
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Dynamic Programming for Predict+Optimise

Emir Demirović,1 Peter J. Stuckey,2,3 James Bailey,1 Jeffrey Chan,4

Christopher Leckie,1 Kotagiri Ramamohanarao,1 Tias Guns5

1University of Melbourne, Australia
2Monash University, Australia

3Data61, Australia
4RMIT University, Australia

5Vrije Universiteit Brussel, Belgium
{emir.demirovic, baileyj, caleckie, kotagiri}@unimelb.edu.au,

peter.stuckey@monash.edu, jeffrey.chan@rmit.edu.au, tias.guns@vub.be

Abstract

We study the predict+optimise problem, where machine
learning and combinatorial optimisation must interact to
achieve a common goal. These problems are important when
optimisation needs to be performed on input parameters that
are not fully observed but must instead be estimated using
machine learning. We provide a novel learning technique
for predict+optimise to directly reason about the underlying
combinatorial optimisation problem, offering a meaningful
integration of machine learning and optimisation. This is
done by representing the combinatorial problem as a piece-
wise linear function parameterised by the coefficients of the
learning model and then iteratively performing coordinate de-
scent on the learning coefficients. Our approach is applica-
ble to linear learning functions and any optimisation problem
solvable by dynamic programming. We illustrate the effec-
tiveness of our approach on benchmarks from the literature.

Introduction

Machine learning and combinatorial optimisation are two
essential components of decision-making systems. The for-
mer aims to provide predictive models based on historical
data, while the latter prescribes optimal actions given input
data. While there has been significant progress in these areas
individually, an established methodology for solving prob-
lems which require both remains an open question.

We study the predict+optimise problem (Demirović et al.
2019a; Wilder, Dilkina, and Tambe 2019; Donti, Amos, and
Kolter 2017), where the task is to learn input parameters to
a combinatorial optimisation problem, such that the result-
ing solutions are deemed desirable. Therefore, optimisation
needs to be performed with input that is approximated. Tra-
ditionally, predict+optimise is viewed as a two-stage pro-
cess: predict the input parameters and then optimise. This is
illustrated in the following example, which will be used as a
running example throughout the paper.
Example 1. Consider a parametrised project-funding prob-
lem. The input parameters are integers that represent the
benefit of funding each individual project pi. These esti-
mates are based on the novelty ni of the project and the

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

experience ei of the investigator. In addition, each project
has a cost ci and a limited amount of funding is available.
The committee decided to use a linear weighting scheme to
determine the perceived value vi of each project. They fixed
the coefficient for the experience component and are decid-
ing on the coefficient α for the novelty part, i.e., v′i(α) =
ni · α + ei. Once the coefficient α is agreed upon, the task
is to select the subset of projects to maximise the estimated
value. Consider four projects with features pi = (ni, ei, ci)
as (−1, 10, 2), (1, 2, 1), (−0.5, 5, 1), and (2,−5, 1). Note
that all but the first project are of unit cost. Assume the
funding budget is set to two units. By varying the coefficient
α, different optimal outcomes can be observed. Figure 1(a)
shows the relationship between α, the funding decisions, and
their total estimated value.

In the example above, the output is the list of projects that
are to be selected for funding. The estimated values serve
merely as proxies for deciding the outcome. However, the
true values of funding the project will only become appar-
ent after the projects are completed. Therefore, the aim is to
learn a predictive model that results in a decision that max-
imises the true value, rather than the estimated values.

The main issue that arises is that conventional learning
metrics, such as mean-square error, do not necessarily reflect
the outcome of the optimisation procedure.
Example 1 (continued). The committee believes it would
be best to equally weigh the novelty and experience crite-
ria, i.e., set α = 1. This results in funding project p1.
However, a machine learning expert recommends using a
data-driven approach. When observing projects with simi-
lar features that were funded in previous years, the histor-
ical data suggests the projects are likely to result in values
V = (v1, v2, v3, v4) = (14, 11, 12, 10). Linear regression,
a standard machine learning algorithm that minimises the
mean-square error, i.e., mse(V, V ′(α)) =

∑
(vi − v′i(α))

2,
suggests setting the novelty coefficient to α = 5. This would
lead to funding projects p2 and p4, which has a greater out-
come value than project p1. However, had the machine
learning algorithm understood the underlying combinato-
rial optimisation problem, a possible suggestion would be
α = 3. This would result in funding projects p2 and p3,
which is the optimal funding decision according to histori-

1444

(4,9)

α

f

(2,8)7
8
9
10
11
12
13

1 2 3 4 5 6 7

3α-3
-α+10

0.5α+7
{p1}

{p2,p3}

{p2,p4}

(a)

(4,9)

α

outcome

(2,8)

12
14
16
18
20
22
24

1 2 3 4 5 6 7

21

14

23

{p1}

{p2,p3}
{p2,p4}

10

(b)

Figure 1: (a) Total estimate and (b) outcome values as a
function of the novelty weight α. The purple curly brack-
ets denote the funded projects for values of α along the seg-
ment, i.e., α ∈ (−∞, 2) → {p1}; α ∈ [2, 4) → {p2, p3},
and α ∈ [4,∞)→ {p2, p4}.

cal data V and the funding budget. The estimated values do
not accurately represent the true values, but serve as proxy
values which lead to the best decision. Figure 1(b) shows
how α changes outcome value, the total value of the funded
projects, based on the historical data.

The piecewise function in Figure 1b was key in provid-
ing the best predictive model in the previous example. It
shows possible outcomes as a function of the learning coef-
ficient α, allowing us to easily select the best value. The
construction of this function is precisely the main contri-
bution of our paper. We provide a technique to build such
a function for optimisation problems solvable by dynamic
programming. When applied to a machine learning setting,
such as predict+optimise, the piecewise function representa-
tion enables the learning algorithm to reason over the effect
on the combinatorial optimisation problem. This is in con-
trast to previous works, which consider a relaxation of the
(NP-hard) optimisation problem.

Related work is divided into three groups: 1) direct meth-
ods aim to interact with the optimisation problem during
training, in most cases considering an approximation of the
underlying combinatorial problem, 2) semi-direct methods
take into account features of the optimisation problem but do
not directly interact with the problem during training, and 3)
indirect methods are oblivious to the optimisation problem,
i.e., standard machine learning algorithms such as linear re-

gression. Related work, including knowledge-compilation
techniques, preference elicitation, and Lagrangian relax-
ation, are discussed after the section on preliminaries.

Our method falls into the direct category: we provide
the means to directly reason over the combinatorial prob-
lem. This was previously only achieved for combinatorial
problems with ranking objective funtions (Demirović et al.
2019a). In our work, we cover a new class of problems,
namely those conventionally solvable by dynamic program-
ming, which includes weakly NP-hard problems.

The main step is, as illustrate above, to represent the com-
binatorial problem as a piecewise linear function based on
historical data to capture the possible outcomes for any value
of the learning coefficient. This is accomplished by using an
algebra over (piecewise) linear functions and dynamic pro-
gramming algorithms. Each segment can be mapped to a
solution of the combinatorial problem, which is considered
optimal given the objective function defined on the interval.
The main purpose of the representation is its application to
predict+optimise: once the piecewise representation is built,
we can efficiently evaluate the quality of each parameter
value with respect to the target solution based on historical
data. As a result, we derive a novel learning algorithm that
is able to reason directly over combinatorial problems.

We summarise our contributions as follows:

• We provide a technique for accurately representing the be-
haviour of optimal solutions for combinatorial optimisa-
tion problems, where the objective is given as a function
over a parameter. We consider the class of problems that
are conventionally solvable by dynamic programming.

• We apply our approach to the predict+optimise setting,
where machine learning is used to estimate the input pa-
rameters of a combinatorial optimisation problem. Our
representation enables the machine learning algorithm to
estimate the learning coefficients directly considering the
combinatorial problem, rather than relying on a relaxation
of the problem, leading to more accurate predictions.

Preliminaries

We define an optimisation problem as:

max
X∈C

obj(X,P), (1)

where P is the vector of optimisation parameters, C is the
set of feasible solutions implicitly defined by a set of con-
straints, and obj is the objective function. Solving cor-
responds to computing an optimal solution X∗ that max-
imises the objective while respecting the constraints, i.e.
X∗ ∈ {X|X ∈ C ∧ ∀X ′ ∈ C : obj(X,P) ≥ obj(X ′, P)}.

In the predict+optimise setting, the aim is to compute a
solution X that maximises the objective in the optimisation
problem, but the parameters P = (p1, p2, ..., pn) are hidden.
To assist with the optimisation, a set of attribute vectors A
are given, where Ai = (ai1, ai2, ..., aim) encodes partial in-
formation about the optimisation parameter pi. A common
approach is to compute a solution for the original optimisa-
tion problem using estimated parameters p′i = f(Ai) instead

1445

of pi for a chosen prediction function f . Predicted parame-
ters p′i are used to construct a solution, but its optimality is
evaluated with respect to the hidden parameter P .

The challenge is to select a function f that, when used
to provide estimates, leads to an optimal solution with re-
spect to the true parameters. Given historical data (Ai, pi),
the aim of learning is to compute an f that minimises regret,
i.e., the difference between the optimal solution and the re-
sulting solution. Assume f belongs to a predetermined fam-
ily of functions {fα} defined by its m-dimensional vector α.
Predict+optimise problem can be posed in terms of α:

min
α

Regret(α) = min
α

(obj(X∗, P)−obj(X ′(α), P)) (2)

X ′(α) = argmax
X∈C

{obj(X, fα(A))} (3)

The equations represent the learning of α based on his-
torical data (Ai, pi) during training. In practical scenarios
where the training set consists of multiple benchmarks, the
regret is computed as the sum of regrets of each benchmark.
Once an unknown instance consisting of attribute vectors A′

i
is given, the solution is determined using the calculated fα.

Example 1 (continued). The project-funding problem can
be posed as obj(X,P) = maxX(X ·P) and C = {X |X ∈
{0, 1}n ∧X ·K ≤ b}, where P = (p1, p2, p3, p4) and K =
(2, 1, 1, 1) represents the value and costs of the projects, re-
spectively. Available units of funding are given by b = 2 and
the final decision is encoded using X , where xi denotes if
the ith project has been selected for funding.

The true value of the projects constitute the parameter
vector P . The attribute vector for the ith project is a pair
representing the novelty of the project ni and the experi-
ence of the investigator ei, i.e., Ai = (ni, ei). Based the
attributes, an estimated value v′i = f(Ai) is computed.

The committee could have considered two learned func-
tions for the attribute vectors Ai = (ni, ei): f1(Ai) =
5 · ni + ei and f2(Ai) = 3 · ni + ei. The function f2 results
in estimates P ′

2 = (7, 5, 3.5, 1), leading to a solution that
selects p2 and p3 and has zero regret given true parameter
values P = (14, 11, 12, 10), as opposed to using f1.

In the following, we assume linear learning functions, i.e.,
fα(A) = α ·A, which are widely used in machine learning,
e.g., regression and linear support vector machines. The ease
of interpreting these functions make them suitable for a va-
riety of explainable AI applications (Azizi et al. 2018).

Similar definitions have appeared in literature, e.g., defin-
ing predict+optimise in terms of expected regret (Demirović
et al. 2019b) and considering linear programs (Elmachtoub
and Grigas 2017; Wilder, Dilkina, and Tambe 2019).

Related Work

Predict+optimise can be partitioned into three groups. In-
direct methods use standard learning methods and loss
functions that are independent of the optimisation problem.
Semi-direct methods (Demirović et al. 2019b) design the
loss function with respect to the optimisation problem but
are otherwise similar in usage to indirect techniques, e.g.,

learning to classify items in knapsack problems as desir-
able and not desirable based on the optimisation result,
which can offer advantages over conventional ranking ap-
proaches. Direct methods (Demirović et al. 2019a; Elmach-
toub and Grigas 2017; Wilder, Dilkina, and Tambe 2019;
Donti, Amos, and Kolter 2017) interact with the optimisa-
tion problem during training. The issue is that most modern
machine learning algorithms rely on gradients, but the regret
function in predict+optimise is nondifferentiable. As an al-
ternative, convex surrogates of combinatorial problems are
employed in training for which gradient descent techniques
can be applied. The common theme of previous work is that
the problem used in learning is simplified and not considered
directly. The first technique to fully integrate the optimisa-
tion problem in its original form, rather than a relaxation,
was based on transition points with linear learning functions
(Demirović et al. 2019a), but it is restricted to ranking prob-
lems. In this work, we extend this framework by including
problems amenable to dynamic programming.

Knowledge-compilation approaches based on binary-
and multi-decision diagrams (Berman, Cire, and van Hoeve
2016; Hadzic et al. 2008; de Uña et al. 2019) compactly rep-
resent all solutions. In a sense, these approaches encode the
dynamic programming structure. One could draw the con-
nection to our work, which represents optimal solutions as a
function of a parameter using dynamic programming.

Lagrangian relaxation computes the dual of a combi-
natorial problem as a piecewise linear function to compute
a lower/upper bound, whereas our approach precisely rep-
resents the behaviour of optimal solutions as the learning
coefficient changes with the aim of computing the regret.

Preference elicitation (Dragone, Teso, and Passerini
2018; Teso, Passerini, and Viappiani 2016) is concerned
with interactively learning to synthesize structured objects
from data. Our setting bears similarities, e.g., both frame-
works learn a linear function whilst minimising a related
notion of regret. Solutions and weights in preference elicita-
tion correspond to attribute vectors and α. However, there
are notable differences. Incremental preference elicitation
considers querying the user, uses a single optimisation prob-
lem, and considers pairwise comparisons with additional
constraints. In contrast, our setting assumes a fixed dataset,
simultaneously optimises multiple problems with the same
α, uses a test set in addition to a training set, and our ap-
proach deals with optimisation problems solvable by dy-
namic programming. In both settings, the predictions are
used in the objective, but our work is concerned with learn-
ing the weights of the objective on a per-instance basis.

Parameterised Optimisation Problems

We introduce parameterised optimisation problems, where
the coefficients in the objective are functions rather than con-
stants. This notion plays an important role in our method, as
predict+optimise can be seen as the problem of selecting the
best parameter of a parameterised optimisation problem that
leads to a solution that minimises regret.

For a set of linear functions gi(α) = si · α + ci and their
corresponding vector G(α) = (g1(α), g2(α), ..., gn(α)), we

1446

consider the family of combinatorial optimisation problems,
parameterised by α ∈ R:

COP (α) = max
X∈C

obj(X,G(α)). (4)

The variables X appearing in the objective are assumed
to be linear with respect to G(α). This does not limit the ob-
jective to additively separable objective functions, because
for instance min/max functions are supported, but quadratic
functions are not included. These restrictions are imposed
by the limitations of our algebra (see next section).

For a fixed α ∈ R, we obtain a standard optimisation
problem as defined in the preliminary section, which can
thus be solved using conventional optimisation techniques.

Notice that varying α has an impact on the resulting ob-
jective value, but it does not necessarily lead to a change in
solution, i.e., the assignment of X .

Our aim is to understand the behaviour of solutions with
respect to the parameter α. We would like to compute the
set of transition points αi ∈ R for which COP (αi− ε) and
COP (αi+ε) have different solutions for some infinitesimal
ε > 0. This would allow us to represent the underlying solu-
tion structure, as the solutions to the problem do not change
for parameter values that lie in between the transition points.

The transition points capture the structure of the prob-
lem, since the solution changes in the neighbourhood of
these points, e.g., in Figure 1, α = 2 is a transition point
as COP (1.99) and COP (2.01) have different solutions.
These points play a critical role in enabling machine learn-
ing to directly reason about the combinatorial problem.

Example 1 (continued). The project-funding problem,
parametrised by the novelty weight α, can be written as:
COP (α) = maxX G(α) ·X = maxX g1(α) · x1 + g2(α) ·
x2 + g3(α) · x3 + g4(α) · x4 = maxX(−α + 10) · x1 +
(α+2) · x2 + (−0.5α+5) · x3 + (2α− 5) · x4, where C =
{(x1, x2, x3, x4) | 2x1 +x2 +x3 +x4 ≤ 2 ∧ xi ∈ {0, 1}}.

For α = 0, we have COP (0) = maxX 10x1 +
2x2 + 5x3 − 5x4. Thus, the solution is (x1, x2, x3, x4) =
(1, 0, 0, 0) with the objective of 10. The solution is the same
for COP (1), although the objective value is 9.

Figure 1 shows the behaviour of the project-funding ex-
ample as the parameter α changes. The graph displays
the objective value for every α. The transition points are
2 and 4. Each α ∈ (−∞, 2) has the solution (x1, x2, x3) =
(1, 0, 0, 0). Similarly, for α ∈ (2, 4), the solution is
(x1, x2, x3, x4) = (0, 1, 1, 0), and α ∈ (4,∞) has the solu-
tion (x1, x2, x3, x4) = (0, 1, 0, 1).

Dynamic Programming

We represent the solution structure of parameterised opti-
misation problems using piecewise linear functions. Such
a representation will be used to determine the best parame-
ter value in predict+optimise. For problems solvable by dy-
namic programming, the transition points can be computed.

Standard dynamic programming algorithms require the
coefficients of the objective to be precisely stated as num-
bers, based on which a dynamic programming table is built.
To use such algorithms for our parameterised combinatorial

optimisation problems, the key is to generalise the coeffi-
cients and the table computation to linear functions rather
than integers or reals. For example, in our setting, the ith
coefficient is specified as linear function fi(α) = si ·α+ ci.
The classical optimisation formulation is obtained by set-
ting si = 0. We generalise standard operations on numbers,
such as addition, min, and max, to linear functions by using
piecewise linear functions, which are detailed below.

When combining dynamic programming algorithms with
piecewise linear functions, we can compute the dependency
between the parameter α and the solutions of parametrised
optimisation problem COP (α). As a result, we obtain a
piecewise linear function that can be queried to provide the
solution and objective value of COP (α). More importantly,
the resulting function provides the desired transition points.
The key observation is that the solution does not change for
α values that lie in between transition points. We proceed to
describe our algebra that generalises standard operations on
numbers and follow up with a detailed example.

An Algebra of Piecewise Linear Functions

We represent the solution structure of parameterised opti-
misation problems using piecewise linear functions. Before
detailing our approach, we describe our algebra on piece-
wise linear functions used throughout this paper. This can
be seen as a special case of the general piecewise function
algebra (Mohrenschildt 1998) with specialised algorithms to
ensure a compact representation.
Definition 1. A piecewise linear function fF

I : R → R is
represented as a tuple (I,F), where I is a set of nonoverlap-
ping contiguous intervals and F is a set of linear functions
fi : R → R of the form fi(α) = si · α + ci. Each interval
Ii ∈ I is associated with exactly one fi ∈ F, denoted as
F(Ii) = fi. The value of fF

I at a point α ∈ R is given as
fF
I (α) = fi(α), where α ∈ Ii ∈ I and F(Ii) = fi.

Example 2. Figure 1(a) shows the piecewise linear function
with intervals I = {I1, I2, I3}, I1 = (−∞, 2), I2 = [2, 4),
I3 = [4,∞), F(I1)(α) = −α + 10, F(I2)(α) = 1

2α + 7,
and F(I3)(α) = 3α− 3.

The interpretation of the (pointwise) operations of addi-
tion and maximum on piecewise linear functions is analo-
gous to real numbers and map to a piecewise linear func-
tion. We describe the operation max in detail and sketch the
addition operation. Both operations are linear in their input.

Max: Algorithm 1. The set IT is computed by intersect-
ing intervals from the two input piecewise linear functions.
For each newly computed interval, the two linear functions
corresponding to the linear functions defined on the given
interval by the input functions are considered. If the inter-
section point m of these functions is not in the given interval,
then one of the two functions is greater along the interval.
The interval is thus assigned to the greater function. Oth-
erwise, the interval is split into two parts according to the
intersection point m. Each of the linear function achieves a
greater value than the other only on one part. The appropri-
ate functions are identified and mapped to the intervals.

Addition: As in the max operation, the set of intersection
intervals IT is computed. Each newly computed interval is

1447

Algorithm 1: Compute the max of two piecewise linear
functions

input: Piecewise linear functions fF1

I1
(α) and fF2

I2
(α)

output: Piecewise linear function
fF3

I3
(α)← max(fF1

I1
(α), fF2

I2
(α))

1 begin

2 IT ← {Ii ∩ Ij | Ii ∈ I1 ∧ Ij ∈ I2}
3 F3 ← empty mapping
4 I3 ← ∅
5 for It ∈ IT do
6 f1(α)← F1(It) = s1 · α+ c1
7 f2(α)← F2(It) = s2 · α+ c2
8 m← the point such that f1(m) = f2(m)
9 if m �∈ It or m does not exist then

10 f3 ← the function that has greater value in
the interval It among f1 and f2

11 I3 ← I3 ∪ It
12 F3(It)← f3
13 else
14 Ia ← {x | x < m ∧ x ∈ It}
15 Ib ← {x | x ≥ m ∧ x ∈ It}
16 fa ← the function that has greater value at

x ∈ Ia among f1 and f2
17 fb ← the function that has greater value at

x ∈ Ib among f1 and f2
18 I3 ← I3 ∪ {Ia, Ib}
19 F3(Ia)← fa
20 F3(Ib)← fb
21 return fF3

I3

mapped to a linear function representing the sum of the two
input functions on the given interval.

Detailed Example

Our approach can be applied to any parametrised optimisa-
tion problem that, in its original non-parametrised form, is
solvable by dynamic programming. We illustrate our ap-
proach on the knapsack problem, which corresponds to the
project-funding problem used in the examples.

Consider the parameterised knapsack problem that corre-
sponds to the problem from Example 1. We denote with
B(s, c) the piecewise linear function with a single interval
I1 = (−∞,∞) and F(I1)(α) = s · α + c. Assume each
value pi is given by the linear function fi(α), the dynamic
program can be rewritten as a construction of a piecewise
linear function algebra expression k(i,W) in a similar fash-
ion as for the standard knapsack problem, but using linear
functions rather than constants for the values of items:

k(i,W) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B(0, 0), W = 0∨
i = 0

k(i− 1,W), wi > W
max(k(i− 1,W), wi ≤W
k(i− 1,W − wi) + fi(α))

(5)
Example 1 (continued). Consider the project-funding run-
ning example with four projects of weights 2, 1, 1, 1 and

profits−α+10, α+2, − 1
2α+5 and 2α−5 with a capacity

limit W = 2. The overall problem is k(4, 2). The functions
representing the profits are f1 = B(−1, 10), f2 = B(1, 2),
f3 = B(− 1

2 , 5) and f4 = B(2,−5). The equations for the
piecewise linear functions are:

k(4, 2) = max(k(3, 1) + f4, k(3, 2))
k(3, 2) = max(k(2, 1) + f3, k(2, 2))
k(3, 1) = max(k(2, 0) + f3, k(2, 1))
k(2, 2) = max(k(1, 1) + f2, k(1, 2))
k(2, 1) = max(k(1, 0) + f2, k(1, 1))
k(2, 0) = k(1, 0)
k(1, 2) = max(k(0, 0) + f1, k(0, 2))
k(1, 1) = k(0, 1))
k(1, 0) = B(0, 0)
k(0,) = B(0, 0).

Clearly k(1, 1) = k(2, 0) = B(0, 0). We can com-
pute k(1, 2) = max(B(−1, 10), B(0, 0)). There is
an intersection point at α = 10 so we arrive at
k(1, 2) = {(−∞, 10) �→ −α + 10, [10,∞) �→ 0}.
Now k(2, 1) = max(B(1, 2), B(0, 0)) which has an in-
tersection point at α = −2 so we arrive at k(2, 1) =
{(−∞,−2) �→ 0, [−2,∞) �→ α + 2}. Similarly k(2, 2) =
max(B(1, 2), k(1, 2)). The first interval of k(1, 2) intersects
α+2 at α = 4, the second interval B(1, 2) intersects at α−2
outside [10,∞), in this segment B(1, 2) dominates. The re-
sult is k(2, 2) = {(−∞, 4) �→ −α+ 10, [4,∞) �→ α+ 2}.

To compute k(3, 1) = max(B(− 1
2 , 5), k(2, 1)) we find

the first interval intersects at α = 5
2 outside the range

(−∞,−2) and B(− 1
2 , 5) dominates. The second interval

intersects at α = 2 before which B(− 1
2 , 5) is better. We

compute k(3, 1) = {(−∞, 2) �→ − 1
2α+5, [2,∞) �→ α+2}.

Now k(3, 2) = max(k(2, 1) + B(− 1
2 , 5), k(2, 2). The

first argument is {(−∞,−2) �→ − 1
2α+5, [−2,∞] �→ 1

2α+
7}. We compute the intervals (−∞,−2), [−2, 4), [4,∞). In
the first interval k(2, 2) dominates, in the second there is an
intersection at α = 2 before which k(2, 2) dominates, in
the third interval there is an intersection point at α = 10.
We arrive at k(3, 2) = {(−∞, 2) �→ −α + 10, (2, 10] �→
1
2α+ 7, (10,∞) �→ α+ 2}

Finally k(4, 2) = max(k(3, 1) +B(2,−5), k(3, 2)). The
first argument is {(−∞, 2) �→ 3

2α, [2,∞) �→ 3α − 3}. The
intervals are (−∞, 2), (2, 4], (4, 10], (10,∞). In the first
−α + 10 dominates, in the second 1

2α + 7 dominates and
in the third and fourth 3α− 3 dominates. The final result is
k(4, 2) = {(−∞, 2) �→ −α+10, (2, 4] �→ 1

2α+7, [4,∞) �→
3α− 3} which is F from Example 2 and Figure 1(a).

Application to Predict+Optimise

Our piecewise linear function representation of param-
eterised combinatorial problems can be applied to pre-
dict+optimise, i.e., to compute the function over the at-
tributes to minimise regret. The main idea is that such
a representation of COP (α) explicitly stores the transi-
tion points, i.e., the values αi where COP (αi − ε) and
COP (αi+ ε) have different solutions for some small ε > 0.
Therefore, the solution of a COP (α) stays fixed for values

1448

of the parameter in between consecutive transition points. In
predict+optimise, a change of a predicted solution is a suffi-
cient condition for a change of regret. Thus, the regret can
be minimised by considering a single point from each inter-
val defined by the transition points. For Ex. 1, the regret on
each interval is 23 minus the value illustrated in Figure 1(b).
Recall that our piecewise linear function approach is only
applicable to problems that admit dynamic programming.

The key is that the piecewise linear function representa-
tion enables us to directly reason over the combinatorial op-
timisation problem, rather than considering a relaxation of
the problem as in previous works. The concept of transition
points has been introduced in a ranking setting (Demirović
et al. 2019a). In this work, we extend the framework to sup-
port problems amenable to dynamic programming.

Our algorithm for predict+optimise is summarised in Al-
gorithm 2. It applies a steepest coordinate descent tech-
nique for each learning coefficient in α = (α1, ..., αm)
one by one. The input is a predict+optimise problem,
with an optimisation problem solvable by dynamic program-
ming, and a linear learning function parametrised by the n-
dimensional vector α. The algorithm starts from the ini-
tial coefficients α derived from linear regression and iter-
atively searches for an improving assignment. In each it-
eration, every component of the vector α, except one, is
fixed to its current value. Therefore, the problem is effec-
tively transformed into a parametrised optimisation prob-
lem. The complete set of transition points, which effectively
define the intervals I, is efficiently computed by represent-
ing the subproblem as a piecewise linear function fF

I . The
representative points Γ consist of a point from each inter-
val in I, e.g., transition points {5, 13} yield the intervals
I = {[−∞, 5), [5, 13), [13,+∞)}, and Γ = {4, 9, 14}. The
unfixed coefficient is assigned the point from Γ that min-
imises regret. This process is repeated until improvements
are no longer possible or a timeout occurs. The algorithm
generalises over multiple optimisation problems by expand-
ing the intervals to consider all transition points and the sum
of the regret of each instance.

In each iteration, the single-parameter optimisation prob-
lem is solved to optimality with respect to regret. Quanti-
fying a global optimality gap is not straight-forward as the
regret is nonlinear and noncontinuous, which prevents con-
ventional analysis. Note that, intuitively, the algorithm ter-
minates since in each iteration the algorithm searches for a
strictly better solution.

Experimental Evaluation

The aims of this section are: (a) to illustrate the applicabil-
ity of our approach by comparing with state-of-the-art for
the predict+optimise knapsack; (b) to show the scalability
of our approach on two dynamic programming problems:
knapsack and shortest path for directed-acyclic graphs; and
(c) to demonstrate the strength of our approach by construct-
ing benchmarks where the linear relaxation is not an accu-
rate indicator for the quality of the predictions. State-of-the-
art approaches, which rely on a relaxation of the problem,
cannot infer the correct dynamics. In contrast, our approach

Algorithm 2: Coordinate descent for predict+optimise
using piecewise linear functions.

input: A predict+optimise problem with an
optimisation problem (obj, C) amenable to
dynamic programming and a training set
{(Ai, pi)} for i ∈ [1, 2, ..., n] and
Ai = (ai1, ai2, ..., aim)

output: The coefficients α that lead to minimum regret
for the learning function fα(A) =

∑
αi · ai

1 begin

2 α← argminα{
∑

(fα(Ai)− pi)
2}, i.e. initialise

using linear regression
3 while not coverged ∧ resources remain do
4 for k ∈ [1, 2, ...,m] do
5 for i ∈ [1, 2, ..., n] do
6 ci ←

∑
j∈[1,2,...,m]∧j �=k(αj · aij)

7 fi(αk)← aik · αk + ci
8 F (αk) = (f1(αk), f2(αk), ..., fn(αk))

9 Let fF
I be the result of converting of

COP (αk) = maxX∈C obj(X,F (αk))
into a piecewise linear function using our
dynamic programming approach

10 Γ←
{max(I1)− 1} ∪
{min(Ij)+max(Ij)

2 | 2 ≤ j < |I|}
∪{min(I|I|) + 1}

11 αk ← minγ∈Γ Regret(γ)
12 return α

performs perfectly since it captures the connection between
the predictions and the underlying optimisation problem.

Predict+Optimise Knapsack Problem

Benchmarks and data. The predict+optimise knapsack
dataset is based on two years of real-life energy price data.
The data was used in the ICON energy-aware scheduling
competition and a number of publications (Dooren et al.
2017; Grimes et al. 2014). The goal is to predict energy
prices based on weather conditions and day-ahead estimates.
Benchmarks represent days and each optimisation parame-
ter encodes the price for one half-hour. Item weights take
values 3, 5, and 7. There are 37,872 benchmarks, 48 optimi-
sation parameters per benchmark, and eight attributes. We
refer to (Demirović et al. 2019b) for more details. Note the
knapsack corresponds to the project-funding problem.

Learning methods We compare with the state-of-the-
art. (Indirect) kNN, k-nearest neighbour; Ridge regression;
SVMRank; (direct) SPO, smart predict then optimise (El-
machtoub and Grigas 2017); QPTL, quadratic programming
task loss (Wilder, Dilkina, and Tambe 2019) (semi-direct)
SVMR-s, learn-to-partition (Demirović et al. 2019b).

Methodology. Training and test sets are divided at a 70%-
30% ratio. Our coordinate descent approach optimises one
parameter at a time. For other methods, we performed 5-fold
hyperparameter tuning with regret as the measure.

Comparison with the state-of-the-art. We set the ca-
pacity of the knapsack to 10%, 30% and 50% of the sum of

1449

Table 1: The entry (x, y) denotes the average regret for the
training and test set. Our approach is labelled DP+PLF.

Indirect Semi-direct Direct
Capacity kNN ridge SVMR SVMR-s SPO QPTL DP+PLF
25 (10%) (⊥; 120) (95; 94) (97; 97) (88; 89) (126; 106) (177; 142) (86, 89)
75 (30%) (⊥; 176) (137; 147) (145; 155) (143; 155) (259; 223) (260; 237) (126, 141)

125 (50%) (⊥; 128) (108; 109) (117; 121) (124; 126) (136; 113) (236; 191) (103, 112)

Table 2: Average runtime in seconds and number of transi-
tion points (#TP) for ten random knapsack and shortest path
benchmarks. The parameter n denotes the number of items
and nodes for the knapsack and shortest path problems.

Knapsack Shortest path
n time #TP time #TP

10 0 6 0 7
50 2 28 0 19
100 25 52 2 36
150 95 83 6 43
200 303 101 18 64
300 1287 153 98 99

item weights. In Table 1, each entry (x, y) represents the av-
erage regret for the training (x) and testing set (y). The best
previous approach for this problem was ridge regression,
an indirect method not exploiting the optimisation problem.
Our approach uniformly outperforms other approaches on
the training set, demonstrating the ability to reason directly
with the combinatorial problem. The result generalises for
the test set of the harder (smaller capacity) instances.

Scalability

We experiment with the predict+optimise knapsack and
shortest path for directed-acyclic graphs. The aim is to show
scalability. The item-values and edge-weights are the learnt
parameters. Note that the knapsack problem is NP-hard.
Nevertheless, both problems admit a dynamic programming
algorithm and thus our approach can be applied. Synthetic
data to test scalability was generated as follows:

• Knapsack: The capacity is set to 15% of the total sum
of the weights of the n items. Each weight is generated
randomly from the interval [1, 10].
• Directed-acylic graphs: we create an edge (i, j) with i <

j and |i − j| ≤ �n3 � with 50% chance, where i and j
are indices of nodes. We compute the cost of the paths
between all pairs of n nodes.

The attributes are Ai = (ai1, ai2), with ai1, ai2 ∈ [1, 360]
and pi = 1000 · sin(ai1)sin(ai2). The slopes and constants
for the initial linear functions were chosen from the interval
[1, 100]. Table 2 shows the runtime and number of transi-
tion points in the resulting piecewise linear functions. Our
approach scales reasonably with the benchmark size. Faster
runtimes can be achieved by optimising our implementation.

Combinatorial reasoning vs relaxations

Representing parametrised optimisation problems through
piecewise functions reveals the solution structure. Thus, we
may select the value of the parameter that directly leads to
the desired solutions and minimise regret, rather than relying

on accurately predicting the coefficients. This differs from
other state-of-the-art approaches for predict+optimise which
aim to approximate the underlying combinatorial problem.
These relaxation schemes capture the problem structure to
an extent, but may not be reliable for NP-hard problems. In
contrast, our approach can directly understand the underly-
ing combinatorial problem.

To highlight the strength of our approach, we constructed
simple knapsack benchmarks: each instance contains only
three items. Our approach can perfectly solve the prob-
lems, whereas the state-of-the-art does not accurately cap-
ture the underlying structure despite the simplicity of the
benchmarks. These benchmarks are not meant as realistic
examples, but rather to illustrate the strength of reasoning
directly over the combinatorial problem and shows the limi-
tations of using relaxations for predict+optimise.

The baseline benchmark consists of three items with prof-
its given as: (p1, p2, p3) = (4, 5, 7), the attributes are 2-
D vectors: (a1, a2, a3) = ((1, 1), (2, 1), (5, 1)), and the
weights as given as (w1, w2, w3) = (5, 5, 6). The capacity
is set to ten. The i-th benchmark is generated by multiplying
the baseline profits and attributes vector by the integer i. We
generate ten benchmarks by iterating i ∈ [1, 2, ..., 10].

We tested the benchmarks using the state-of-the-art in a
similar manner as in the previous knapsack section. All
approaches, except ours, result in a non-zero regret. Lin-
ear regression attempts to minimise the squared error of the
predictions. However, as the profits are not linear with re-
spect to its attributes, this results in predicting the value of
the third item to be greater than the sum of the other two.
SVMRank-p divides the items into two partitions based on
the linear relaxation and learns a linear ranking to separate
the two classes. However, it incorrectly places the second
and third item in the same partition, and thus the resulting
predictions are not accurate. SPO computes a convex sur-
rogate of the loss functions, which cannot precisely capture
the loss for these benchmarks. Note that our method does
not produce accurate predictions when compared to the true
profits, but the predictions lead to the correct solutions.

Conclusion

We presented a novel method for predict+optimise. It com-
bines dynamic programming and a piecewise linear func-
tion algebra to represent the solution structure of optimisa-
tion problems. Such a representation is used in our steep-
est coordinate algorithm, where a series of single-parameter
predict+optimise problems are iteratively solved to optimal-
ity. The main advantage is that our approach can optimise
the learning coefficients directly with respect to regret rather
than use a relaxation of the optimisation problem. The ex-
periments illustrate its effectiveness for predict+optimise.

References

Azizi, M. J.; Vayanos, P.; Wilder, B.; Rice, E.; and Tambe,
M. 2018. Designing fair, efficient, and interpretable poli-
cies for prioritizing homeless youth for housing resources.
In Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research - 15th International Con-

1450

ference, CPAIOR 2018, Delft, The Netherlands, June 26-29,
2018, Proceedings, 35–51.
Berman, D.; Cire, A.; and van Hoeve, W. 2016. Decisions
diagrams for optimization. Springer.
de Uña, D.; Gange, G.; Schachte, P.; and Stuckey, P. J. 2019.
Compiling CP subproblems to MDDs and d-DNNFs. Con-
straints 24(1):56–93.
Demirović, E.; Bailey, J.; Chan, J.; Gins, T.; Kotagiri,
R.; Leckie, C.; and Stuckey, P. J. 2019a. A framework
for predict+optimise with ranking objectives: Exhaustive
search for learning linear functions for optimisation param-
eters. In Kraus, S., ed., Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, 1078–
1085. https://www.ijcai.org/proceedings/2019/0151.pdf.
Demirović, E.; Guns, T.; Stuckey, P. J.; Bailey, J.; Chan,
J.; Leckie, C.; and Kotagiri, R. 2019b. An investigation
into prediction + optimization for the knapsack problem.
In Rousseau, L.-M., and Stergiou, K., eds., Proceedings of
Sixteenth International Conference on Integration of Arti-
ficial Intelligence and Operations Research techniques in
Constraint Programming (CPAIOR2019), number 11491 in
LNCS, 241–257. Springer.
Donti, P. L.; Amos, B.; and Kolter, J. Z. 2017. Task-based
end-to-end model learning in stochastic optimization. In
Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS 2017), 5484–5494.
Dooren, D. V. D.; Sys, T.; Toffolo, T. A. M.; Wauters, T.; and
Berghe, G. V. 2017. Multi-machine energy-aware schedul-
ing. EURO J. Computational Optimization 5(1-2):285–307.
Dragone, P.; Teso, S.; and Passerini, A. 2018. Pycon-
struct: Constraint programming meets structured prediction.
In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, 5823–5825.
https://www.ijcai.org/proceedings/2018/0850.pdf.
Elmachtoub, A. N., and Grigas, P. 2017. Smart
”predict, then optimize”. Technical report.
https://arxiv.org/pdf/1710.08005.pdf.
Grimes, D.; Ifrim, G.; O’Sullivan, B.; and Simonis, H. 2014.
Analyzing the impact of electricity price forecasting on en-
ergy cost-aware scheduling. Sustainable Computing: Infor-
matics and Systems 4(4):276–291. Special Issue on Energy
Aware Resource Management and Scheduling (EARMS).
Hadzic, T.; Hooker, J. N.; O’Sullivan, B.; and Tiedemann,
P. 2008. Approximate compilation of constraints into multi-
valued decision diagrams. In Stuckey, P. J., ed., Proceed-
ings of the Fourteenth International Conference on Prin-
ciples and Practice of Constraint Programming, CP2008,
448–462. Springer.
Mohrenschildt, M. V. 1998. A normal form for function
rings of piecewise functions. Journal of Symbolic Computa-
tion 26(5):607 – 619.
Teso, S.; Passerini, A.; and Viappiani, P. 2016. Constructive
preference elicitation by setwise max-margin learning. In
Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, 2067–2073.

Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding
the data-decisions pipeline: Decision-focused learning for
combinatorial optimization. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI-19),
1658–1666. https://doi.org/10.1609/aaai.v33i01.33011658.

1451

