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2Sorbonne Université, CNRS, LIP6, Paris, France

3Optimisation and Logistics, School of Computer Science, The University of Adelaide, Adelaide, Australia
4Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA

Abstract

Submodular optimization plays a key role in many real-world
problems. In many real-world scenarios, it is also necessary
to handle uncertainty, and potentially disruptive events that
violate constraints in stochastic settings need to be avoided.
In this paper, we investigate submodular optimization prob-
lems with chance constraints. We provide a first analysis on
the approximation behavior of popular greedy algorithms for
submodular problems with chance constraints. Our results
show that these algorithms are highly effective when using
surrogate functions that estimate constraint violations based
on Chernoff bounds. Furthermore, we investigate the behav-
ior of the algorithms on popular social network problems and
show that high quality solutions can still be obtained even if
there are strong restrictions imposed by the chance constraint.

Introduction

Many real-world problems optimization problems involve
uncertain components such as the execution length of a job,
the fraction of ore in a cartload of rocks, the probability of
earthquakes, etc. Safe critical systems or expensive produc-
tions must limit the potential violation of constraints im-
posed by such stochastic components. Constraints that ex-
plicitly address the probability of violation are known as
chance constraints. Chance-constrained optimization deals
with optimizing a given problem under the condition that
the probability of a constraint violation does not exceed a
given threshold probability α.

In this work we study optimization under chance con-
straints for submodular functions. Submodular functions
model problems where the benefit of adding components
diminishes with the addition of elements. They form an
important class of optimization problems, and are exten-
sively studied in the literature (Nemhauser and Wolsey
1978; Nemhauser, Wolsey, and Fisher 1978; Vondrák 2010;
Krause and Golovin 2014; Bian et al. 2017; Leskovec et al.
2007; Feldman, Harshaw, and Karbasi 2017; Harshaw et al.
2019). However, to our knowledge, submodular functions
have not yet been studied in the chance-constrained setting.
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Our Results

Given a set V , we analyze the maximization of submodular
functions f : 2V → R subject to linear chance constraints
Pr[W (S) > B] ≤ α where S ⊆ V and W (S) is the sum of
the random weights of the elements in S. Here, B is a deter-
ministic constraint boundary and α is a tolerance level. The
objective is thus to find a set that maximizes f subject to the
probability that its stochastic weights violate the boundary
is at most α.

Our focus is on monotone submodular functions, which
are set functions characterized by the property that the func-
tion value cannot decrease by adding more elements. The
optimization of the considered classes of submodular prob-
lems with deterministic constraints has already been investi-
gated by (Nemhauser, Wolsey, and Fisher 1978; Leskovec et
al. 2007). The theoretical contribution of this paper extends
these results to the chance constrained setting.

Since the computation of the chance constraint is usually
not efficiently feasible, we assume it is evaluated by using
a surrogate function that provides an upper bound on the
constraint violation probability Pr[

∑
s∈S W (s) > B]. This

upper bound ensures that the chance constraint is met if the
surrogate provides a value of at most α. As surrogates, we
use popular deviation inequalities such as Chebyshev’s in-
equality and Chernoff bounds.

We show that using these surrogate functions, popu-
lar greedy algorithms are also applicable in the chance-
constrained setting. In particular, we analyze the case of
uniformly distributed weights with identical dispersion and
show that both inequalities only lead to a loss of a factor of
1− o(1) compared to the deterministic setting.

We complement our theoretical work with an experimen-
tal investigation on the influence maximization problem in
social networks. This investigation empirically analyzes the
behavior of the greedy approaches for various stochastic set-
tings. In particular, it shows the effectiveness of using Cher-
noff bounds for large inputs if only a small failure rate in
terms of α can be tolerated.

Related work

Submodular optimization has been studied for a wide range
of different constraint types, see, for example, (Krause and
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Golovin 2014) and references mentioned therein. Many of
the results on monotone submodular functions are based on
simple greedy selection strategies that are able to achieve
provably the best possible approximation ratio in polyno-
mial time, unless P=NP (Nemhauser, Wolsey, and Fisher
1978). Friedrich et al. (2019) recently showed that greedy
approaches are also successful when dealing with non-
monotone submodular functions. Furthermore, Pareto opti-
mization approaches can achieve the same worst-case per-
formance guarantees while performing better than greedy
approaches in practice if the user allows for a suffi-
ciently large time budget (Qian et al. 2017b; Qian, Yu, and
Zhou 2015; Qian et al. 2017a). Roostapour et al. (2019)
showed that the adaptation of greedy approaches to mono-
tone submodular problems with dynamic constraints might
lead arbitrarily bad approximation behavior, whereas a
Pareto optimization approach can effectively deal with dy-
namic changes. Evolutionary algorithms for the chance-
constrained knapsack problem, which constitutes a subclass
of the chance-constrained submodular problems examined
in this paper, have been experimentally investigated by Xie
et al. (2019).

The paper is structured as follows. Next, we introduce
the class of submodular optimization problems and the al-
gorithms that are subject to our investigations. Afterwards,
we establish conditions to meet the chance constraints based
on tail-bound inequalities. We present our theoretical results
for chance-constrained submodular optimization for differ-
ent classes of weights. Building on these foundations, we
present empirical results that illustrate the effect of different
settings of uncertainty on the considered greedy algorithms
for the influence maximization problem in social networks.
Finally, we finish with some concluding remarks.

Chance-Constrained Submodular Functions
Given a set V = {v1, . . . , vn}, we consider the optimization
of a monotone submodular function f : 2V → R≥0. A func-
tion is called monotone iff for every S, T ⊆ V with S ⊆ T ,
f(S) ≤ f(T ) holds. A function f is called submodular iff
for every S, T ⊆ V with S ⊆ T and x �∈ T we have

f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T ).

We consider the optimization of such a monotone sub-
modular function f subject to a chance constraint where
each element s ∈ V takes on a random weight W (s). Pre-
cisely, we are considering constraints of the type

Pr[W (S) > B] ≤ α.

where W (S) =
∑

s∈S W (s) is the sum of the random
weights of the elements and B is the given constraint bound.
The parameter α quantifies the probability of exceeding the
bound B that can be tolerated.

It should be noted that for the uniform distribution, the
exact joint distribution can, in principle, be computed as
convolution if the random variables are independent. There
is also an exact expression for the Irwin-Hall distribu-
tion (Johnson, Kotz, and Balakrishnan 1995) which assumes
that all random variables are independent and uniformly dis-
tributed within [0, 1]. However, using these approaches may
not be practical when the number of chosen items is large.

Greedy Algorithms

We consider in this work the performance of greedy algo-
rithms for the optimization of chance constrained submod-
ular functions. Our first greedy algorithm (GA, see Algo-
rithm 1) starts with an empty set and subsequently adds in
each iteration an element with the largest marginal gain that
does not violate the chance constraint. It ends when no fur-
ther element can be added. Algorithm 1 was already investi-
gated by Nemhauser, Wolsey, and Fisher (1978) in the deter-
ministic setting. Note that the computation of the probability
Pr[W (S) > B] can usually not be computed exactly and we
make use of a surrogate P̂r[W (S) > B] ≤ α on this value
(see line 5 of Algorithm 1). Since we use upper bounds for
the constraint violation probability, we are guaranteed that
the constraint is met whenever our surrogate P̂r is at most
α.

Our second greedy algorithm is the generalized greedy
algorithm (GGA), and is listed in Algorithm 2. The GGA
extends the GA to the case in which the elements have
different expected weights. It has previously been used in
the deterministic setting (Khuller, Moss, and Naor 1999;
Leskovec et al. 2007). The algorithm starts with the empty
set. In each iteration, it adds an element whose ratio of the
additional gain with respect to the submodular function f
and the expected weight increase E[W (S ∪ {v}) −W (S)]
of the constraint is maximal while still satisfying the chance
constraint. The algorithm terminates if no further element
can be added. At this point, it compares this constructed
greedy solution with each of the n solutions consisting of
a single element, and returns the solution with the maxi-
mal f -value subject to the surrogate function is at most α.
Note that we are using the exact calculation for Pr[W (v) >
B] when considering a single element in line 9. Lines 9
and 10 of Algorithm 2 are needed in cases where large items
of high profit exist, see (Khuller, Moss, and Naor 1999;
Leskovec et al. 2007) for more details.

Concentration Bounds

We work with two different surrogates, which are concentra-
tion bounds of Chernoff and Chebyshev type. Such bounds
are frequently used in the analysis of randomized algo-
rithms (Motwani and Raghavan 1995). All bounds are well-
known and can be found, e.g., in (Doerr 2018).
Theorem 1 (Multiplicative Chernoff bound). Let
X1, . . . , Xn be independent random variables taking
values in [0, 1]. Let X =

∑n
i=1 Xi. Let ε ≥ 0. Then

Pr[X ≥ (1 + ε)E[X]] ≤
(

eε

(1 + ε)1+ε

)E[X]

(1)

≤ exp

(
− min{ε2, ε}E[X]

3

)
. (2)

For ε ≤ 1, (2) simplifies to

Pr[X ≥ (1 + ε)E[X]] ≤ exp

(
− ε2E[X]

3

)
. (3)

For our experimental investigations, we work with equa-
tion (1), whereas equation (3) is used through our theoreti-
cal analysis. Note that equation (3) gives the weaker bound.
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Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V , budget constraint B, failure

probability α.
1 S ← ∅;
2 V ′ ← V ;
3 repeat
4 v∗ ← argmaxv∈V ′(f(S ∪ {v})− f(S));
5 if P̂r[W (S ∪ {v∗}) > B] ≤ α then
6 S ← S ∪ {v∗};
7 V ′ ← V ′ \ {v∗};
8 until V ′ ← ∅;
9 return S;

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V , budget constraint B, failure

probability α.
1 S ← ∅;
2 V ′ ← V ;
3 repeat

4 v∗ ← argmaxv∈V ′
f(S∪{v})−f(S)

E[W (S∪{v})−W (S)] ;

5 if P̂r[W (S ∪ {v∗}) > B] ≤ α then
6 S ← S ∪ {v∗};
7 V ′ ← V ′ \ {v∗};
8 until V ′ ← ∅;
9 v∗ ← argmax{v∈V ;Pr[W (v)>B]≤α} f(v);

10 return argmaxY ∈{S,{v∗}} f(Y );

Therefore, our theoretical results showing approximation
guarantees also hold when working with equation (1). Cher-
noff bounds are very useful when requiring very small val-
ues of α. For larger values of α, e.g. α = 0.1, we often get
better estimates when working with a variant of Chebyshev’s
inequality. As we are only interested in the probability of ex-
ceeding a given constraint bound, we consider a one-sided
Chebyshev inequality (also known as Cantelli’s inequality),
which estimates the probability of exceeding the expected
value taking into account the variance of the considered ran-
dom variable.
Theorem 2 ((One-sided) Chebyshev’s inequality). Let X be
a random variable with expected value E[X] and variance
Var[X] > 0. Then, for all λ > 0,

Pr[X ≥ E[X] + λ] ≤ Var[X]

Var[X] + λ2
. (4)

Chance Constraint Conditions

We now establish conditions to meet the chance constraint.
We start by considering the Chernoff bound given in equa-
tion (3).
Lemma 1. Let W (s) ∈ [a(s)−δ, a(s)+δ] be independently
chosen uniformly at random. If

(B − E[W (X)]) ≥
√
3δk ln(1/α),

where k = |X|, then Pr[W (X) > B] ≤ α.

Proof. Every item has an uncertainty of δ. Instead of con-
sidering W (s) ∈ [a(s) − δ, a(s) + δ] chosen uniformly at
random, we can consider W ′(s) ∈ [0, 2δ] chosen uniformly
at random and have W (s) = a(s) − δ + W ′(s). For a se-
lection X with |X| = k elements, we can therefore write
W (X) = E[W (X)]− δk +

∑
x∈X W ′(X).

We have E[W ′(X)] = δk. We consider the probability
for exceeding this expected value by εδk. We set ε = (B −
E[W (X)])/(δk) which implies εδk + E[W (X)] = B.

We investigate

Pr[W (X) > B] = Pr[W ′(X) > εδk + kδ].

Note that if ε = (B − E[W (X)])/(δk) > 1 then
Pr[W (X) > B] = 0 as all weights being maximal within
their range would not exceed the bound B. For ε ≤ 1, we
get

Pr[W (X) > B] = Pr[W ′(X) > εδk + kδ]

≤ exp

(
− ε2kδ

3

)
using equation (3). In order to meet the chance constraint,

we require

exp

(
− ε2kδ

3

)
≤ α

⇐⇒ −ε2kδ

3
≤ ln(α)

⇐⇒ ε2kδ ≥ 3 ln(1/α)

⇐⇒ ε2 ≥ (3 ln(1/α))/(kδ).

This implies that ε ≥ √
(3 ln(1/α))/(kδ) meets the

chance constraint condition according to the considered
Chernoff bound. Setting ε = (B − E[W (X)])/(δk) leads
to

(B − E[W (X)])/(δk) ≥
√
(3 ln(1/α))/(kδ)

⇐⇒ (B − E[W (X)]) ≥
√
3δk ln(1/α),

which completes the proof.

Based on Chebyshev’s inequality, we can obtain the fol-
lowing condition for meeting the chance constraint.
Lemma 2. Let X be a solution with expected weight
E[W (X)] and variance Var[W (X)]. If

B − E[W (X)] ≥
√

(1− α)Var[W (X)]

α

then Pr[W (X) > B] ≤ α.

Proof. We have
Var[W (X)]

Var[W (X)] + (B − E[W (X)])2
≤ α

⇐⇒ Var[W (X)] ≤ α(Var[W (X)] + (B − E[W (X)])2)

⇐⇒ (1− α)Var[W (X)] ≤ α(B − E[W (X)])2

⇐⇒ (B − E[W (X)])2 ≥ (1− α)Var[W (X)]

α
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This together with Lemma 2 implies that the chance con-
straint is met if

B − E[W (X)] ≥
√

(1− α)Var[W (X)]

α

holds.

Uniform IID Weights

We first study the case that all items have iid weights
W (s) ∈ [a − δ, a + δ] (δ ≤ a). For this case we prove
that the greedy algorithm with the Chernoff bound surrogate
achieves a (1 − o(1))(1 − 1/e) approximation of the opti-
mal solution for the deterministic setting when B = ω(1).
This extends the same bound for the deterministic setting
by (Nemhauser, Wolsey, and Fisher 1978) to the chance-
constrained case.

Theorem 3. Let a > 0 and 0 ≤ δ < a. Let W (s) ∈
[a − δ, a + δ] be chosen uniformly at random for all s. Let

ε(k) =

√
3δk ln(1/α)

a and k∗ be the largest integer such that
k + ε(k) ≤ kopt := �B/a�.

Then the first k∗ items chosen by the greedy al-
gorithm satisfy the chance constraint and are a
1− (1/e) exp( 1+ε(k)

k∗+1+ε(k) )-approximation. For B = ω(1),
this is a (1− o(1))(1− 1/e)-approximation.

Proof. Let kopt = �B/a� be the number of elements that
are contained in an optimal solution OPT in the case that
the weights are deterministic and attain the value a.

Having produced a solution with k elements following the
greedy procedure, we have obtained a solution X where

f(X) ≥ (1− (1− 1/kopt)
k) · f(OPT )

due to an inductive argument given by (Nemhauser, Wolsey,
and Fisher 1978).

We now give a lower bound on k using Chernoff bound
as a surrogate. Let X be a set of selected items containing
k = |X| elements and E[X] =

∑
x∈X a(x) be its expected

weight, δ be the uncertainty common to all items.
Since all items have the same expected weight a, we have

E[W (X)] = ak. Using Lemma 1, the chance constraint is
met if (B − ak) ≥ √3δk ln(1/α). We have kopt = �B/a�
for the number of elements that could be added if the weights

were deterministic. So any k with k +

√
3δk ln(1/α)

a ≤ kopt
is feasible when using the Chernoff bound.

Let

k∗ = max

{
k

∣∣∣∣∣ k +

√
3δk ln(1/α)

a
≤ kopt

}
. (5)

Then

kopt < (k∗ + 1) +

√
3δ(k∗ + 1) ln(1/α)

a
=: β(k∗).

Let X∗ be a solution with k∗ elements constructed by the
greedy algorithm. Using the well-known estimate (1+x) ≤
ex, we bound f(X∗) from below by

(1−(1− 1/kopt)
k∗
) · f(OPT )

≥
(
1−

(
1− 1

β(k∗)

)k∗)
· f(OPT )

≥
(
1− exp

(
− k∗

β(k∗)

))
· f(OPT )

=

(
1− exp

(
− k∗

k∗ + 1 + ε(k∗ + 1)

))
· f(OPT )

=

(
1− 1

e
exp

(
1 + ε(k∗ + 1)

k∗ + 1 + ε(k∗ + 1)

))
· f(OPT ).

When k∗ = ω(1), the exp(·) expression is (1+o(1)), yield-
ing the asymptotic part of the claim.

For comparison, we now determine what can be obtained
from using a surrogate based on Chebyshev’s inequality.
This bound is weaker for small values of α, but can be bet-
ter for larger values of α (depending on the other constants
involved).

We observe that Var[W (X)] = |X| · δ2/3. Defining

ε̃(k) =

√
(1−α)kδ2√

3αa
and replacing equation (5) by

k∗ = max {k | k + ε̃ ≤ kopt}
our proof above yields the following theorem.
Theorem 4. Let a > 0 and 0 ≤ δ < a. Let W (s) ∈ [a −
δ, a+δ] be chosen uniformly at random for all s. Let ε̃(k) =√

(1−α)kδ2√
3αa

and k∗ be the largest integer such that k+ε̃(k) ≤
kopt := �B/a�.

Then the first k∗ items chosen by the greedy al-
gorithm satisfy the chance constraint and are a
1− (1/e) exp( 1+ε̃(k)

k∗+1+ε̃(k) )-approximation. For B = ω(1),
this is a (1− o(1))(1− 1/e)-approximation.

Note that the main difference between the Chernoff bound
and Chebyshev’s inequality lies in the confidence level of
α that needs to be achieved as the equation using Chernoff
only increases logarithmically with 1/α, whereas the one
based on Chebyshev’s inequality increases with the square
root of 1/α.

We note that, in principle, Chebyshev’s inequality does
not require that the items are chosen independently. We can
use Chebyshev’s inequality and the approach above when-
ever we can compute the variance.

Uniform Weights with the Same Dispersion

We now consider the case that the items may have different
random weights W (s) ∈ [a(s)− δ, a(s) + δ]. However, we
still assume the weights are chosen independently and uni-
formly at random. We also assume that the uncertainty δ is
the same for all items.

Let amax = maxs∈V a(s). We assume that amax+δ−B
2δ ≤

α holds. This means that every single item fulfills the chance
constraint. Note that items that would not fulfill this condi-
tion could be filtered out in a preprocessing step as they can
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not be part of any feasible solution. Furthermore, we assume
that B = ω(1) grows with the input size. The following the-
orem extends the results of Theorem 3 by (Leskovec et al.
2007) to the chance-constrained setting.
Theorem 5. For all s ∈ V let W (s) ∈ [a(s)− δ, a(s) + δ]
with a(s) > 0 and 0 ≤ δ < min a(s). If amax+δ−B

2δ ≤ α and
B = ω(1), then the solution obtained by the Generalized
Greedy algorithm GGA using Chernoff bound (3) as surro-
gate for the chance constraint is a (1/2 − o(1))(1 − 1/e)-
approximation.

Proof. Let S be the greedy solution constructed by the GGA
(Algorithm 2) and let v∗ be the element with the largest func-
tion value. Let T be the solution produced by the generalized
greedy algorithm in the deterministic setting.

We know that any solution X with E[W (X)] ≤ B −√
3δk ln(1/α) is feasible. Furthermore, every single item is

feasible as amax+δ−B
2δ ≤ α. Let B̂ = B −√3δk ln(1/α).

Let S′ = XL ⊆ T be the subset of T consisting of the first
L elements exactly as chosen when working with the deter-
ministic bound B. Note that we have f(S) ≥ f(S′) as f is
monotone. If S′ = T , we know argmaxY ∈{S,{v∗}} f(Y ) is
a (1/2)(1− 1/e)-approximation.

Furthermore, let v∗ ∈ V \ S′ be the the element with
the largest function value. Note that v∗ meets the constraint
bound based on our assumptions. Let z = XL+1 \ XL ∈
T be the first element of S not added when working with
the chance constraint. If v∗ = z, then we have E[W (S)] +

a(v∗) ≥ B̂. As v∗ is the single element with the largest
function value, we have f(v∗) ≥ f(z).

Let x be the element added in iteration i to the partial solu-
tion Xi−1 in order to obtain Xi ⊆ S′. Furthermore, let OPT
be an optimal solution for the deterministic setting. Then fol-
lowing (Leskovec et al. 2007) and using the expected cost
value instead of the deterministic ones, we have

f(Xi)− f(Xi−1) ≥ a(x)

c(OPT )
· (f(OPT )− f(Xi−1))

which by induction gives

f(Xi) ≥
[
1−

i∏
k=1

(
1− a(k)

B

)]
· f(OPT ).

Every element added to S′ would have also been chosen
when working with the deterministic bound B. Furthermore,
the single element v∗ providing the largest possible profit
is also accepted due to our assumption on B and we have
f(v∗) ≥ f(z).

We have

f(S′) + f(z) ≥
[
1−

L+1∏
k=1

(
1− a(k)

B

)]
· f(OPT ),

where we take a(L+ 1) to be a(z). Furthermore, we have

E[W (S′)] + a(z) = a(z) +
∑
s∈S′

a(s) ≥ B̂

≥ B −
√
3δL ln(1/α)

as z is the first element of S not added under the chance
constraint. This implies

f(S) + f(v∗) ≥ f(S′) + f(v∗) ≥ f(S′) + f(z)

≥
[
1−

L+1∏
k=1

(
1− a(s)

B

)]
f(OPT )

≥
[
1−

L+1∏
k=1

(
1− B −√3δ(L+ 1) ln(1/α)

(L+ 1)B

)]
f(OPT )

≥
⎡⎣1−(1− 1

L+ 1
+

√
3δ ln(1/α)√
L+ 1 ·B

)L+1
⎤⎦ f(OPT )

Again, we assume that α and δ are constants and B = ω(1)
is growing with the input size. This implies f(S)+ f(v∗) ≥
(1 − o(1))(1 − 1/e) and therefore maxY ∈{S,{v∗}} f(Y ) ≥
(1/2− o(1))(1− 1/e) · f(OPT ).

Using Chebyshev’s inequality with Var[W (X)] =

|X| · δ2/3 and replacing
√

3δ(L+ 1) ln(1/α) by√
(1−α)(L+1)δ2

3α we obtain the following theorem.

Theorem 6. In the situation of Theorem 5, if amax+δ−B
2δ ≤ α

and B = ω(1), then the solution obtained by the General-
ized Greedy algorithm using Chebyshev’s inequality as sur-
rogate for the chance constraint is a (1/2− o(1))(1− 1/e)-
approximation.

Experimental Investigations

We examine our greedy algorithms on the submodular influ-
ence maximization problem (Zhang and Vorobeychik 2016;
Qian et al. 2017b; Leskovec et al. 2007). We study the im-
pact of Chebyshev’s inequality and Chernoff bounds for the
chance-constrained optimization problem in the context of
various stochastic parameter settings.

The Influence Maximization Problem

The influence maximization problem (IM) involves finding
a set of most influential users in a social network. IM aims
to maximize the spread of influence through a social net-
work, which is the graph of interactions within a group of
users (Kempe, Kleinberg, and Tardos 2003). A selection of
users encounters a cost and the problem of influence max-
imization has been studied subject to a deterministic con-
straint that limits the cost of the user selection.

Formally, the problem investigated in our experiments is
defined as follows. Given a directed graph G = (V,E)
where each node represents a user, and each edge (u, v) ∈ E
has assigned an edge probability pu,v that user u influences
user v, the aim of the IM problem is to find a subset X ⊆ V
such that the expected number of activated nodes E[I(X)]
of X is maximized. Given a cost function c : V → R

+ and a
budget B ≥ 0, the corresponding submodular optimization
problem under chance constraints is given as

argmax
X⊆V

E[I(X)] s.t. Pr[c(X) > B] ≤ α.
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Figure 1: Function value for budgets B = 20, 50, 100, 150 (from left to right) using Chebyshev’s inequality (top) and Chernoff
bound (bottom) for α = 0.1, 0.01, 0.001, 0.0001 with all the expected weights 1.
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Figure 2: Maximal cost values for budgets B = 20, 50, 100, 150 (from left to right) using Chebyshev’s inequality (top) and
Chernoff bound (bottom) for α = 0.1, 0.01, 0.001, 0.0001 with uniform expected weights set to 1.

A more detailed description of the influence maximization
problem on social networks is available at (Leskovec et
al. 2007; Kempe, Kleinberg, and Tardos 2015; Zhang and
Vorobeychik 2016; Qian et al. 2017b). Note though, that
these works all study the case in which the cost of adding
a user is deterministic.

We consider two types of cost constraints matching the
settings investigated in the theoretical analysis. In the first
type, the expected weight of all nodes is 1, i.e. a(v) = 1, for
all v ∈ V whereas in the second setting the expected cost
of a node v is given by a(v) = deg(v) + 1. Here deg(v)
denotes the degree of v in the given graph G. We examine
GA for the first type and GGA for the second type of in-
stances. The chance constraint for both settings requires that
the probability of exceeding the given bound B is at most α.
We investigate different reliability thresholds given by α to-
gether with a range of δ values which determine the amount
of uncertainty. To evaluate the influence maximization prob-

lem in the context of surrogate chance constraints, we em-
ploy a graph obtained from social news data, with simple
settings collected from a real-world data set obtained from
the social news aggregator Digg. The Digg dataset (Hogg
and Lerman 2012) contains stories submitted to the plat-
form over a period of a month, and identification (IDs) of
users who voted on the popular stories. The data consist of
two tables that describe friendship links among users and the
anonymized user votes on news stories (Hogg and Lerman
2012; Rossi and Ahmed 2015). We use the preprocessed data
with 3523 nodes and 90244 edges, and estimated edge prob-
abilities from the user votes based on the method in (Barbi-
eri, Bonchi, and Manco 2012).

Uniform Chance Constraints

We consider the results for the greedy algorithm based on
Chebyshev’s inequality and the greedy algorithms based on
Chernoff bounds subject to the uniform distribution with all
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Figure 3: Function values for budgets B = 100 (left) and B = 500 (right) using Chebyshev’s inequality and Chernoff bound
for α = 0.1, 0.01, 0.001, 0.0001 with degree dependent random weights.
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Figure 4: Maximal cost values for budget B = 100 (left) and
B = 500 using Chebyshev’s inequality (top) and Chernoff
bound (bottom) for α = 0.1, 0.01, 0.001, 0.0001 with degree
dependent random weights.

the expected weights 1. Figure 1 shows the results of in-
fluence spread maximization for the GA based on Cheby-
shev’s inequality (first row) and the GA based on Cher-
noff bounds (second row) for budgets B = 20, 50, 100,
150. For the experimental investigations of our GA, we con-
sider all combinations of α = 0.1, 0.01, 0.001, 0.0001, and
δ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

We compare the results in terms of the fitness achieved
at each α and δ level for budgets B = 20, 50, 100, 150.
For the deterministic setting, where B elements can be
used, the obtained function values for B = 20, 50, 100, 150
are 161.42, 214.78, 287.56, and 345.84, respectively. For
the chance-constrained problem, Figure 1 shows that the
GA using Chernoff chance estimates has a better perfor-
mance/higher fitness values than the GA using Chebyshev’s
inequality among the considered δ values in most of the
cases. It should be noted that higher budget values have a
larger influence on the separation between the two surro-
gate constraints. In these cases, the Chernoff-based GA per-
forms consistently better, and this is the result of the good
asymptotic behavior of the Chernoff bound (Chernoff 1952;
Mitzenmacher and Upfal 2005).

We also compare the results in terms of the expected
cost of the solution obtained by the GA based on Cheby-
shev’s inequality and Chernoff bound for budgets B =
20, 50, 100, 150 as the tail inequalities limit the maximum
cost. Note that cost in this case is the same as the number

of items picked by GA. The results are shown in Figure 2.
The GA using the Chernoff bound is able to include more
elements. The results show that the GA using the Chernoff
bound allows for solutions with a larger number of elements
if the budget B is high and α is small, for example B =
150, and for α = 0.001, 0.0001. The GA using Chebyshev’s
inequality has a better performance in the case of high α
values, α = 0.1, 0.01 on the examined problem.

Non-Uniform Chance Constraints

We now consider the GGA for the setting where the ex-
pected weights are not uniform but depend on the degree
of the node of the graph. We consider budgets B = 100, 500
keeping the other parameters the same as in the uniform
case. Figure 3 and 4 show the function and cost values ob-
tained by the GGA based on Chernoff bounds for the combi-
nations of α and δ. We do not observe a clear difference be-
tween using Chebyshev’s inequality or Chernoff bound for
the different combinations of δ and α which is due to a rela-
tively small number of elements present in the solutions. The
function values of the approaches are overall decreasing for
each α with increasing value of δ. Due to the stochastic be-
havior of the evaluation, the obtained fitness values show a
jagged, irregular course with increasing value of δ.

Conclusion

Chance constraints play a crucial role when dealing with
stochastic components in constrained optimization. We pre-
sented a first study on the optimization of submodular prob-
lems subject to a given chance constraint. We have shown
that popular greedy algorithms making use of Chernoff
bounds and Chebyshev’s inequality provide provably good
solutions for monotone submodular optimization problems
with chance constraints. Our analysis reveals the impact of
various stochastic settings on the quality of the solution
obtained. Furthermore, we have provided experimental in-
vestigations that show the effectiveness of the considered
greedy approaches for the submodular influence maximiza-
tion problem under chance constraints.
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