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Abstract

Motivated by real-world deployment of drones for conserva-
tion, this paper advances the state-of-the-art in security games
with signaling. The well-known defender-attacker security
games framework can help in planning for such strategic
deployments of sensors and human patrollers, and warning
signals to ward off adversaries. However, we show that de-
fenders can suffer significant losses when ignoring real-world
uncertainties despite carefully planned security game strate-
gies with signaling. In fact, defenders may perform worse
than forgoing drones completely in this case. We address
this shortcoming by proposing a novel game model that inte-
grates signaling and sensor uncertainty; perhaps surprisingly,
we show that defenders can still perform well via a signaling
strategy that exploits uncertain real-time information. For ex-
ample, even in the presence of uncertainty, the defender still
has an informational advantage in knowing that she has or has
not actually detected the attacker; and she can design a sig-
naling scheme to “mislead” the attacker who is uncertain as to
whether he has been detected. We provide theoretical results,
a novel algorithm, scale-up techniques, and experimental re-
sults from simulation based on our ongoing deployment of a
conservation drone system in South Africa.

1 Introduction

Conservation drones are currently deployed in South Africa
to prevent wildlife poaching in national parks (Fig. 1). The
drones, equipped with thermal infrared cameras, fly through-
out the park at night when poaching typically occurs. Should
anything suspicious be observed in the videos, nearby park
rangers can prevent poaching, and a warning signal (e.g.,
drone lights) can be deployed for deterrence (Air Shepherd
2019). This requires a great deal of planning and coordina-
tion, as well as constant video monitoring. Rather than con-
stant monitoring, we have recently worked with Air Shep-
herd to deploy an automatic detection system to locate hu-
mans and animals in these videos. Although an automatic
detection system is helpful, its detections are uncertain. Po-
tential false negative detections, in which the system fails to
detect actual poachers, may lead to missed opportunities to

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A drone and drone team member who are currently
searching for poachers in a South African park at night.

deter or prevent poaching. This work is motivated by this
ongoing, real-world deployment of drones for conservation.

Security challenges similar to those in conservation must
be addressed around the world, from protecting large public
gatherings such as marathons (Yin, An, and Jain 2014) to
protecting cities. Security game models have been shown to
be effective in many of these real-world domains (Tambe
2011; Bucarey et al. 2017). Recently, these models have
begun to take into account real-time information, for ex-
ample by using information from footprints when track-
ing poachers, or images from sensors (Wang et al. 2019;
Basilico, De Nittis, and Gatti 2015). In particular, signaling
based on real-time information, e.g., signaling to indicate
the presence of law enforcement (Xu et al. 2018), has been
introduced and established as a fundamental area of work.

Despite the rising interest in real-time information and
signaling, unfortunately, security games literature has failed
to consider uncertainty in sensing real-time information and
signaling, hindering real-world applicability of the game
models. Previously, only some types of uncertainty have
been considered, such as uncertainty in the attacker’s ob-
servation of the defender’s strategy, attacker’s payoff values,
or attacker’s rationality (Yin et al. 2011; Nguyen et al. 2014;
Yang et al. 2011). However, there are fundamentally new in-
sights when handling uncertainties w.r.t. real-time sensing
and signaling, which we discuss at the end of this section.

We therefore focus on uncertainty in security games, in
which real-time information comes from sensors that alert
the defender when an attacker is detected and can also send
warning signals to the attacker to deter the attack in real
time. We consider both uncertainty in the sensor’s detection
of adversaries (henceforth detection uncertainty) and uncer-
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tainty in the adversaries’ observation of the sensor’s signals
(henceforth observational uncertainty), and show that ignor-
ing uncertainty hurts the defender’s expected utility. In our
motivating domain of wildlife conservation with drones, au-
tomatic detection algorithms may make incorrect detections
because humans in thermal infrared frames look similar to
other objects (e.g., Fig. 1) and may even be occluded by
other objects from the aerial perspective. The drone is also
used to emit light to deter poachers, but such signals could
sometimes be difficult for poachers to see in the wild, e.g.,
when trees block the sight.

We make contributions in (i) modeling, (ii) theoretical
analysis, (iii) algorithmic design, and (iv) empirical evalu-
ation. (i) We are the first to model uncertainty in sensing and
signaling settings for security games. We introduce a novel
reaction stage to the game model and construct a new signal-
ing scheme, allowing the defender to mitigate the impact of
uncertainty. In fact, this signaling scheme exploits uncertain
real-time information and the defender’s informational ad-
vantage. For example, both the defender and attacker may
know that there is detection uncertainty; however, the de-
fender has an informational advantage in knowing that she
has or has not actually detected the attacker, which she can
exploit via a signaling scheme to “mislead” the attacker who
is uncertain as to whether he has been detected. (ii) We pro-
vide several theoretical results on the impact of uncertain-
ties, e.g., the loss due to ignoring observational uncertainty
can be arbitrarily large, illustrating the need to handle uncer-
tainty. (iii) To compute the defender’s optimal strategy given
uncertainty, we develop a novel algorithm, GUARDSS, that
not only uses six states to represent the type of protection a
target has in a defender’s pure strategy but also uses a new
matching technique in a branch-and-bound framework. (iv)
We conduct extensive experiments on simulation based on
our real-world deployment of a conservation drone system.

2 Related Work
Among the rich literature of Stackelberg security games
(SSGs) (Tambe 2011; Bucarey et al. 2017), SSGs with real-
time information have been studied recently. Some recent
work in deception for cybersecurity, such as (Cooney et
al. 2019; Thakoor et al. 2019), considers strategic signal-
ing with boundedly rational attackers and attackers with dif-
ferent objectives and abilities, but no sensing is required to
identify attackers; rather, the systems may interact with both
normal and adversarial users. Some other work relies on hu-
man patrollers for real-time information (Zhang et al. 2019;
Wang et al. 2019), and others rely on sensors that can no-
tify the patroller when an opponent is detected (de Cote
et al. 2013; Basilico, De Nittis, and Gatti 2015; De Nit-
tis and Gatti 2018). Sensor placement (He et al. 2017) and
drone patrolling (Rosenfeld, Maksimov, and Kraus 2018)
have also been studied. Spatial and detection uncertainties in
alarms are examined in (Basilico, De Nittis, and Gatti 2016;
Basilico, De Nittis, and Gatti 2017). In all of these works,
the sensors are only used to collect information, and do not
actively and possibly deceptively disseminate information
to the attacker. One work that does consider mobile sen-
sors with detection and signaling capability is (Xu et al.

2018). However, it does not consider uncertainty in detec-
tion, which limits its capability in real-world settings. We
add a new reaction stage and signaling strategy without de-
tection, and compactly encode the different states that the
defender resources can have at a target. Our model is there-
fore strictly more general than that in (Xu et al. 2018).

Our work is also related to multistage game models,
e.g., defender-attacker-defender sequential games (DAD)
(Brown et al. 2006; Alderson et al. 2011). In DAD, the
defender and attacker take turns to commit to strategies,
while in our game, the defender commits to a strategy of
all stages at once. Extensive-form games (EFGs) also natu-
rally model sequential games (Kroer et al. 2017; Brown and
Sandholm 2017; Moravčik et al. 2017), and algorithms ex-
ist to efficiently solve the Stackelberg equilibrium in general
two-player EFGs (Černỳ, Boỳanskỳ, and Kiekintveld 2018;
Cermak et al. 2016). However, GUARDSS is more scalable
than the general EFG approach in this case (see Appendix1).

3 Model

We consider a security game played between a defender and
an attacker who seeks to attack one target. The defender
has k human patrollers and l sensors to be allocated to tar-
gets in set [N ] = {1, 2, ..., N}. The sensor is the same as a
drone in our motivation domain, and the attacker is the same
as a poacher. Let Ud/a+/−(i) be the defender/attacker (d/a)
utility when the defender successfully protects/fails to pro-
tect (+/−) the attacked target i. By convention, we assume
Ud+(i) ≥ 0 > Ud−(i) and Ua+(i) ≤ 0 < Ua−(i) for any
i ∈ [N ]. The underlying geographic structure of targets is
captured by an undirected graph G = (V,E) (e.g., Fig. 4).
A patroller can move to any neighboring target and success-
fully interdict an attack at the target at no cost.

Sensors cannot interdict an attack, but they can notify
nearby patrollers to respond and signal to deter the attacker.
If the attacker is deterred by a signal (e.g., runs away),
both players get utility 0. In practice, often one signal (σ1,
e.g., illuminating the lights on the drone) is a warning that
a patroller is nearby, while another signal (σ0, e.g., turn-
ing no lights on) indicates no patroller is nearby, although
these may be used deceptively. Theoretically, (Kamenica
and Gentzkow 2011) also showed two signals suffice (with-
out uncertainty). We thus use two signals: σ1 is a strong
signal and σ0 is a weak signal. When the attacker chooses
one target to attack, he encounters one of four signaling
states, based on the target either having a patroller, noth-
ing, or a drone. The attacker may encounter: (1) a patroller
and immediately get caught (state p); (2) nothing (state n);
(3) a drone with signal σ0 (state σ0); (4) a drone with sig-
nal σ1 (state σ1). The attacker is caught immediately at
state p, so there is no signal. Therefore, we omit p and let
Ω = {n, σ0, σ1} be the set of signaling states.

3.1 Modeling Uncertainty

In this paper, we focus on two prominent uncertainties
motivated directly by the use of conservation drones. The

1bit.ly/aaai2020 signaluncertainty
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first is the detection uncertainty, when there is a limita-
tion in the sensor’s capability, e.g., a detection could be
incorrect due to the inaccuracy of image detection tech-
niques in the conservation domain (Bondi et al. 2020; 2018;
Olivares-Mendez et al. 2015). We consider only false neg-
ative detection in this paper because patrollers often have
access to sensor videos, so the problem of false positives
can be partly resolved with a human in the loop. In contrast,
verifying false negatives is harder, e.g., the attacker is easy
to miss in the frame (Fig. 1) or is occluded. We therefore
denote the false negative rate as γ for any sensor2.

The second type of uncertainty we consider is the ob-
servational uncertainty, where the true signaling state of
the target may differ from the attacker’s observation (e.g.,
a poacher may not be able to detect the drone’s signal). We
use ω̂ to denote the attacker’s observed signaling state, and
use ω to denote the true signaling state based on the defender
signaling scheme. We introduce uncertainty matrix Π to cap-
ture observational uncertainty. The uncertainty matrix Π will
contain the conditional probability Pr[ω̂|ω] for all ω̂, ω ∈ Ω
to describe how likely the attacker will observe a signaling
state ω̂ given the true signaling state is ω.

Π =

[
Pr[ω̂ = n|n] Pr[ω̂ = n|σ0] Pr[ω̂ = n|σ1]
Pr[ω̂ = σ0|n] Pr[ω̂ = σ0|σ0] Pr[ω̂ = σ0|σ1]
Pr[ω̂ = σ1|n] Pr[ω̂ = σ1|σ0] Pr[ω̂ = σ1|σ1]

]

Considering an arbitrary uncertainty matrix may unnec-
essarily complicate the problem, since some uncertainties
never happen. We thus focus on a restricted class of uncer-
tainty matrices that are natural in our domain.3 In our un-
certainty model, we assume that a weak signal will never be
observed as strong; moreover, n (the signaling state without
any resource) will never be observed as strong or weak. As
a result, the uncertainty matrix Π can be reduced to the fol-
lowing form, parameterized by κ, λ, μ, where κ = Pr[ω̂ =
n|σ0], λ = Pr[ω̂ = n|σ1], μ = Pr[ω̂ = σ0|σ1]:

Πκλμ =

[
1 κ λ
0 1− κ μ
0 0 1− λ− μ

]

As a result of this uncertainty, the attacker may not behave
as expected. For example, if he knows that he has difficulty
seeing the strong signal, he may decide to attack only when
there is no drone, whereas typically we would expect him
to attack on a weak signal. Therefore, let η ∈ {0, 1}3 be
the vector that depicts attacker behavior for each observa-
tion {n, σ0, σ1} ∈ Ω, where 1 represents attacking, and 0
represents running away. So, η = 1 means an attacker will
attack no matter what signaling state is observed, and η = 0
means an attacker will never attack.

3.2 Reaction Stage

Uncertainty motivates us to add an explicit reaction stage
during which the defender can respond or re-allocate pa-
trollers to check on extremely uncertain sensors or previ-
ously unprotected targets, for example. The timing of the

2False negative rate: P (no detection | poacher is present).
3Most results can be extended to general uncertainty matrices.

game is summarized in Fig. 2. In words, (i) the defender
commits to a mixed strategy and then executes a pure strat-
egy allocation; (ii) the attacker chooses a target to attack;
(iii) the sensors detect the attacker with detection uncer-
tainty; (iv) the sensors signal based on the signaling scheme;
(v) the defender re-allocates patrollers based on sensor de-
tections and matching; (vi) the attacker observes the signal
with observational uncertainty; (vii) the attacker chooses to
either continue the attack or run away. In (v), if a sensor de-
tects the attacker, then nearby patroller(s) (if any) always go
to that target, and the game ends; or if no sensors or pa-
trollers detect the attacker, the patroller moves to another
target to check for the attacker. The attacker reaction occurs
after the defender reaction because the attacker reaction does
not affect the defender reaction in the current model. In other
words, there is no cost in reallocating the defender even if
the attacker runs away, so the defender should begin moving
right away.

Time

Defender
Pre-Plan*

Defender
Allocate

Attacker
Allocate

Detection
(with Uncertainty)

Defender
Signal

Observation
(with Uncertainty)

Defender
React

Attacker
React

Figure 2: Game timing. Top and bottom are defender and at-
tacker actions, respectively. *Defender fixes strategy offline.

3.3 Defender and Attacker Strategies

Defender Strategy: The strategy space consists of random-
ized resource allocation and re-allocation, and signaling. A
deterministic resource allocation and re-allocation strategy
(henceforth, a defender pure strategy) consists of allocat-
ing the patrollers to k targets, the sensors to l targets, and
the neighboring target to which each patroller moves if no
attackers are observed. Re-allocation can be equivalently
thought of as matching each patroller’s original target to a
neighboring target. A patroller goes to the matched target
only if the attacker is not observed, and may respond to any
nearby sensor detection, regardless of matching.

As a result of this rich structure, a pure strategy in the
model needs to represent not only if the target is assigned
a patroller (p), nothing (n), or a sensor (s), but also the al-
location in neighboring targets. We compactly encode this
pure strategy via 6 possible allocation states for each target.
Let Θ = {p, n+, n−, s̄, s+, s−} denote the set of all pos-
sible allocation states of an individual target. The target is
assigned a patroller (p), nothing (n), or a sensor (s). If there
is no patroller near a sensor (̄s), then no one can respond
to the sensor’s detection. If there is a nearby patroller, the
target is either matched (n+, s+) or not matched (n−, s−).
Therefore, each target is in one of the allocation states in Ta-
ble 1. For example, n+ is the state of a target which was not
allocated a patroller or sensor, but in the reaction stage has a
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patroller from a neighboring target (“patroller matched”).

Covered Near Patroller Protected
By: Patroller? Matched? Overall?

p Patroller N/A N/A Yes
n+ Nothing Yes Yes Yes
n- Nothing N/A No No
s̄ Sensor No N/A No
s- Sensor Yes No Yes*
s+ Sensor Yes Yes Yes

Table 1: Allocation State, *protected if sensor detects

Given Θ, a defender pure strategy can be compactly rep-
resented with an allocation state vector e ∈ ΘN , in which
ei ∈ Θ denote the allocation state of a target i ∈ [N ].
Let E ⊆ ΘN be the set of feasible allocation state vectors
that corresponds to defender pure strategies. Note that not
all vectors in ΘN correspond to a feasible defender strategy
due to the limited number of patrollers and sensors. A de-
fender mixed strategy is thus a distribution over E and can
be described by {qe}e∈E where qe is the probability of play-
ing pure strategy e ∈ E . Similarly, a defender mixed strategy
can also be compactly represented by a marginal probability
vector x, where xθi represents the marginal probability that
target i is in the allocation state θ ∈ Θ. This is similar to the
coverage vector used in basic SSGs with schedules (Jain et
al. 2010). We introduce the constraints that x needs to satisfy
to be a valid mixed strategy in Section 5.

The defender also deploys a signaling process w.r.t. each
target i. The defender’s signaling strategy can be speci-
fied by probabilities ψs−

i , ψs+
i , and ψs̄

i . ψ
s−
i is the joint

probability of allocation state s− and sending signal σ0
together conditioned on the sensor detecting an attacker,
i.e., Pr[s− ∧ σ0|detected]. To be a valid signaling strat-
egy, ψs−

i ∈ [0, xs−
i ]. Note that xs−

i − ψs−
i will be the joint

probability of realized state s− and sending signal σ1, to-
gether conditioned on detection. The conditional probability
of sending σ0 given the target is in state s− and it is de-
tected is ψs−

i /xs−
i . We use the joint probability instead of

the conditional probability as it results in linear terms for the
optimal defender strategy. Because of detection uncertainty,
we add the option to signal without detecting the attacker.
Let ϕθi ∈ [0, xθi ] be the joint probability of allocation state θ
and sending signal σ0 conditioned on the sensor not detect-
ing an attacker, for all θ ∈ {s̄, s−, s+}. We use χ to denote
the allocation, reaction, and signaling scheme, or defender’s
deployment strategy: χ = (x, ψ, ϕ).

Attacker Strategy: Recall the attacker has the alloca-
tion and reaction stages. In the allocation stage, the attacker
chooses a target to attack based on the defender deployment
strategy χ. He will be caught if the target is at state p. When
the attacker is not caught, he may observe any of the signal-
ing states ω̂ ∈ Ω. Based on his observation, the attacker then
has a choice in the reaction stage to run away or continue
the attack. The attacker knows the defender mixed strategy
χ when choosing a target to attack, and he can observe the
realization of the target (with uncertainty) when choosing
to attack or run away. Since this is a Stackelberg game and

the defender commits to allocation and signaling schemes, it
suffices to consider only the attacker’s pure responses.

4 Why Do We Need to Handle Uncertainty

In this section, we prove several theoretical properties re-
garding how uncertainties affect the defender’s optimal strat-
egy and utility. All formal proofs are deferred to the Ap-
pendix. Let χ∗(γ,Π) be the optimal allocation under detec-
tion uncertainty of γ and observational uncertainty Π. Let
DefEU(χ, γ,Π) be the defender expected utility when the
actual uncertainties are γ,Π and the defender’s deployment
is χ. Let Π0 = I denote no observational uncertainty. We
assume in Propositions 1 and 2 and Theorem 1 that Π = Π0

and analyze detection uncertainty, so omit for conciseness.
We first show the loss due to ignoring detection uncertainty.
Proposition 1. Let χ∗

0 = χ∗(0) be the defender optimal de-
ployment when no uncertainties exist. There exist instances
where DefEU(χ∗

0, γ) < DefEU(χ∗(γ), γ) for some γ.
In fact, DefEU(χ∗(γ), γ)−DefEU(χ∗

0, γ) ≥ γ ·max
i∈[N ]

|Ud−(i)|
for some instance. If we ignore γ, we do not signal when we
do not detect an attacker. Furthermore, the defender would
never match a patroller to a target with a sensor (s+) in
χ∗
0. Thus, if we ignore uncertainty, there can be a steep

penalty; in contrast, with the optimal strategy considering
uncertainty, if the false negative rate is high, we may match
a patroller to a target to confirm the presence of an attacker.
Given the attacker’s knowledge of the defender mixed strat-
egy, the attacker is therefore more likely to run away.

Our next result (Theorem 1) shows that the defender ex-
pected utility is non-increasing as detection uncertainty γ
increases. As a byproduct of the proof for Theorem 1, we
also show that the optimal solution may change as detec-
tion uncertainty changes. This illustrates the necessity of an
algorithm for dealing with detection uncertainties.
Theorem 1. DefEU(χ∗(γ), γ) ≥ DefEU(χ∗(γ′), γ′) for
any γ′ > γ in any problem instance.
Proposition 2. χ∗(γ) differs from χ∗(γ′) for any γ′ > γ
when xs−

t is nonzero for χ∗(γ′), where target t is the at-
tacker best responding target in χ∗(γ′).
The intuition underlying the proof of Theorem 1 is that if
we have a drone with a low false negative rate, then we can
simulate a drone with a high false negative rate by ignoring
some of its detections. The optimal solution for drones with
a low false negative rate cannot be worse than that for drones
with a high false negative rate.

We now show several results for observational uncer-
tainty. First, we show that the loss due to observational un-
certainty can be arbitrarily large.
Proposition 3. There exists Π such that the loss
due to ignoring observational uncertainty is arbitrar-
ily large. In other words, DefEU(χ∗(γ0,Π), γ0,Π) -
DefEU(χ∗(γ0,Π0), γ0,Π) > M , ∀M > 0.
The original signaling strategy tries to ensure the attacker
only attacks when he observes the weak signal, σ0, or noth-
ing, n. However, with observational uncertainty, this may not
be true because the true signal may be σ1, but the attacker
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may have observed it mistakenly as σ0. Therefore, we need
to enforce different attacker behaviors in order to obtain a
better solution quality.

Now, we examine the attacker’s behavior given a fixed de-
ployment χ as observational uncertainty changes. Let (t, η)
represent an attacker strategy of attacking target t and behav-
ing according to η. Theorems 2 and 3 show that if we do not
consider observational uncertainty, then the attacker behav-
ior is more likely to converge to always attacking (η = 1)
as observational uncertainty increases, where higher obser-
vational uncertainty means the attacker cannot distinguish
between signaling states. Theorems 2 and 3 show that a de-
ployment χ that does not consider observational uncertainty
is more likely to result in this worst-case behavior of η = 1.
Theorem 2. For any fixed deployment χ, if the attacker’s
best response is (t,0) or (t,1) at the Stackelberg equilib-
rium with Π0, then it stays as an equilibrium for any Π′.
Note that η = 0 and η = 1 result in an action that is inde-
pendent of the attacker’s observation. Thus, no matter what
the attacker observes, the attacker can obtain the same utility
with η = 0 or η = 1. It’s only left to show that the attacker
cannot get strictly better utility in Π′ with a different attacker
behavior. Intuitively, Π0 implies a perfect observation, thus
the attacker cannot get better utility than the perfect obser-
vation. So, if (t,1) or (t,0) is a Stackelberg equilibrium, the
defender can safely deploy the same strategy for any uncer-
tainty matrix Π′, without any loss in her expected utility.

Even if (t,0) or (t,1) is not a best response with Π0,
(t,1) may still be a best response at high levels of uncer-
tainty. First, we say a target t is a weak-signal-attack tar-
get if AttEU(σ0) ≥ 0 at t. Note that if AttEU(σ0) ≥ 0,
then the attacker will either always attack at ω̂ = σ0, or is
indifferent between attacking and running away. We say χ
is a weak-signal-attack deployment if all targets are weak-
signal-attack targets.
Theorem 3. If (t,1) is a best response for Πκλμ and χ is
a weak-signal-attack deployment, then (t,1) is a best re-
sponse for Πκ′λ′μ′ and χ for all κ′ ≥ κ, λ′ ≥ λ, μ′ ≥ μ.
In our model of observational uncertainty, more uncertainty
means that the attacker sees a weak signal more often. Fur-
ther, the attacker always attacks when he observes a weak
signal. Thus, if the attacker is always attacking with less
uncertainty, he will only attack more often with more un-
certainty. However, in order to obtain predictable attacker
behavior, we need to show that a weak-signal-attack deploy-
ment always exists as an optimal solution. In other words,
Theorem 3 holds if there is weak-signal-attack deployment,
so we now have to show that such a deployment exists.
Proposition 4. There always exists an optimal solution that
is a weak-signal-attack deployment with Π0.
The intuition behind the proof is that we can always decrease
the probability of a weak signal such that we either do not
send a weak signal, or the attacker attacks when he observes
a weak signal. This holds optimally because when obser-
vational uncertainty is Π0, signals are interchangeable. To
summarize, if the attacker behavior is 0 or 1, then the at-
tacker behavior is independent of observational uncertainty.
We may see this behavior emerge as uncertainty increases.

5 How to Handle Uncertainty

We provide a solution approach based on the well-known
multiple LPs approach from (Conitzer and Sandholm 2006).
In particular, for each target t ∈ [N ], we compute the opti-
mal defender strategy given that the attacker’s best response
is t. Then, the optimal defender strategy is the mixed strategy
that leads to the maximum defender expected utility among
all t ∈ [N ]. The problem is NP-hard without uncertainty (Xu
et al. 2018), thus our ultimate goal is to develop an efficient
algorithm to solve the problem. For expository purposes, we
first focus on presenting the LP for detection uncertainty.

5.1 Detection Uncertainty

Using notation from Section 3.3, we first formulate each
player’s utility function by breaking it into three parts ac-
cording to signaling states: 1) no sensor is allocated (states
n(+/−) and p, which we denote by −s); 2) sensor is allo-
cated and sends σ0; and 3) sensor is allocated and sends σ1.

1. Ud/a-s (i) = xp
i ·Ud/a+ (i) + xn+

i ·Ud/a+ (i) + xn−
i ·Ud/a− (i)

is the expected defender/attacker utility of target i being
attacked over states when i has no sensor (p, n+, n−).

2. Ud/aσ0 (i) = (1−γ) · [ψs+
i ·Ud/a+ (i)+ψs−

i ·Ud/a+ (i)+ψs̄
i ·

U
d/a
− (i)]+γ ·[ϕs+

i ·Ud/a+ (i)+ϕs−
i ·Ud/a− (i)+ϕs̄

i ·Ud/a− (i)]
is the defender/attacker expected utility when the attacker
attacks target i and the defender signals σ0.

3. Ud/aσ1 (i) = (1 − γ) · [(xs+
i − ψs+

i ) · Ud/a+ (i) + (xs−
i −

ψs−
i ) ·Ud/a+ (i)+ (xs̄

i−ψs̄
i) ·Ud/a− (i)]+ γ · [(xs+

i −ϕs+
i ) ·

U
d/a
+ (i) + (xs−

i − ϕs−
i ) · Ud/a− (i) + (xs̄

i − ϕs̄
i) · Ud/a− (i)]

In words, 2) and 3) are the sum of expected utility on a
detection and the sum of expected utility on no detection. In
3), in the no detection case, the defender exploits informa-
tion asymmetry in signaling σ1. In particular, the defender
knows that there is no detection, but in sending σ1 to indicate
a detection, relies on the uncertainty the attacker faces in de-
termining if there was a detection. We are now ready to de-
scribe an (exponentially-large) linear program (LP) formu-
lation for computing the optimal defender strategy assuming
best attacker response t (not (t, η) since only detection un-
certainty):

max
x,q,ψ,ϕ

Ud-s(t) + Udσ0
(t) (1)

s.t.
∑

e∈E:ei=θ qe = xθi ∀ θ ∈ Θ, ∀ i ∈ [N ] (2)∑
e∈E qe = 1 (3)

qe ≥ 0 ∀ e ∈ E (4)
Uaσ0

(i) ≥ 0 ∀i �= t (5)

Uaσ1
(i) ≤ 0 ∀i �= t (6)

Ua-s(t) + Uaσ0
(t) ≥ Ua-s(i) + Uaσ0

(i) ∀i �= t (7)

0 ≤ ψθi ≤ xθi ∀ θ ∈ {s̄, s−, s+}, ∀ i ∈ [N ] (8)

0 ≤ ϕθi ≤ xθi ∀ θ ∈ {s̄, s−, s+}, ∀ i ∈ [N ] (9)

The objective function (1) maximizes defender expected
utility. Since the attacker is running away when he observes
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σ1, Udσ1
= 0. Constraints (2)-(4) enforce that the random-

ized resource allocation is feasible (E has exponential num-
ber of elements); (5)-(6) guarantee that σ1, σ0 result in the
attacker best responses of running away and attacking4; (7)
ensures the attacker expected utility at target t is bigger than
at any other target i, thus t is attacker’s best response; (8)-(9)
ensure a feasible signaling scheme.

5.2 Acceleration via Branch and Price

We now describe the branch-and-price solution framework,
which can be used for both uncertainty scenarios. There are
two main challenges in efficiently solving the LP (1)-(9).
First, the total number of possible qe is O(6N ). Second, we
will need to solve N LPs (for each t ∈ [N ]). Solving many
of these large LPs is a significant barrier for scaling up. We
therefore introduce Games with Uncertainty And Response
to Detection with Signaling Solver (GUARDSS), which em-
ploys the branch-and-price framework. This framework is
well-known for solving large-scale optimization programs,
but the main challenges of applying this framework are to
(1) design the efficient subroutine called the slave problem
for solving each LP, and to (2) carefully design an upper
bound for pruning LPs.

First, for one LP w.r.t. a specific t, to address the issue
of the exponential size of set E , we adopt the column gen-
eration technique. At a high level, we start by solving the
LP for a small subset E ′ ⊂ E , and then search for a pure
strategy e ∈ E \E ′ such that adding e to E ′ improves the op-
timal objective value strictly. This procedure continues until
convergence, i.e., no objective value improvement. The key
component in this technique is an algorithm to search for
the new pure strategy, which is a specially-crafted problem
derived from LP duality and referred to as the slave problem.
Slave Problem: Given different weights αθi ∈ � for θ ∈ Θ,
for each target i, solve the weight maximization problem:

max
e∈E

∑
θ∈Θ

∑
i:ei=θ

αθi (10)

Note that {αθi }θ∈Θ are the optimal dual variables for the
previous LP constraint (2). We want to solve this without
enumerating all of the elements in E . Despite the added com-
plexity compared to classic SSGs, in this section, we com-
pactly represent this slave problem as a mixed integer linear
program (MILP). To formulate the MILP, we introduce six
binary vectors vp, vn+, vn−, vs̄, vs−, vs+ ∈ {0, 1}N to en-
code for each target whether it is in each allocation state.
For example, target i is at allocation state s̄ if and only if
vs̄
i = 1. The main challenge then is to properly set up linear

(in)equalities of these vectors to precisely capture their con-
straints and relations. The capacity for each resource type
results in two constraints (number of patrollers and sensors):∑

i∈[N ] v
p
i ≤ k (11)∑

i∈[N ](v
s̄
i + vs−

i + vs+
i ) ≤ l (12)

Moreover, each target must be at one of these states:

vp
i + vn−

i + vn+
i + vs̄

i + vs−
i + vs+

i = 1 ∀i ∈ [N ] (13)

4Although we minimize this behavior, we still model it.

Due to the reaction stage, we have to add constraints to spec-
ify (a) which targets have a patroller at a neighboring target;
(b) which patroller goes to which nearby target if both sen-
sors and patrollers do not detect the attacker. For (a), the
non-zero entries of A · vp specify the targets with a pa-
troller nearby, where A is the adjacency matrix of the under-
lying graph. Since three vectors encode the states requiring
a nearby patroller, we have this constraint:

A · vp ≥ vn+ + vs− + vs+ (14)

We ensure that a vertex with a patroller nearby cannot be vs̄:

A · vp ≤ vp + vn+ + vn− + vs− + vs+ (15)

Constraint (b) means that patrollers must be “re-matched”
to new vertices in the reaction stage. Specifically, targets
in states p, n+, s+ must form a matching. To enforce this
constraint, let G′ be the directed version of G, i.e. for all
(i, j) ∈ E we have (i, j), (j, i) ∈ E′. We further intro-
duce edge variables y(i,j) ∈ {0, 1} indicating whether the
directed edge (i, j) is in the matching or not. The match-
ing constraint can be expressed by the following linear con-
straints:∑

(i,j)∈E′:j∈[N ] y(i,j) = vp
i ∀i ∈ [N ] (16)

vn+
j + vs+

j ≥ y(i,j) ∀(i, j) ∈ E′ (17)
The resulting MILP for the slave problem is as follows.

maxv,y
∑
θ

∑
i v
θ
i α

θ
i

s.t. (11)− (17) (18)

vθ ∈ {0, 1}N ∀θ ∈ Θ (19)

y(i,j) ∈ {0, 1} ∀(i, j) ∈ E′ (20)

Second, to avoid solving LPs for all different targets t ∈
[N ], we use the branch and bound technique which finds an
upper bound for each LP for pruning. The natural approach
for finding an upper bound is to solve a relaxed LP corre-
sponding to the original LP — in our case, essentially relax
the original LP into its marginal space. As the set E is ex-
ponentially large, we relax variables and constraints corre-
sponding to E in our LP. Concretely, we relax (2) - (4) into a
polynomial number of variables and constraints. These vari-
ables and constraints are (18) - (20) with vθ replaced by xθ.
We first use the relaxed LP to efficiently compute an upper
bound for each LP. After solving each relaxed LP exactly,
we solve original LPs chosen according to some heuristic
order (typically the descending order of the relaxed optimal
objective) using the column generation techniques, and we
can safely prune out those LPs whose optimal relaxed value
is less than the current largest achievable objective value.
This process continues until no LP is left to solve, in which
case the current largest objective value is optimal.

5.3 Detection and Observational Uncertainty

Finally, we briefly discuss the case with both uncertainties,
as it can be solved in a similar way. Constraints (2)-(4) and
(8)-(9) are the same. However, the remaining constraints
must now account for attacker behavior, η. For example, the
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utility functions Ud/aσ0 and Ud/aσ1 must change to incorporate
attacker behaviors, and the objective function becomes that
in (21) since the attacker may not run away when he ob-
serves σ1 in the presence of observational uncertainty. Also,
we add a constraint to ensure the attacker utilities are aligned
with the attacker behavior η ∈ {0, 1}3. These are primarily
notational changes. We therefore provide the full LP for this
case in the Appendix.

max
x,q,ψ,ϕ

Ud-s(t) + Udσ1
(t) + Udσ0

(t) (21)

6 Experiments

We generate random Watts-Strogatz graphs, which have
small-world properties to describe more complex environ-
ments, such as roads connecting far-away nodes. For all
tests, we average over 20 random graphs and include p-
values. Utilities are randomly generated with a maximum
absolute value of 1090 and based on the idea that the losses
from undetected attacks are higher than the utility of catch-
ing adversaries (similar to (Xu et al. 2015)). This is realistic
to the situation of preventing poaching, as animals are worth
more for ecotourism than for sale on the black market as dis-
cussed in the Appendix. Additionally, we see that if we test
on a set of utilities that is slightly different from the original
input, the defender’s utility does not vary greatly. Fig. 3a-
3b show timing tests run on a cluster with Intel(R) Xeon(R)
CPU E5-2683 v4 @ 2.1 GHz with at most 16 GB RAM.
We set the number of patrollers to be k =

√
N/2 and the

number of drones to be l = 2N/3 − k. As shown, the full
LP scales up to graphs of N = 14 only and exceeds the
cutoff time limit of 3600s for all N = 16 graphs. Branch
and price scales up to N = 80 and runs out of time for
larger games, and a warm-up enhancement that greedily se-
lect an initial set of E further improves scalability and solves
13/40 graphs within cutoff time at N = 90 and N = 100.
This is sufficient for middle-scale real-world problems, with
further scalability being an interesting direction for future
work. The heuristics provide the same solution as the full
LP in most of the instances tested.

Next, we show the loss due to ignoring uncertainty em-
pirically. In Figs. 3c-3d we compare DefEU(χ∗(γ,Π), γ,Π)
computed by GUARDSS and DefEU(χ∗(0,Π0), γ,Π), the
defender expected utility when ignoring uncertainty for
graphs with N = 10, k = 1, l = 3. We consider only
one type of uncertainty at a time (e.g., γ = 0 when vary-
ing observational uncertainty). For detection uncertainty,
GUARDSS’s defender expected utility only decreases by
12%, whereas ignoring uncertainty decreases by 210% when
γ varies from 0 to 0.9 (p ≤ 1.421e−03 for γ ≥ 0.2 in Fig.
3c)5. Some initial analysis shows that it is robust in most of
the cases when we slightly under- or overestimate γ (e.g., the
differences in defender expected utility are typically within
5-6% when the estimate of gamma is off by 0.1 or 0.2),
but further investigation on dealing with such uncertainty
over uncertainty would be an interesting direction for future
work. For observational uncertainty, GUARDSS’s defender

5% change once normalized by largest defender/attacker utility.

expected utility only decreases by 1%, whereas ignoring un-
certainty decreases by 18% as the observational uncertainty,
parameterized by κ (λ = κ

2 , and μ = κ
2 ) varies from 0 to 0.9

(p ≤ 0.058 for κ ≥ 0.4 in Fig. 3d).
We also observe that when ignoring detection uncertainty,

the attacker’s best response is typically a target with a sen-
sor, which implies that the attacker is taking advantage of the
defender’s ignorance of uncertainty. In fact, there is a statis-
tically significant (p = 1.52e−08) difference in the mean
probability of a sensor at the attacker’s best response when
ignoring uncertainty (0.68) versus GUARDSS (0.19).

How does the defender avoid these challenges and achieve
such a small performance drop with GUARDSS when facing
uncertainty? Statistics of the resulting defender strategy as
well as Fig. 3e indicate that the defender exploits the uncer-
tain real-time information and the information asymmetry,
including (a) frequently but not always sending patrollers to
check important targets when there is no detection; (b) send-
ing strong signals more frequently than the probability that
the patroller will visit the target (either due to response to de-
tection or planned reallocation in the case of no detection),
leveraging the informational advantage in which the attacker
does not know whether he is detected or whether a patroller
is matched; (c) using different signaling schemes with and
without detection, leveraging the information advantage that
the attacker does not know whether he is detected. In the
GUARDSS strategies in Figs. 3c-3d, the mean probability
of the attacker’s best response target being at state s− (with
sensor but without a matched patroller) is 0.04, versus 0.43
when ignoring uncertainty (p = 2.70e−09), indicating point
(a). If we call the strong signal sent when there is no detec-
tion a fake signal, Fig. 3e shows that the probability of the
strong signal an attacker observes is a fake signal is non-
zero and increases in a non-linear fashion, indicating points
(b) and (c). Also, note that the strong signal is used with
nonzero probability on average on targets with a nonzero
probability of having a drone present.

Despite considering uncertainty, sensors may be less valu-
able at a high level of uncertainty. In Fig. 3f, the defender ex-
pected utility is influenced by the number of drones and un-
certainty in sizeN = 15 graphs. In Fig. 3g, drones are better
than an extra patroller at γ = 0.3 (p ≤ 6.661e−02), but at
γ = 0.8, patrollers are better than drones (p ≤ 1.727e−07).

7 Conservation Drones
We have deployed a drone in South Africa, equipped with a
thermal camera and detection system (Air Shepherd 2019).
A photo of the drone team in South Africa currently is in-
cluded in Fig. 1 (center). To ease the challenges faced by
these operators in coordination of drones with imperfect sen-
sors and patrollers, we apply GUARDSS and show that it
provides positive results in simulation to support future po-
tential deployment. To facilitate the most realistic simula-
tion possible, we utilize example poaching hotspots in a real
park. We cannot provide the exact coordinates in order to
protect wildlife, but we selected points based on geospatial
features, and selected utilities to reflect the fact that the re-
ward and penalty of the attackers are impacted by animal
presence, price, and distance to several park features used
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Experimental results. Figs. 3a-3b compare multiple LPs approach (Exponential LP) with GUARDSS branch-and-price
and heuristic method. Figs. 3c-3d show defender expected utility when amount of detection uncertainty γ and observational un-
certainty vary. Defender expected utility decreases much more when uncertainties are ignored. Fig. 3e shows the informational
advantage of the defender as uncertainty increases. Figs. 3f-3g show that in the presence of a high false negative rate, extra
patrollers may be more useful than drones. Fig. 3h contains the results from the case study, where GUARDSS performs best.

Figure 4: A park in Google Maps with potential poaching
hotspots and the resulting graph (edges for < 5 km).

in (Gholami et al. 2018). The targets are shown in Fig. 4
(left). Any targets within 5 km are connected via edges in
the graph, as park rangers could cover 5km for response.
The resulting graph is shown in Fig. 4 (right). The utili-
ties are included in the Appendix along with further de-
tails. For the simulation, we use 3 drones and 1 patroller.
In the “no drones” scenario only, there are 0 drones and
1 patroller. We use γ = 0.3 for detection uncertainty and
no observational uncertainty (see the Appendix for results
with other γ). These details are directly input to GUARDSS,
and then a mixed strategy is determined to cover the park.
Fig. 3h shows the defender expected utility in this park
using GUARDSS with and without uncertainty, and sev-
eral baselines. A negative defender expected utility indi-
cates that animals were lost, so a higher positive number is

ideal. Therefore, we perform better with GUARDSS than
using a random allocation, ignoring uncertainty, or forgoing
drones. In fact, ignoring uncertainty is worse than forgoing
drones completely. For varying γ (see Appendix), the gap
between ignoring detection uncertainty and GUARDSS in-
creases as γ increases, and the gap between the no drones
case and GUARDSS decreases as γ increases, showing a
similar trend to Fig. 3g. However, in all cases, the results em-
phasize the importance of correctly optimizing to get value
from drones even with uncertainty.

8 Conclusion

The loss due to ignoring uncertainty can be high such that
sensors are no longer useful. Nevertheless, by carefully ac-
counting for uncertainty, uncertain information can still be
exploited via a novel reaction stage and signaling even upon
no detection. In this case, despite being aware of uncer-
tainty, the attacker does not know whether he was detected,
nor whether a patroller will respond in the reaction stage.
Our results illustrate that the defender can exploit this infor-
mational advantage even with uncertain information. Thriv-
ing under this uncertainty makes real-world deployment of
GUARDSS promising, as shown through simulation.
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and Ordóñez, F. 2017. Building real stackelberg security games
for border patrols. In GameSec.
Cermak, J.; Bosansky, B.; Durkota, K.; Lisy, V.; and Kiekintveld,
C. 2016. Using correlated strategies for computing stackelberg
equilibria in extensive-form games. In AAAI.
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