti 2004;
Xu et al. 2007; Shiokawa, Fujiwara, and Onizuka 2015;
Tong and Lin 2011; Hu et al. 2016).

Apart from anomaly detection, there is also a consider-
able amount of work for graph mining (e.g., the cluster-
ing) in attributed graphs (Akoglu et al. 2012; Tsourakakis,
Pachocki, and Mitzenmacher 2017; Yang, McAuley, and
Leskovec 2013; Xu et al. 2012; Günnemann et al. 2013;
Bojchevski, Matkovic, and Günnemann 2017; Perozzi et al.
2014; Bojchevski and Günnemann 2018; Huang et al. 2011;
Silva, Jr., and Zaki 2012). Among them, (Günnemann et
al. 2013; Bojchevski, Matkovic, and Günnemann 2017;
Perozzi et al. 2014; Bojchevski and Günnemann 2018;
Huang et al. 2011) even consider the corruption of data;
some anomalies may hinder the clustering and the algo-
rithms must be robust.

Problem Statement

In this section, we introduce several basic concepts and then
define the problem of anomaly detection.

Definition 1 (Attributes). There is one set of D categorical
attributes (features) F = {f1, f2, . . . , fD}. Each f ∈ F has
a domain dom(f) = {a1, a2, . . .}, which is a finite set of
possible values for the attribute f . Assume without loss of
generality dom(fi) ∩ dom(fj) = ∅.
Definition 2 (Attributed Graph). The attributed graph G =
(V,E, F ) consists of the node set V and the edge set E with
their cardinalities n and m, respectively. Each node v ∈ V
is described by the set of attributes (features) F . If we use
gf (v) to denote v’s attribute value w.r.t. attribute f , v has
attribute values {gf1(v), . . . , gfD (v)}.

The node set V can be partitioned into communities C =
{C1, C2 . . . , } and global anomalies (GA), the definition of
which is deferred.

Definition 3 (Communities). Each community Ci consists
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of nodes densely connected with each other, and these nodes
also have some common attribute values.

We assume that each node belongs to only one community
at most. This assumption is reasonable for real applications
with some abnormal nodes. And how to decide whether the
community is densely connected or not would be defined
later. For convenience, if node v belongs to a community
Ci, we give it a label L(v) = i.

On the other hand, because of the consistency among
some attribute values, these nodes belong to the same com-
munity. We call these values the principal attribute values.

Definition 4 (Frequency). For the community Ci and some
attribute f ∈ F , the frequency for each value a ∈ dom(f)
is defined as

pCi(a) =
|{v ∈ Ci | gf (v) = a}|

|Ci| . (1)

Definition 5 (Mode). The mode (w.r.t. Ci and f ) is defined
as the value with the largest frequency i.e., argmaxa pCi(a).

Definition 6 (Principal Attribute Values). For each commu-
nity Ci, we use Pi to denote its corresponding set of princi-
pal attribute values. And a ∈ Pi if and only if:

(1) a is the mode for some f
(2) its frequency pCi

(a) ≥ θ, where θ ∈ (0.5, 1] is a high
threshold, indicating that the principal value should appear
in almost every node in Ci.

It is easily seen that |Pi| ≤ D, and there may be no prin-
cipal value for some attributes.

Example 2. Consider again the nodes in Figure 1. Most
of nodes in the left community have the common attribute
values “Paris” and “Reading”, and the set of princi-
pal attribute values for the left community C1 is P1 =
{Paris,Reading}. Similarly, P2 = {PhD,London}.

Most nodes are normal ones; that is, each belongs to one
of the communities and possesses the corresponding princi-
pal attribute values. We focus on the rest of few nodes which
behave abnormally in contrast to normal nodes. There are
three types of anomalies in total: global anomalies (GA), lo-
cally structural anomalies (LSA), and local attribute anoma-
lies (LAA). Here the words “local” and “global” indicate
whether the scope is in the community or the whole graph.

Definition 7 (GA). GA nodes do not belong to any commu-
nity and deviate from most nodes having communities.

Definition 8 (LSA). LSA nodes are sparsely connected to
community Ci but possess its principal attribute values Pi.

Definition 9 (LAA). LAA nodes belong to some community
structurally Ci but disagree with the corresponding princi-
pal attribute values Pi.

Now we can state our problem of anomaly detection in
attributed graphs. Given the graph G, we try to detect three
types of anomalous nodes GA, LSA, and LAA, respectively,
while extracting information about the communities C and
their corresponding sets Pi.

Let nei(v) = {u|(u, v) ∈ E} be the neighbors of v. For
any S ⊆ V , we use E(S) to denote the set of edges that have

Algorithm 1: MixedAD
input : Attributed graph G
output: GA, LSA, LAA

1 Unvisited← V,Groups← ∅;
2 while (Corei ← InitiatingCore(G,Unvisited))
	= Null do

3 Groupi, PGi ← ExpandingCore(G,Corei) ;
4 Unvisited← Unvisited\Groupi;
5 Groups← Groups ∪ {Groupi};
6 C,P ←MergingGroups(Groups, PGs);
7 C ← PropagatingLabels(C);
8 return AnomalyDetection(C,P);

both endpoints in S, and δ(S) to denote the set of edges that
have exactly one endpoint in S. Abusing notations slightly,
we may use δ(v) to denote the set of edges incident to v.

The Proposed Methodology

Overview

We first provide an overview of MixedAD, summarized in
Algorithm 1. As all types of anomalies are defined w.r.t.
communities, we need to identify them. MixedAD first finds
groups, defined as the set of nodes which belong to the same
community, and then merge them into communities (Line
6). Note that two groups may be from the same community.
MixedAD finds such group by initiating a core (i.e., a small
group with high confidence that the nodes are from the same
community) from unvisited nodes (Line 2), expanding it by
iteratively adding the neighbor nodes, and stopping until we
have low confidence in them (Line 3). During the expansion,
we maintain the set of principal attribute values for the cur-
rent group PGi and add a new node while considering both
the attribute and structure. After merging the groups (Line
6), there may still be normal nodes not assigned to any com-
munity. Notice that for any node v, if most of its neighbors
belong to some community Ci, v is also in Ci. So we prop-
agate the label of each assigned node (Line 7). At last, when
we obtain the communities, the anomalies can be detected
by referring to their definitions (Line 8). The reason why we
first find groups instead of communities is we want to be
more cautious about the principal attribute values, and com-
munities can be found in the later phase where we can utilize
these principal attribute values.

Initiating Core

Since the size of a community can be small, we focus on
the cores with just three nodes, while, more importantly, we
want to select such three nodes that they belong to the same
community with high probability. The basic idea is to first
select a node (called the “pivot”) with most of its neighbors
from the same community, and then its two neighbors.

We prefer the pivot u with most of its neighbor nodes in
nei(u) which own the same L(u). However, the local infor-
mation does not tell the label L(v) for each v ∈ nei(u).
A simple idea is to calculate the similarity score (by us-
ing some well-known functions) between the attribute vec-
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Algorithm 2: Initiating Core
input : Attributed graph G, Unvisited nodes

Unvisited
output: Core

1 Core← ∅;
2 while Core = ∅ do
3 Try to find from the Unvisited the pivot node u

with the maximum uniformity;
4 if there are two edges (u, v), (u,w) such that v and

w are in Unvisited then
5 choose two such edges with the maximum

similarity score between EP(u,v) and
EP(u,w);

6 Core← {u, v, w};
7 else
8 u← Unvisited\{u};
9 Core← ∅;

10 return Core

tors (gf1(u), . . . , gfD (u)) and (gf1(v), . . . , gfD (v)) for each
v ∈ nei(u). If two nodes bear a high similarity, it is likely
they are from the same community. We can then check if
most of the pivot u’s neighbors have a high similarity with
u. Unfortunately, we argue that the similarity score can be
high if u and v share many non-principal attribute values,
and they can belong to different communities. The consis-
tency in principal attribute values actually matters. But these
values are unknown beforehand. We design the technique of
Edge Pattern (EP) to tackle this issue.
Definition 10 (Edge Pattern). Given an edge (u, v) ∈ E,
the edge pattern

EP(u,v) = {gfi(u) | gfi(u) = gfi(v), i = 1, . . . D}, (2)

which includes all the common values between u and v.
Claim 1. For any community Ci and any two edges e, e′
whose endpoints are normal nodes in Ci, EPe is the same
as EPe′ with high probability.

It can be easily proved by the definition of principal val-
ues. Based on the claim above, we only need to choose the
pivot with its incident edges that follow a uniform edge pat-
tern, since the endpoints are likely normal nodes from the
same community. To reflect the degree of uniformity that
EPe (for e ∈ δ(u)) show, we use the negative entropy. For-
mally, we define the uniformity of each node.
Definition 11 (Uniformity). Given a node v, let freq(EPe)
denote the frequency of some edge pattern w.r.t., all the
edges incident to u.

Uni(u) =
∑
EPe

freq(EPe) log(freq(EPe)). (3)

Note that if two edge patterns are similar (measured by
Jaccard similarity index for example), we regard them as one
entity when we count the frequencies.

The pivot with the maximum uniformity owns two neigh-
bors from the same community with high probability. After

Algorithm 3: Expanding Core
input : Core
output: Group, PG

1 Group← Core,Nei← ∅;
2 foreach v ∈ Core do
3 Nei← Nei ∪ nei(v);
4 while true do
5 remove from Nei the nodes with their ANPG(v)

greater than a threshold α w.r.t. statistics;
6 choose the node v which decreases the conductance

of Group most;
7 if Cond(Group ∪ {v}) ≥ Cond(Group) then
8 break;
9 else

10 Group← Group ∪ {v};
11 Update the statistics;

12 return Group, PG

finding the pivot, we simply select two incident edges with
their edge patterns similar to each other and add the two end-
points to the core. The similarity can be measured by the
Jaccard index. Algorithm 2 illustrates the main procedure.

Expanding Core

After initializing the core (i.e., a small group with high confi-
dence), we expand it by repeatedly adding the best neighbor
node to the group, referred to as the Group, while main-
taining statistics about the possible principal attribute val-
ues. To define what is the best node, we consider both the
attribute and the structure. We filter all those neighbor nodes
with anomalous attribute values and choose from the rest the
node which best improves the stability of the current group
structure. We next present the details of the two metrics.

The degree of attribute normality of some node v is mea-
sured by the principal values. If the node v has all of them,
it is normal w.r.t. the attribute. However, as we only have the
Group during the expansion, principal values are uncertain.
We adopt the technique of confidence bound to get the set of
principal values with high probability 1− γ.

Specifically, we maintain the statistics for each value a

N̂f (a) =
|{v ∈ Group | gf (v) = a}|

|Group| , (4)

which is the frequency of the value a w.r.t. the current
Group. And if the frequency N̂f (a) is smaller than the
lower confidence bound

θ −
√
ln(1/γ)/|Group|, (5)

the value a cannot be a principal value (the proof of which
is deferred). Before |Group| increases to �ln(1/γ)/(θ −
1/2)2�, for each attribute f , we choose as the principal
value the one a ∈ dom(f) such that N̂f (a) is the largest
and greater than the lower bound. When |Group| equals
�ln(1/γ)/(θ − 1/2)2�, we claim that there is no principal
value for the attribute f if there exist two values with their
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frequencies N̂f (a) greater than the lower bound. If there is
just one such value, we regard it as the principal one.

Definition 12 (Attribute Normality). Given some P , the at-
tribute normality of v

ANP (v) =

D∑
i=1

1P (gfi(v))/|P |, (6)

where 1P (a) is 1 if a ∈ P and 0 otherwise.

And the node v is an attribute anomaly if its ANP (v) is
lower than a high threshold α ∈ [0, 1]. We simply ignore
these nodes. If the attribute values of v are normal, we will
choose the node which improves the stability of structure
most. We use the graph conductance, which is a common
measure for assessing the quality of a clustering (Kannan,
Vempala, and Vetta 2004).

Definition 13 (Conductance). Given a set of nodes S on the
graph, its conductance

cond(S) = |δ(S)|/(|E(S)|+ |δ(S)|). (7)

The lower conductance means that there are more intra-
edges and fewer inter-edges, which coincides with the defi-
nition of a densely connected community. Hence, the neigh-
bor node which decreases the conductance most will be
likely from the same community. We add such node un-
til no node can bring about a decrease. It is observed that
if we only use the conductance but do not consider the at-
tribute, the larger group tends to absorb any small groups.
We may get an intuition for such phenomenon if we notice
cond(V ) = 0, which is the minimum one can achieve.

It is worth noting that the weighted conductance (which
uses the sum of weights of edges) is inapplicable here. The
reason is the same as we explain above: the weights can be
high if the endpoints from different communities share many
non-principal attribute values. The main procedure is illus-
trated in Algorithm 3.

Merging Groups

As there may be groups from the same community, we
should merge them into a single one. This can be easily done
by referring to the set of principal values PGi we maintain
for each Groupi, since their PGi should be similar.

Propagating Labels

A useful insight about finding the right label of each node is
that for node v, if most of its neighbors own the same label
l, the label L(v) should also be l. Now that we obtain the la-
bels of most nodes through the previous procedures, we can
propagate these labels to find the labels of the rest of unas-
signed nodes. Note that after the propagation, the remaining
nodes are structural anomalies (i.e., either GA or LSA), be-
cause their neighbors belong to diverse communities.

Detecting Anomalies

Finally, we can detect the anomalies based on the informa-
tion about the community and the principal attribute values.
If the node has no label, it is either a GA node or an LSA

node. However, the LSA nodes are different from the GA
nodes for LSA nodes possess the set of principal values of
some community. Therefore, we consider the attribute nor-
mality ANP (v) (Definition 12) for any P ∈ P . It is a GA
node if it does not possess any set of principal values P or
an LSA node if it is normal w.r.t. some P . If it belongs to
some Ci but has anomalous attribute values, it is an LAA.

Theoretical Analysis

Confidence Bound

We justify the confidence bound in equ. 5, which basically
ensures that the set of principal values are found with high
probability during the expansion. For ease of notation, let
the group be S = {v1, v2, . . . , vk}, the nodes of which are
all from some community C. For any value a, let Xi be 1
if vi possesses it w.r.t. the corresponding attribute and 0 oth-
erwise. Let X =

∑k
i=1 Xi, and X/k is the frequency w.r.t.

the group S. Recall that the frequency w.r.t. the community
is pC(a) =

|{v∈C|gf (v)=a}|
|C| .

We first derive a lemma, stating that the frequency w.r.t.
the group concentrates on its expectation with high proba-
bility.

Lemma 1. For any value a,

Pr(|X/k −�[X/k]| ≥ ε) ≤ 2e−ε2k.

Proof. The proof mainly uses the Azuma-Hoeffding in-
equality. Specifically, the sequence Zi = �[X|X1, . . . , Xi]
forms a Doob martingale, where Z0 = �[X] and Zk = X .
We claim that X satisfies the Lipschitz condition with bound
1. Formally, for any two sequences {X ′

1, ..., X
′
i, ..., X

′
k}

and {X ′
1, ..., X

′′
i , ..., X

′
k} different in only one position, X’s

value changes at most 1. Using the Azuma-Hoeffding in-
equality, we have Pr(|X −�[X]| ≥ ε) ≤ 2e−ε2/k. Replac-
ing ε by kε′, we obtain the inequality above.

Theorem 1. For some community C and any value a, if
X/k < θ −√

ln(1/γ)/k, a is not a principal value with
probability at least 1− γ.

Proof. Now we only need to derive the expectation value.
For ease of notations, we denote the number of nodes who
possess the value a by N = |{v ∈ C | gf (v) = a}|. We first
consider the case if N ≥ k and |C| −N ≥ k.

E[X/k] =

∑k
i=1 i

(
N
i

)(|C|−N
k−i

)
k
(|C|

k

)

=

∑k
i=1 N

(
N−1
i−1

)(|C|−N
k−i

)
k
(|C|

k

)

=
N
(|C|−1

k−1

)
k
(|C|

k

) =
N

|C| .

Using Lemma 1 and replacing ε by
√
ln(1/γ)/k, we

know that the difference between the frequency w.r.t. the
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Figure 2: Results on varying n and ratio.

group and that w.r.t. the community N/|C| − X/k ≤√
ln(1/γ)/k with probability at least 1− γ. And we have

pC(a) = N/|C| ≤ X/k +
√

ln(1/γ)/k < θ.

If k > N and |C| − N ≥ k, the value a cannot be a prin-
cipal one because θ > 1/2 > N/|C| (i.e., the nodes who
possess it are not the majority). If N ≥ k and k > |C| −N ,
the expectation �[X/k] ≥ N/|C|. And pC(a) = N/|C| ≤
�[X/k] ≤ X/k +

√
ln(1/γ)/k ≤ θ.

Theorem 2. When k ≥ �ln(1/γ)/(θ − 1/2)2�, if there are
more than two values such that X/k ≥ θ −√

ln(1/γ)/k,
the principal attribute value does not exist for attribute f .

Proof. We have
√
ln(1/γ)/k ≤ θ − 1/2. The proof mainly

uses the contradiction. Suppose the principal value exists.
Then for the rest of values pC(a) = N/|C| ≤ 1 − θ.
However, there are two values such that their pC(a) =

N/|C| ≥ X/k−√ln(1/γ)/k ≥ θ−2√ln(1/γ)/k ≥ 1−θ,
which contradicts the fact that there is only one value whose
pC(a) ≥ 1− θ.

Complexity Analysis

We analysis the time complexity of MixedAD. Among
all the procedures, expanding the core is the most time-
consuming part. There are mainly three phases for each ex-
pansion: finding the node from Nei with the largest de-
crease for the conductance, updating necessary values, and
adding normal nodes to the Nei. Note that the decrease of
the conductance incurred by each node can be calculated in
O(1) if we maintain for each node in Nei its changes for
|E(Group)| and |δ(Group)| in case it will be added to the
Group. Therefore, the first phase takes time in O(|Nei|).
After choosing the node v which gives the largest decrease
for Cond(Group), we only need to update the changes of
|E(Group)| and |δ(Group)| for those nodes in nei(v). Cal-
culating these changes for any node w needs O(nei(w))
time. The update needs O(neimaxnei(v)) time, where
neimax = maxv |nei(v)|. Finally, we filter out those nodes
in nei(v) with smaller AN(v), which costs O(nei(v)D)
time. There will be at mostO(|V |) iterations. The total time
cost will be O(max(|V ||Nei|,mneimax,mD)). It is obvi-
ous that the cost is O(mD) if D is large enough.

Table 2: Details of real datasets.

Datasets n m D MixedAD PAICAN

PolBlogs 359 2233 44832 2.58s 27.47s
Amazon 29618 425174 4643 4.66s 469.32s

Experimental Study

Experimental Settings

Synthetic datasets. We generate attributed graphs by
first producing a plain graph without attributes, the LFR-
benchmark (Lancichinetti, Fortunato, and Radicchi 2008) by
convention, then associating the attribute values with each
node, and adding the anomalies at last. The key parameters
include those used in LFR-benchmark, e.g., the number of
nodes n and the average degree of nodes 〈k〉 (used to control
the sparsity of edges), and also parameters for generating the
attribute values. Due to limited space, we only show the re-
sults of varying n and the ratio of anomalies ratio. To test
the scalability, we vary n from 10000 to 50000 and the num-
ber of attributes from 100 to 1000, where D actually lies in
[5827, 56082] in binary form. Besides, for the hyperparame-
ters, we set α = 0.9, θ = 0.8, and γ = 0.9. For each setting
of parameters we generate 10 random datasets and report the
mean and standard deviation of the relevant metric.

Real datasets. We use two real datasets. PolBlogs (Per-
ozzi et al. 2014) is a citation network with a collection of on-
line blogs that discuss political issues and the attributes are
the keywords in the texts of the blogs. Amazon (Bojchevski
and Günnemann 2018) is a co-purchase network. The link
between two products a and b indicates that people buy a
and also b. The attribute values are binary product category
indicators in one-hot encoding.

Compared algorithms. We compare four state-of-art al-
gorithms with MixedAD. Note that PAICAN does not report
GA. ANOMALOUS and Radar only finds LAA and GA,
and FocusCo only finds LAA.

• PAICAN (Bojchevski and Günnemann 2018) mainly
adopts a probabilistic generative model.
• ANOMALOUS (Peng et al. 2018) uses the CUR decom-

position and residual analysis.
• Radar (Li et al. 2017) uses the residual analysis and the

coherence with network information.
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Figure 3: Results of scalability

• FocusCO (Perozzi et al. 2014) is a semi-supervised
approach. We implement it as in (Bojchevski and
Günnemann 2018): we select some example nodes for
each community and run the algorithm |C| times.

Metrics and implementation. To measure the effective-
ness, we adopt the F1 score in the synthetic experiments.
The reason why we choose the F1 score is that most algo-
rithms cannot distinguish all the three types of anomalies.
But it is worth noting that our algorithm is capable of cor-
rectly detecting their types, since most of the times the F1

scores of our MixedAD are very close to 1. We show the run-
ning time to measure the efficiency. As Radar and ANOMA-
LOUS often run several thousand times slower than our ap-
proach, we do not show their time costs.

We do case studies to test the effectiveness in real graphs
due to the lack of ground truth and also a convention
from previous work. We omit FocusCO since it is a semi-
supervised approach and we cannot provide any prior cor-
rect examples in real scenarios. We also omit Radar and
ANOMALOUS due to their tremendous time costs.

All algorithms are implemented by Python 3.6.6 and per-
formed with Intel (R) Core (TM) i7 3.4GHz CPU and 8GB
main memory.

Experimental Results on Synthetic Graphs

Impacts of n and ratio. The results of varying the num-
ber of nodes n from 1000 to 5000 are showed in Fig-
ure 2a and 2b, respectively. MixedAD achieves the highest
F1 scores close to 1, indicating that it correctly identifies all
three types of anomalies. For running time, MixedAD runs
the fastest among all the algorithms. FocusCO runs linearly
in n, and PAICAN performs unstably due to the uncertain
numbers of iterations for the convergence of its model. Simi-
lar results of varying the ratio from 0.03 to 0.15 are reported
in Figure 2c and 2d.

Scalability. To test the scalability of MixedAD, we vary
the number of nodes n and dimensionality D, since we have
shown that its time complexity is O(mD). Specifically, we
vary n from 10000 to 50000, while fixing D = 100 and the
other parameters to their default values, and vary the dimen-
sionality D from 100 to 1000, while fixing n = 10000 and
the other parameters to their default values. The results are
showed in Figure 3a and 3b. For the F1 score, MixedAD

Figure 4: Anomalies on PolBlogs

(a) GA and LAA (b) LSA

Figure 5: Anomalies on Amazon

still performs well. The running time coincide with the time
complexity linear in n and D. It is worth noting that our
MixedAD does not require the attribute values in the binary
form. The dimensionality (in the binary form) actually lies
in [5827, 56082] when D ∈ [100, 1000].

Experimental Results on Real-life Graphs

We first consider the PolBlogs dataset. The visualization of
anomalies is showed in Figure 4. It can be observed that
there are two communities (in red and blue) that MixedAD
found, which coincides with the conservative and liberal par-
ties in reality. Nodes in violet and cadet blue are instances of
LSA and LAA, respectively. For example, node u is an LSA.
The blogger u mentions words like ”libertarians”, ”democ-
racy” and so on. However, it connects to two opposite polit-
ical factions. Another example is the node v in cadet blue,
an LAA, and it is a well-connected liberal blogger who does
not explicitly express the view of faction. PAICAN cannot
find the anomalies stated above.

The second case is the Amazon co-purchase dataset,
showed in Figure 5. Node a is a GA and its category in-
cludes “highchairs, baby products”, but it is co-purchased
with the products which are “Toys, Games, Pretend play,
Dress up” and “Playsets, Vehicles”. Another example is
node b, which is an LAA because this kind of cookware is
often co-purchased with a lot of toys. Moreover, node g is an
LSA because it belongs to the category “Casual Clothing”
with violet nodes, whereas it is often co-purchased with the
products belong to the category “Speical Occasion Cloth-
ing”. Likewise, PAICAN can not find these anomalies.

Conclusion

This paper studies the problem of anomaly detection in
large attributed graphs. We identify three types of anomalies
whose patterns are abnormal w.r.t. the attribute and struc-
ture in a mixed manner. We propose a scalable algorithm
called MixedAD and provide theoretical analysis. We verify
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its effectiveness and efficiency by conducting extensive ex-
periments. The results demonstrate that our MixedAD often
achieves F1 scores greater than other state-of-art algorithms
by at least 25% and runs at least 10 times faster than them.
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Robust spectral clustering for noisy data: Modeling sparse
corruptions improves latent embeddings. In SIGKDD.
Castillo, C.; Donato, D.; Gionis, A.; Murdock, V.; and Sil-
vestri, F. 2007. Know your neighbors: web spam detection
using the web topology. In SIGIR.
Catanese, S.; Meo, P. D.; Ferrara, E.; Fiumara, G.; and
Provetti, A. 2011. Crawling facebook for social network
analysis purposes. In WIMS.
Chakrabarti, D. 2004. Autopart: Parameter-free graph par-
titioning and outlier detection. In PKDD.
Chau, D. H.; Pandit, S.; and Faloutsos, C. 2006. Detecting
fraudulent personalities in networks of online auctioneers.
In PKDD.
Ding, Q.; Katenka, N.; Barford, P.; Kolaczyk, E. D.; and
Crovella, M. 2012. Intrusion as (anti)social communication:
characterization and detection. In SIGKDD.
Gao, J.; Liang, F.; Fan, W.; Wang, C.; Sun, Y.; and Han, J.
2010. On community outliers and their efficient detection in
information networks. In SIGKDD.
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