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Abstract

Motivated by the celebrated discrete-time model of nervous
activity outlined by McCulloch and Pitts in 1943, we propose
a novel continuous-time model, the McCulloch-Pitts network
(MPN), for sequence learning in spiking neural networks. Our
model has a local learning rule, such that the synaptic weight
updates depend only on the information directly accessible
by the synapse. By exploiting asymmetry in the connections
between binary neurons, we show that MPN can be trained to
robustly memorize multiple spatiotemporal patterns of binary
vectors, generalizing the ability of the symmetric Hopfield
network to memorize static spatial patterns. In addition, we
demonstrate that the model can efficiently learn sequences of
binary pictures as well as generative models for experimental
neural spike-train data. Our learning rule is consistent with
spike-timing-dependent plasticity (STDP), thus providing a
theoretical ground for the systematic design of biologically
inspired networks with large and robust long-range sequence
storage capacity.

Introduction

Experimental evidence from neurobiology reveals that
changes in synaptic weights of some neurons depend on
the timing difference between presynaptic and postsynaptic
spikes (Markram and Sakmann 1995; Gerstner et al. 1996;
Bi and Poo 2001), a concept termed spike-timing-dependent
plasticity (STDP). While deep learning is tremendously suc-
cessful in numerous machine learning tasks, its underlying
backpropagation learning algorithm is biologically implausi-
ble (Bengio et al. 2015). Recent works attempt to bridge this
gap by proposing STDP-consistent training rules for deep
learning (Bengio et al. 2015; 2017; Liu, Quek, and Lin 2018;
Scellier and Bengio 2017), with the hope of uncovering com-
putationally efficient learning algorithms inspired by bio-
logical brains. Thorough understanding of STDP-consistent
learning rules and their computing capabilities can also ben-
efit the design of modern bioinspired computing hardware
such as neuromorphic chips.

On the other hand, machine learning can assist in the
quest for understanding how brains perform computation,
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especially when viewed through the lens of a spiking neural
network (SNN). For example, variational inference and re-
inforcement learning unveil SNN architectures that perform
probabilistic inference consistent with STDP rules (Nessler
et al. 2013; Pecevski and Maass 2016; Rezende, Wierstra,
and Gerstner 2011). Learning-to-learn methods and Long
Short-Term Memory help identify a novel SNN architecture
with the capability to store long spatiotemporal sequences
of spikes during computation (Bellec et al. 2018). More-
over, building generative models of SNNs from experimental
time-series data of action potentials yields insights into the
network structure generating such spikes (Tyrcha et al. 2013;
Nasser, Marre, and Cessac 2013; Zeng et al. 2013).

With the goal of building a biologically plausible gener-
ative model of SNNs from spatiotemporal patterns, such as
neural spike-train data, we propose a novel continuous-time
learning algorithm that is consistent with experimentally ob-
served STDP. We define simple rules for updating states and
learning weights of a continuous-time SNN and demonstrate
that the expected synaptic changes given a pair of presynaptic
and postsynaptic spikes reproduce the STDP curve. As a con-
sequence of our model, we show that the stochasticity of the
refractory period is an important ingredient for reproducing
STDP. Namely, by assuming that the time between the spik-
ing of a neuron and its recovery is stochastic and follows an
exponential distribution, we prove that the expected increase
or decrease in synaptic weights follows STDP-like curves.

In addition to its biological plausibility, our SNN model
is capable of learning sequences of binary vectors, or spa-
tiotemporal patterns of spikes. In the deterministic limit, this
network, a McCulloch-Pitts network (McCulloch and Pitts
1943), is a generalization of the Hopfield network that allows
asymmetric connections between fully-visible binary units.
As a result, deterministic dynamics in the state space can
converge to an attractor of period larger than one (a cycle),
as opposed to a fixed-point corresponding to a static spatial
memory in the Hopfield network. We demonstrate that the
network can be trained to memorize repeating sequences
of binary vectors and that the spatiotemporal memory is ro-
bust to perturbation. In particular, given an arbitrary initial
state of the spike pattern, the dynamics generated by the
trained network converge to a memorized cycle. Thus, the
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STDP-consistent McCulloch-Pitts network performs a spa-
tiotemporal pattern completion, generalizing the classical
Hopfield network that performs spatial pattern completion.
In the noisy limit, the trained network can be regarded as a
generative model for spatiotemporal patterns of spikes that
performs sampling of both the time to the next spiking event
and the neuron to next spike. We illustrate that this network
efficiently performs inference on continuous-time data from
a neurobiology experiment, and we discuss its applicability
to inference problems in neuroscience.

McCulloch-Pitts Networks

To begin, suppose we are presented with a time series D(t)
of binary vectors with single bit-flip transitions:

D(t) = x(0) for 0 = t0 ≤ t < t1,
...

D(t) = x(N−1) for tN−1 ≤ t < tN ,
D(t) = x(N) for t = tN .

Our goal is to train a continuous-time stochastic process that
mimics D(t).

In this section, we define our model of a neural stochastic
process, which we term a McCulloch-Pitts network. Relation-
ships to biological neural networks will be discussed in the
Spike-Timing-Dependent Plasticity section. Let G = (V,E)
be a weighted directed graph with vertices V = {1, . . . , d},
edges ij ∈ E from i to j, vertex biases b1, . . . , bd ∈ R, and
weights wij ∈ R for each edge ij ∈ E. Let θ = (bi, wij) de-
note the vector of parameters. Self-loops and directed cycles
are allowed in G.

Dynamics

Let X = {0, 1}d be the state space of binary vectors on V ,
and let X(t) be a stochastic process indexed by continuous
time t ≥ 0 with states X . Let τ > 0 be the temperature1, and
define flipi(x) to be the binary vector x whose i-th coordinate
is flipped. To generate X(t), we select an initial condition
X(0) from X , and repeat the following two steps:

1. Suppose X(T ) = x. For each i ∈ V , we sample a hold-
ing time ξi from the exponential distribution Exp(λi)
where λi = exp(σizi/τ), σi = 1 − 2xi, and zi =∑

ji∈E wjixj + bi.

2. Let ξj be the smallest of the holding times ξi, and let
T ′ = T + ξj . We set X(t) = x for all T ≤ t < T ′, and
X(T ′) = flipj(x). Finally, we update T ← T ′.

More generally, a rate scaling parameter ri could be in-
troduced in the rate λi = ri exp(σizi/τ). However, ri can
be absorbed into bi and wii, see Supplementary Materials

1Temperature can be interpreted as a proper physical tempera-
ture in the Boltzmann machine since its symmetric weights uniquely
determine states’ energy function, and its thermodynamics formula-
tion can be adopted. Here, in asymmetric networks, temperature re-
flects the frequency in which stochastic updates take place (intrinsic
noise). Zero temperature thus corresponds to deterministic dynam-
ics, whereas high temperature drives rapidly fluctuating stochastic
dynamics.

(SM) A. Thus, we can set ri = 1 for simplicity and assume
the graph G has self-loops. We term X(t) the McCulloch-
Pitts network (MPN) associated to (G, θ, τ). Observe that the
transitions in X(t) involve flipping only one bit at a time.

Alternatively, we can reformulate an equivalent yet simpler
algorithm to generate X(t) using softmax; given an initial
condition X(0) ∈ X , we repeat the following steps:
1. Let X(T ) = x. Sample ξ ∼ Exp(λ) where λ =∑

i∈V λi.

2. Let T ′ = T+ξ and set X(t) = x for all T ≤ t < T ′. Pick
j ∈ V according to Pi = λi/λ, and set X(T ′) = flipj(x).
Finally, we update T ← T ′.
The multinomial distribution Pi = λi/λ in step 2 is the

softmax, since Pi ∝ exp(σizi/τ).

Training

For brevity, let us define the following data statistics:
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The log-conditional likelihood, LD(θ), measuring similarity
between model distribution X(t) and D(t), amounts to:
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with transition terms Tn(θ) and holding termsHn(θ):
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i=1 δ
(n)
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Hn(θ) = −(tn+1 − tn)
∑d

i=1 λ
(n)
i .

Since −LD(θ) is convex (it consists of sums and exponen-
tiations of linear/convex functions), we will adopt gradient
methods for parameter optimization. Straightforward calcula-
tion yields the gradients of Tn(θ) andHn(θ):
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Note that these rules are highly local, in the sense that the
update for a synaptic weight wik depends only on the presy-
naptic state xi, the postsynaptic rate λk, and the postsynaptic
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transition δk. Similarly, the update for the bias bk depends
only on the rate λk and transition δk. Moreover, any parame-
ter update that agrees in sign with the above gradients will
increase both the transition and holding terms of the log-
conditional likelihood. Therefore, the training algorithm is
robust to noise (up to sign) in the parameter updates. See SM
C for the training algorithm pseudocode.

Spike-Timing-Dependent Plasticity

Recent work in neuroscience (Ermentrout and Terman 2010)
has shown that individual neurons often do not behave as
single spiking units. In fact, different compartments of a
neuron, such as the apical and basal regions of a pyramidal
neuron, can spike apart from the soma. To model such neural
dynamics with a McCulloch-Pitts network, we represent the
compartments of a neuron by the vertices of the graph G, and
refer to them as units rather than neurons to avoid confusion.

We assume that each spiking unit i is either in an armed
state xi = 0, capable of spiking, or in a refractory state
xi = 1, representing a unit that just spiked and is incapable
of spiking again until it recovers. We assume that a unit
influences the spiking of a neighboring unit if and only if it is
in the refractory state, a reasonable condition also assumed in
(Pecevski and Maass 2016). In addition, to account for a well-
known observation that the transmission of spikes across
synapses is unreliable (Faisal, Selen, and Wolpert 2008),
we model the random chance of spiking events that depend
on synaptic strengths wij and unit biases bi as stochastic
processes. Specifically, the wait time to the next spiking event
of unit i is assumed to be exponentially distributed with rate

λi(θ) = ri exp {σizi/τ} ,
where

σi = 1− 2xi, zi =
∑
ji∈E

wjixj + bi,

and where the parameter ri controls the background spiking
rate of the unit when zi vanishes. Note that when the unit
is armed, the expected time to fire exponentially decreases
with zi; it is thus tempting to call zi the “membrane poten-
tial” because of its similarity to classical integrate-and-fire
neurons. However, spike events are not stochastic when the
membrane potential is known (Zador 1998). To avoid confu-
sion, we shall therefore call zi the unsigned activity and σizi
the signed activity. Note also that while most neuron models
assume a fixed refractory period, in our model it is stochastic,
given by an exponential distribution whose expected time to
recovery is inversely proportional to the exponential of zi.

Learning in the network is implemented by two sets of
update rules. Let η be the learning rate. When a spike occurs,
we apply transition updates:

Δwjk =
η

τ
x
(n)
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k , Δbk =

η

τ
δ
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On the other hand, when there are no spikes over a period of
time, we apply holding updates:
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(2)

We may also interpret the holding updates as a fixed-rate
decay of the weights and biases over time.

In Bi and Poo’s experiments (Bi and Poo 1998) on spike-
timing-dependent plasticity (STDP), the behavior of a pair
of interconnected neurons, in which the synaptic weight is
not strong enough for a presynaptic spike to cause a postsy-
naptic spike, is studied. The presynaptic neuron is initially
stimulated to spike, and the amplitude of the excitatory post-
synaptic current (EPSC) is measured. After five minutes, the
presynaptic neuron is stimulated again to spike. Next, after
ε time, the postsynapse is stimulated to spike. This pair of
stimulations is repeated every second for 60 seconds. Finally,
after twenty minutes, the amplitude of the EPSC is measured
again and the percentage change is recorded.

We prove that the average case behavior of the learning al-
gorithm for an MPN agrees with the experimentally-observed
synaptic potentiation and depression in biological neural net-
works. To simplify the mathematical analysis, we shall make
the following assumptions:

1. Consider a synapse with presynaptic and postsynaptic
neurons i, j with states xi, xj . Let w be the synaptic weight
(directed weight from i to j), and bi, bj the neural biases.
Let zi = bi, zj = wxi + bj be the unsigned activities. Let
λi = ri exp(σizi/τ), λj = rj exp(σjzj/τ) be the firing
rates, where we set the background rate ri = rj = r, and τ
is the temperature controlling the degree of stochasticity.

2. The neurons do not spike unless they are manually
stimulated, but they may recover from their refractory state
on their own accord.

3. The weight w is updated according to equations (1) and
(2), but the biases bi, bj are fixed.

4. The ratio η/τ is much smaller than 1.
5. The refractory periods are on average shorter than the

armed periods.

Theorem 0.1. Assuming the above conditions, let ε be the
timing of the presynaptic spike subtracted from that of the
postsynaptic spike. If ε is small and positive, then the expected
synaptic weight change is

E[Δw] ≈ C1e
−λi|ε|, λi = re−bi/τ ,

but if ε is small and negative, then the expected synaptic
weight change is

E[Δw] ≈ −C2e
−λj |ε|, λj = re−(w+bj)/τ ,

where C1, C2 are positive constants.

Proof. See SM B.

Experiments

In this section, we showcase the biologically plausible fea-
tures and capabilities of the MPN.2 We first numerically
verify the prediction of Theorem 0.1, reproducing STDP-like
curves from our learning rule. The MPN is then shown to be
self-consistent, i.e. accurate inference of its own generative
model is achievable. We next demonstrate the ability of MPN
to robustly memorize spatiotemporal patterns. Namely, we

2The codes are available at https://github.com/owen94/MPNets.
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Figure 1: STDP-like curves emerge from simulating an MPN
on a pair of neurons, in agreement with Theorem 0.1. We
denote the synaptic weight change as Δw = ŵij − wij , and
E(Δw) is computed from averaging 10 trials. Vertical dashed
lines at each data point are error bars.

show that our model can be trained to memorize repeating
sequences of binary vectors with one-hop transitions and that
these memories are robust in the sense that they are stable
attractors of the MPN dynamics in the deterministic limit.
When the dynamics are stochastic, we show that stochastic-
ity assists in multiple-memory switching, as opposed to the
deterministic counterpart whose dynamics eventually fixes at
only one memory. Finally, we end this section by highlight-
ing two potentially useful sequence learning applications:
memorizing a long sequence of binary pictures (shown in Fig.
4 and the video in SM) and learning a generative model of
experimental neural spike-train data. The latter demonstrates
that MPNs can effectively reproduce spike-timing statistics
in neurobiology experiments.

STDP and MPN Learning Rule

By simulating the dynamics of a presynaptic neuron i and a
postsynaptic neuron j, we now verify the emergence of STDP
curves from our MPN learning rule. Following the algorithm
discussed in the Spike-Timing-Dependent Plasticity section,
the expected synaptic weight changes Δwij can be measured
as a function of the spike timing difference ε.

We simulate 10 trials for each ε, while for each trial the
updates of 60 consecutive spikes are accumulated, as sug-
gested in (Bi and Poo 1998), to finally compute the new
synaptic weight ŵij . When there are no longer weight up-
dates for every spike, the update will be terminated. Here, we
set the learning rate for the transition and holding updates to
ηT = 0.05 and ηH = 0.001, respectively. Other parameters
are wij = 1, bi = bj = 0 .

Two initial conditions are considered: either neuron i is
in the refractory state and neuron j is in the armed state or
vice versa. Fig.1 displays simulation results for both initial
conditions, which reveals that the expected (average) weight
change consists of two exponential branches as a function of

Figure 2: Deterministic dynamics of a trained MPN robustly
memorize spatiotemporal binary patterns. For an MPN with
8 neurons, the cycle of period 16 to be memorized can be
perfectly reproduced from the deterministic dynamics gener-
ated by the trained MPN (top). In addition, a spatiotemporal
memory is robust, as illustrated in the smaller state space
dynamics generated by another trained MPN with 4 neurons
(bottom). The number on each node is the decimal represen-
tation of the corresponding state binary vector of length 4;
e.g., (1, 0, 1, 0) is 5. Blue nodes are transient states that flow
along the arrow toward the robust spatiotemporal memory,
i.e. stable periodic attractor (red).

ε, in agreement with Theorem 0.1. This result is consistent
with the STDP rule discussed in (Bi and Poo 1998), and the
two branches do not need to be symmetric as assumed in
(Scellier and Bengio 2017).

Consistency Check: Here, we numerically show that
MPNs can consistently learn the parameters of another MPN
that generates training samples. 100,000 samples were gener-
ated from the pre-defined MPN of 10 neurons with weights
w and biases b. Next, we train an MPN to fit the generated
data. For the reconstruction error using �1 norm defined by
error(w, ŵ) = 1

100‖w − ŵ‖, we find error(w, ŵ) = 0.03
after 30 epochs of training. This consistency check shows that
MPN is self-consistent. Note also that the training algorithm
converges fast, plateauing after 5 training epochs (see SM
D.1).

Robust Spatiotemporal Memory

Spatiotemporal memory: The advantage of weight asym-
metry is the flexibility to memorize repeating sequences of
spikes (cycles) regarded as spatiotemporal memories. Here,
we show that MPN can be trained to memorize a cycle using
the deterministic update rule (the noiseless limit is identical
to setting τ = 0). This update rule amounts to flipping the
neuron i with the highest rate, i.e., i = argmaxλj . Fig.2
(top) shows the cycle of period 16 to memorize, which is the
repeating sequence to be stored by an MPN with 8 neurons.
After training with this sequence, MPN can successfully gen-
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Figure 3: 40 states transitions under different noise parameter τ generated by an MPN with 4 neurons trained to memorize two
cycles in the deterministic limit: (left) stochastic dynamics generated by an MPN that is trained to memorize cycles of period 2.
(right) stochastic dynamics generated by an MPN that is trained to memorize cycles of period 4; see Fig.2 in SM for topologies.
d(cycleA, cycleB) denotes the minimal hamming distance between the two cycles, which measures how far away the stored
spatiotemporal memories are. The larger the d, the more rare bit flips (induced by intrinsic noise) are required to transit to the
other memory, and hence memory switching becomes less likely when d is large. At the same τ , we thus observe less frequent
memory switching in (left) than in (right).

erate the same sequence (reproducing Fig.2 (top)) from the
dynamics in the limit τ = 0, provided the initial states of the
spikes are identical. Hence, MPN can store the sequence as a
spatiotemporal memory.

Robustness: This repeating sequence memorized by the
trained MPN with 8 neurons is in fact the stable attractor of
the entire state space dynamics generated by the trained MPN.
Namely, any 28 = 256 initial binary states will eventually
flow toward the cycle in Fig.2 (top). Thus, this spatiotemporal
memory is robust. Fig.2 (bottom) illustrates robust spatiotem-
poral memory in the state space dynamics generated by the
trained MPN with 4 neurons, where the entire state space
consists of 24 = 16 elements. All transient states (blue) are
in the basin of attraction of the spatiotemporal memory (red),
which is the repeating sequence [0, 4, 6, 14, 15, 7, 3, 2, 0].

Multiple Memories and the Role of Noise: It is possible
to train an MPN to store multiple spatiotemporal repeating
patterns, analogous to standard Hopfield nets that can store
multiple static patterns. Here, we demonstrate the simplest
scenario where 2 non-overlapping cycles are stored as robust
spatiotemporal memories in a small network with 4 neurons.
Generalization to multi-cycle storage in larger networks is
straightforward and will be reported elsewhere.

In these trainings, the first cycle to be memorized, say
cycleA, is selected to train an MPN. After the training is
completed, we select another one, cycleB , that is disjoint
from cycleA, and train the MPN that was originally trained
on cycleA. Eventually, the MPN can store both cycleA
and cycleB . We illustrate two trained MPNs: one that
stores 2 cycles of period 2, and another one that stores
2 cycles of period 4. The deterministic state transition
diagram generated by these MPNs is shown in Fig.3;
the state space consists of two cycles of period 2 in
Fig.3(a) which are cycleA = {(1, 0, 0, 0), (1, 0, 0, 1)}
and cycleB = {(0, 0, 1, 1), (0, 1, 1, 1)}, and two cy-

cles of period 4 in Fig.3(b), which are cycleA =
{(1, 0, 0, 0), (1, 1, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0)} and
cycleB = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 1, 0)}.
This notation represents an ordered set, in which a sequence
generated by the trained MPN proceeds from left to right.

In the presence of noise (τ > 0), fluctuations may destroy
the robustness of cycles. Namely, rather than remaining in
one of the cycles (deterministically stable periodic attrac-
tors), states could be driven away from one robust cycle to
another through a series of rare one flip transitions. Fig. 3
shows the response of the trained MPNs as the strength of
intrinsic noise τ increases. Thus, one useful role of noise in
MPN is to facilitate transitions between stored spatiotempo-
ral patterns of spikes that would not otherwise be possible in
the deterministic limit. Whether one could exploit this intrin-
sic noise-induced memory switching phenomena to design
controllable memory switching networks is worthy of future
investigation.

Application: Robustly Memorizing Sequences of
Binary Pictures

Robust spatiotemporal memory is an appealing feature of the
MPN; however, successive elements of a preferable sequence
to store might not be one-hop different as assumed in the
previous section. For instance, the successive elements in the
sequence of digits “2019” represented as binary pictures of
Fig. 5 (left) differ by multi-hop transitions. Here, we show
that MPNs can be trained to learn sequences of pictures that
differ by multi-hop transitions, illustrated in Figs.4- 5, and
also in the video in SM.

The multi-hop away sequence to learn consists of [the all-
zero state, “2”, “0”, “1”, “9”], in this specific order. Each
static binary picture in the sequence is represented as a 20 ×
20 binary matrix. To transit among these static memories in
the correct order, we randomly assign 100 one-hop transitions
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Figure 4: Spatiotemporal pattern completion: dynamics generated by the trained MPN with τ = 0.5 and τ = 1 can robustly
recover the multi-hop away memory sequence 2019. Results for τ = 2 can be found in the SM.
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computed for different input spiked patterns; left to right: “2”, “0”,“1” and “9”. Larger λi indicates a higher probability for the
neuron i to flip.

between every successive pair of the static memories; i.e.,
the length for the entire training sequence, including the
transitions from the all-zero state to “2”, “2” to “0”, “0” to “1”
and “1” to “9”, is 400. The learning rate is set to η = 0.001.
For details on training procedure, see SM D.3.

Fig.4 shows snapshots of the dynamics at two different
noise parameters τ generated from the trained MPN. Initial-
ized with the all-zero state, the trained MPN almost perfectly
reproduces the multi-hop sequence “2019” with multiple
one-hop transitions that connect consecutive elements.

This generated sequence is also robust to noise, in the
sense that we can recognize the sequence of static memories
“2”, “0”, “1”, and “9” as time progresses for τ = 0.5, 1 and 2.
As a consequence of our training procedure, the trained MPN
will generate the cycles containing multi-hop away memories
in the correct order; i.e., the dynamics will loop “2”→ · · · →
“0”→ · · · → “1”→ · · · → “9”→ · · · → “2”→ · · · (see
Fig.4).

We further examine the rate λi(θ) = ri exp {σizi/τ} to
illustrate that the MPN indeed learned the sequence. Given
the weights and biases of the trained MPN, we compute the
rates when the static memories are the input. Since the neuron
with a higher rate λi will be more likely to flip next, we can
estimate the preferable transitions that will take place given
λi. For instance, when feeding the trained MPN with the
input “2”, most rates associated with the spiked neurons of
the memory “0” and “2” become significanly higher than
the rates at the other neurons, see Fig.5. This is consistent

with the fact that “2” will transit to “0” through multi-hop
transitions and that the spiked neurons of “2” will recover
with higher rates than those neurons remaining in the armed
state. However, the neurons that spike at both the memory
“2” and “0”, i.e. the bottom horizontal line, will prefer to not
flip, consistent with the almost negligible rates at the neurons
that both memories already share.

Note finally that while Hopfield networks can be used
for recalling or denoising static memories (Hopfield 1982;
Hillar and Tran 2018), we have shown that MPNs can
be applied to recall spatiotemporal memories or complete
spatiotemporal patterns. Thus, the MPN with asymmetric
weights can be regarded as an STDP-consistent and non-
equilibrium generalization of the dynamics arising from
the symmetric Hopfield network. Regarding weight asym-
metry, we observe from the trained MPN that the learned
weights are considerably asymmetric. The asymmetry mea-
sure |wij − wji|/((|wij |+ |wji|)/2) = 1.38, 1, 53, 1.58 for
training parameters τ = 0.5, 1, 2, respectively.

Application: Inferring Generative Models for
Neural Spike-train Data

We now apply the MPN to learn spike-train statistics of a
neurobiology experiment, which reports the neuronal activi-
ties of cat primary visual cortex 3. The experiment recorded
spike-train dataset of 25 neurons. We preprocess the data and

3The dataset is available on https://crcns.org/data-sets/vc/pvc-3
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Figure 6: Histogram of the ISI of the spikes generated from
the trained MPN is in excellent agreement with that of the
test data.

form 60288 one-hop transitions, of which 70% (42202) is
used for training and 30% (18086) for testing. The learning
rate is set to η = 0.01.

To see how well the MPN reproduces the spike-timing
statistics of the data, we generate spike trains (from the MPN
trained at τ = 1) that last for the same duration as that of
the test data, starting from the same initial spike state. Fig.6
shows that the distribution of the inter-spike intervals (ISI)
of the generated spikes is in good agreement with that of the
test data. The visiting frequencies of generated spike states
are also in agreement with that of the test data as well (see
Fig.6 in SM D.4).

We now compare the performance of MPN in re-
producing the ISI statistics to that of the generalized
linear model (GLM), a standard statistical model of
ISI, using the Kullback-Leibler(KL) divergence as
a performance metric. We first bin the ISI into 20
slots, compute the density of each bin, and obtain the
distributions Ptest(ISI), PMPN (ISI), PGLM (ISI).
Then, the KL-divergences are calculated from
KL(MPN) = KL(PMPN (ISI)‖Ptest(ISI)) and
KL(GLM) = KL(PGLM (ISI)‖Ptest(ISI)), where
KL(p‖q) = −

∑
x p(x) log(p(x)/q(x)). Remarkably, we

found that 0.21 ± 0.11 = KL(GLM) > KL(MPN) =
0.04 ± 0.003, where the standard deviations are calculated
from 10 trials. Thus, MPNs can capture the statistics of ISI
even more accurately than the ubiquitous GLM.

Related Work

While sequence learning tasks have been studied in the
literature (Amari 1972; Brea, Senn, and Pfister 2013;
Memmesheimer et al. 2014), the work most related to MPN
is (Brea, Senn, and Pfister 2013), which focuses on train-
ing spiking neural networks with biologically plausible rules.
While both (Brea, Senn, and Pfister 2013) and this work at-
tempt to learn the distribution of sequences, they differ in
the model, the learning rule, and the applications. Regarding
model assumptions, (Brea, Senn, and Pfister 2013) assumes a
firing probability to be sigmoidal during T discrete-time bins;
MPN, however, assumes a continuous-time neuron model

with exponentially distributed refractory periods and stochas-
tic neurons. Such different models and assumptions lead to
distinct learning rules. Finally, while (Brea, Senn, and Pfister
2013) exploits hidden units to learn a sequence, the MPN
reported here consist of only visible neurons. We expect that,
by adding hidden neurons, MPN will become even more ex-
pressive. We leave hidden neurons problem to be explored in
future work.

Biological plausibility (Rezende, Wierstra, and Gerstner
2011; Bengio et al. 2015; 2017; Scellier and Bengio 2017;
Liu, Quek, and Lin 2018) has also been emphasized in the
machine learning community, with the hope to uncover ef-
ficient learning algorithms inspired by neuroscience. How-
ever, many proposed STDP-consistent algorithms assume
symmetric weights, a constraint generally considered biolog-
ically implausible. For example, (Scellier and Bengio 2017)
introduces a novel learning paradigm termed Equilibrium
Propagation that offers a biologically plausible mechanism
for backpropagation and credit assignment in Deep Learning.
The learning algorithm implements a form of STDP for neu-
ral networks with symmetric weights, i.e. wij = wji, such
that, in one of the learning phases, the weight update rule
satisfies ∂wij

∂t ∝ ρ(ui)
dρ(uj)

dt + ρ(uj)
dρ(ui)

dt , where ui and
ρ(ui) are the membrane potential and its firing rate. In con-
trast, our model possesses a different weight update rule (see
Spike-Timing-Dependent Plasticity section), does not pose
the symmetric weight condition, and can reproduce asymmet-
ric STDP-like curves (see the STDP and MPN Learning Rule
section).

Lastly, our learning algorithm is partly inspired by Min-
imum probability flow (MPF) (Sohl-Dickstein, Battaglino,
and DeWeese 2011; Hillar, Sohl-Dickstein, and Koepsell
2012), a symmetric-weight discrete-time algorithm that ef-
ficiently learns distributions of static variables. Although
the update rule of MPF is akin to the the transition up-
dates of an MPN with symmetric weights, an asymmetric-
weight continuous-time MPN can also learn distributions of
sequences.

Conclusion

We introduce a biologically plausible continuous-time se-
quence learning algorithm for spiking neural networks and
demonstrate its capability to learn neural spike-train data as
well as to robustly store and recall spatiotemporal memories.
The hallmark of our local learning rule is that it provides
a normative explanation of STDP. There are several direc-
tions for future investigations. Firstly, akin to the Hopfield
network capacity problem, we could explore the capacity of
MPNs for storing random repeating sequences. More inter-
estingly, given a set of transitions between states that is not
necessarily a cycle, is it feasible to train the network to mem-
orize those transitions? The answer could hint at whether
MPNs possess large long-sequence storage capacity, a highly
sought-after characteristic of modern sequence learning mod-
els. Furthermore, while the current MPN is a fully-visible
network, extensions to a deep network with hidden layers
for large-scale computer vision and natural language tasks
would be worth investigating. Lastly, implementing the local
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learning rule on neuromorphic computing hardware could be
a near-term application of our neuro-inspired framework.
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