
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Modelling and Solving Online Optimisation Problems∗

Alexander Ek,1,2 Maria Garcia de la Banda,1 Andreas Schutt,2,3

Peter J. Stuckey,1,2 Guido Tack1,2

1Monash University, Australia
2CSIRO Data61, Australia

3The University of Melbourne, Australia
{alexander.ek, maria.garciadelabanda, peter.stuckey, guido.tack}@monash.edu,

andreas.schutt@data61.csiro.au

Abstract

Many optimisation problems are of an online—also called
dynamic—nature, where new information is expected to ar-
rive and the problem must be resolved in an ongoing fash-
ion to (a) improve or revise previous decisions and (b) take
new ones. Typically, building an online decision-making sys-
tem requires substantial ad-hoc coding to ensure the offline
version of the optimisation problem is continually adjusted
and resolved. This paper defines a general framework for
automatically solving online optimisation problems. This is
achieved by extending a model of the offline optimisation
problem, from which an online version is automatically con-
structed, thus requiring no further modelling effort. In do-
ing so, it formalises many of the aspects that arise in on-
line optimisation problems. The same framework can be ap-
plied for automatically creating sliding-window solving ap-
proaches for problems that have a large time horizon. Exper-
iments show we can automatically create efficient online and
sliding-window solutions to optimisation problems.

1 Introduction

Many important optimisation problems are online—also
called dynamic—in nature (see, e.g., Jaillet and Wag-
ner, 2012), that is, the information that defines the problem
is not completely known and may not be finite. Rather, new
information arrives either continuously or periodically, and
must be incorporated into the problem in an ongoing fash-
ion. Consider, for example, a traditional job-shop schedul-
ing problem. If the complete set of jobs is known from the
start, the problem can be solved offline to generate an op-
timal (or good enough) schedule. However, it is common
to only know an initial set of jobs, with new ones arriving
before all previous jobs have finished executing the gener-
ated schedule. It is also common for previous jobs to take
longer/shorter than expected. While one could wait until all
previous jobs have finished to schedule the new jobs, this
will typically result in the underutilisation of the available
machines. A higher quality solution may be found if the
problem is resolved to find a new schedule for all jobs that

∗An earlier version of this paper has been presented at the Mod-
Ref’19 workshop and the doctoral program of CP’19.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have not started yet (be it old or new) taking any new in-
formation into account, i.e., if the problem is solved in its
natural online format.

Despite the strong similarities between all online opti-
misation problems, current approaches to solving them are
problem-specific. This is because every time new informa-
tion arrives and a resolve is required, some previous de-
cisions cannot be changed while others can. For example,
in an online job-shop scheduling problem, tasks known to
have already started cannot be rescheduled. Similarly, in a
dynamic vehicle routing problem, we may not be able to
add more customers to a vehicle’s route after the vehicle has
left the depot, but we may be able to change the order in
which the customers are visited. Specifying exactly which
decisions can be changed and which cannot, requires speci-
fying how time interacts with the variables and constraints
used to model the problem. This is usually done by the mod-
eller, who understands this interaction and can implement an
update-model, that is, a model that combines the results of
previously executed decisions with the newly arriving data.
An iterative algorithm can then be used to repeatedly instan-
tiate and solve this update-model at each time point.

In addition, many large offline optimisation problems can
be better solved by decomposing them into smaller, sim-
pler problems along a timeline. This popular approach is
called sliding-window decomposition (Marquant, Evins, and
Carmeliet 2015; Belov et al. 2014), where the problem is de-
composed into (usually overlapping) windows, each solved
in increasing time order. In effect, this converts the offline
problem into an online one, where each new window refers
to some old parts of the problem (those overlapping with
the previous window), and to some new (the rest in the new
window). Thus, methods developed to solve online problems
can be used to solve large optimisation problems, once one
decides how to break up the data into windows.

This paper proposes a more generic approach to online
optimisation that enables modellers to specify the online as-
pects of a problem in a declarative way, and automates the
resolving process. To achieve this, modellers first create an
offline model, i.e., a model of the offline version of the prob-
lem. Then, they add annotations to the offline model to spec-
ify how its data, variables and constraints interact with time.

1477

Once this is provided, an update-model is constructed au-
tomatically from the annotated offline model, and used by
an iterative algorithm to solve the online problem. The main
contributions of this paper are as follows: (i) a framework for
the declarative modelling of online and sliding-window op-
timisation problems that identifies common interactions of
models with time; (ii) an automatic approach to transform an
annotated offline model into the update-model needed to re-
solve the online problem, thus taking into account new data
and the results of previously executed decisions; (iii) an im-
plementation of the framework in the MiniZinc (Nethercote
et al. 2007) system; and (iv) an experimental evaluation that
shows the effectiveness of the framework for tackling online
problems and sliding-window decompositions.

2 Background

A constraint optimisation problem (COP) P = (V,D,C, o)
consists of a set of variables V , an initial domain D map-
ping variables to (usually finite) sets of possible values, a
set of constraints C defined over variables V , and a selected
variable o ∈ V to minimise (without loss of generality). In
practice, constraint optimisation problems are specified by a
data-independent model M written in a modelling language
such as MiniZinc (Nethercote et al. 2007), Essence (Frisch
et al. 2008), AMPL (Fourer, Gay, and Kernighan 2002), or
OPL (Van Hentenryck et al. 1999). A model M of a prob-
lem can be instantiated with data D into a concrete COP
instance P = instantiate(M,D).

2.1 Running Example: Job-Shop Scheduling

This paper uses MiniZinc to model problems. While most
of MiniZinc’s syntax is self-explanatory, some complex el-
ements we make use of include (i) array comprehension,
e.g., [arr[n]-5|n in NODE], which builds an array of
expressions with the arrival time for node n minus 5; (ii)
array concatenation, e.g., a ++ b, which builds an array
by concatenating array b at the end of array a; (iii) if b
then t else e endif, which yields t if b is true and
e otherwise, where e = true if the else part is omitted;
(iv) forall(i in S)(c[i]), which holds if for each
i in range S the constraint c[i] holds; (v) exists(i
in S)(c[i]), which holds if for some i in range S the
constraint c[i] holds; and (vi) array slicing p[..,i] re-
turns the ith column of the 2d array p. Let us use an actual
problem model to clarify MiniZinc syntax further.

Consider a job-shop scheduling problem, where each job
j has input data about its arrival (earliest start) time a[j],
the machine m[j,k] that processes each of its tasks k, and
the processing time p[j,i] it requires on each machine i.
The decisions to be made are the start times s[j,k] for
each task k of each job j. A solution must satisfy the arrival
times, task order (task i must finish before the start of task
j for i < j), and machine usage constraints (each machine
can only handle one task at a time), while minimising the
total makespan. A model for the data and decisions of this
problem is shown in Figure 1 (keywords in bold).

The first 9 lines declare the parameters of the problem,
where the values for those declared in lines 1, 2 and 6–8 will

1 int: M; % number of machines
2 int: J; % number of jobs
3 set of int: MACH = 1..M;
4 set of int: TASK = 1..M;
5 set of int: JOB = 1..J;
6 array[JOB] of int: a;
7 array[JOB,TASK] of MACH: m;
8 array[JOB,MACH] of int: p;
9 int: h = max(a)+sum(p);

10 array[JOB,TASK] of var 0..h: s;
11 constraint forall (j in JOB)
12 (s[j,1] >= a[j]);
13 constraint forall (j in JOB,
14 k in 1..M-1)
15 (s[j,k]+p[j,m[j,k]] <= s[j,k+1]);
16 constraint forall (i in MACH)
17 (disjunctive([s[j,t] | j in JOB,
18 t in TASK where m[j,t]=i],
19 p[..,i]));
20 solve minimize max (j in JOB)
21 (s[j,M]+p[j,m[j,M]]);

Figure 1: A MiniZinc model for job-shop scheduling.

be given in an input data file, while those in lines 3–5 and 9
are computed in the declaration. Lines 1 and 2 declare two
integer parameters representing the number of machines and
jobs in the problem, respectively. Lines 3 to 5 declare three
sets of integer parameters, each computed from an integer
range of the form l..u, representing the range from l to u
inclusive if l ≤ u, and the empty range otherwise. Lines 6–8
correspond to the a, m and p arrays of parameters introduced
above. Line 9 declares the integer parameter h, which rep-
resents the latest possible completion time, and is computed
as the sum of all processing times plus the latest arrival time.
Line 10 declares the array s of decision variables (keyword
var) introduced before, where the domain of the decision
variables is the range 0..h. The three constraints in lines
11–19 ensure no job starts before its arrival time, each task
in a job finishes before the next one starts, and tasks on the
same machine do not overlap in time (by using the prede-
fined constraint disjunctive), respectively. Finally, the
objective is defined in lines 20–21 as minimising the maxi-
mum finishing time of the tasks in any job.

2.2 Solving Online Problems by Iteration

As mentioned in the introduction, given an offline model of
a problem and a solver, one can implement an iterative al-
gorithm for the online version of the problem. To illustrate
this approach in MiniZinc, we extend the job-shop model
from Figure 1 with additional parameters to take previous
solutions into account. To do this we assume new jobs can
arrive at each time point, but the number of machines (and
thus tasks) remains constant. The new parameters:

int: pJ; % # jobs in previous solution
array[1..pJ,TASK] of int: sol_s;

specify that pJ of the original J jobs are old (from a pre-
vious iteration), and the rest are new. For each old job j in

1478

1..pJ, array cell sol_s[j,t] contains the current start
time for previous solved task t of job j. This might be a
past, current or future time.

We also add a parameter called now that is always set to
the current time (in the model’s view of time) for the current
iteration of solving, and allows modellers to reason about
whether an existing job has already started running or not. If
it has, we constrain it to remain scheduled at the same time:

int: now;
constraint forall(j in 1..pJ, t in TASK)

(if sol_s[j,t]<=now then
s[j,t]=sol_s[j,t] endif);

We call the resulting, extended model the update-model.
Once update-model M is defined, a simple iterative algo-
rithm, such as the one in Figure 2, can be used to solve the
online problem at each time point. This algorithm iterates,
while there is new data, retrieving first the current view D
of the problem data, that is, all current parameter values. For
job-shop this means that, if new jobs have arrived, the value
of J will change and arrays a, m and p become larger. The
arrays’ old values might also change if, say, the processing
time of an old job has now increased. The algorithm then
retrieves the current solution θ, that is, the solution from the
previous iteration updated to reflect any changes required
since then. For job-shop this might mean changing the start
time decisions of jobs due to, for example, the break down of
a machine. Then the constrain function adds the parameters
that are used for restricting the time-dependent variables. In
job-shop this means setting pJ and sol_s according to the
solution θ, and updating now. Finally, the update-model is
instantiated with the updated data set and solved, and the
new solution θ′ is used in the shop until the next solve.

online-solve(M):
while (new data)

D := get current data()
θ := get current soln()
D′ := constrain(D, θ)
θ′ := solve(instantiate(M,D′))
output θ′

Figure 2: Solving online problems iteratively.

In practice, most update models require more complex
relationships between the model variables and time, than
those introduced above. Section 4 defines new modelling
constructs that allow modellers to specify complex relation-
ships concisely and declaratively.

2.3 Characteristics of our Online Problems

We assume our online problems have complete re-
course (Dantzig 1955), i.e., at each loop iteration in Figure 2,
the data D and the decisions θ cannot yield the problem un-
satisfiable. This is typically achieved by adding penalties to
the objective, e.g., for not scheduling jobs. In addition, exter-
nal sources can use D to update previous data (e.g., new task
durations) and θ to update optimisation decisions (e.g., new

task start times) until they are realised, that is, until their ac-
tual value is observed, often indicating they refer to the past.
We say an execution is perfect if neither is actually updated,
making the realisations always follow what is given.

Note that our framework does not reason about whether
(or how) the information may have changed. It simply as-
sumes everything is static and then reacts to any changes
that occur. This is similar to what (Brown and Miguel 2006)
calls pure reaction, except that rather than using local repair
methods, we resolve the model in its entirety in each iter-
ation. Thus, no information about the previous iteration is
used unless necessary (e.g., the assignment of a committed
variable). Also, we do not use warm-start techniques (this
remains future work). Note, however, that only future events
are resolved; past events are fixed by the annotations and
not resolved. As a result, this paper does not consider meth-
ods for specifying or utilising stochastic information (such
as probabilities or distributions) during the online optimisa-
tion (Van Hentenryck and Bent 2009; Verfaillie and Jussien
2005; Bent and Van Hentenryck 2004), nor for predicting
future changes or data based on historical data (Bent and
Van Hentenryck 2005). Both remain future work.

3 Related Work
Online problems and solution methods have been well stud-
ied. The two main approaches are (a) using an off-the-shelf
solver with an ad-hoc online algorithm wrapped around it,
and (b) developing a problem-specific algorithm. This paper
develops a new approach by extending a solver-independent
modelling language to support online problems natively.
This considerably reduces the implementation effort and al-
lows modellers to experiment with different solvers.

Approach (a) requires the implementation of an iterative
resolve algorithm that is wrapped around a particular solver,
and uses a sliding-window approach where the new data ar-
rives between resolves. Examples of this approach include
that of Bertsimas, Jaillet, and Martin (2019) for solving an
online vehicle routing problem. They update the problem by
adding nodes and edges to a graph, and develop their own
iterative online algorithm. See (Lim et al. 2016; Rahbar, Xu,
and Zhang 2015; Clark and Clark 2000) for other examples.
These wrapper algorithms are often problem-specific, and
require the model to be formulated in a way that obfuscates
the underlying problem.

Examples of approach (b) are more widespread, and in-
clude the algorithms for online vehicle routing given in sur-
vey (Jaillet and Wagner 2008), and the online scheduling
algorithms described in (Pruhs, Sgall, and Torng 2004). In
some cases, the same decisions have to be taken repeatedly
(with some or total disregard to previous decisions) over
time, in real-time. This case is often addressed by develop-
ing fast single-point algorithms or models that can be used
to resolve with the latest data as desired, and then replacing
the old decisions with the new ones (He et al. 2018).

We have not found any problem-independent framework
(solver-independent or not) that enables the modelling of on-
line problems for real-time applications or sliding-window
decompositions. The closest work is that of modelling lan-
guage AIMMS, which supports the modelling and use of

1479

sliding-window decomposition (referred to as “rolling hori-
zon”) of time-based offline problems (Roelofs and Bisschop
2019). This is done by first coding how all the parts of a
model can be divided into multiple (possibly overlapping)
windows, and then coding an iteration script that iterates
through all these windows, solves them, and makes any nec-
essary changes between the iterations. Hence, it is really
an example of approach (a). The sliding-window feature of
AIMMS have been used in several works (Marquant, Evins,
and Carmeliet 2015; Beraldi et al. 2011).

Other work that can be seen as related includes that on dy-
namic constraint satisfaction problems (DCSP) (Dechter and
Dechter 1988), which is often used to reason about (rather
than solve) online and dynamic problems (Frank 2016).
DCSP could thus be used to formalise our modelling frame-
work. An interesting DCSP variation, called constraint net-
works on timelines, was introduced as a way to unify plan-
ning and scheduling (Pralet and Verfaillie 2008). Rather than
an online problem, this approach allows specifying and solv-
ing problems where the number of steps required to find a
solution must be determined during solving.

Dunke and Nickel (2016) presented a formal and mathe-
matical way of reasoning about and analysing online prob-
lems. They consider a smaller class of online problems that
are not real-time (meaning that the time it takes to solve an
iteration does not impact the next iteration) and where once
a decision is made, it cannot be revised. Their main contri-
bution is their concept of lookahead in online optimisation.
In our framework, we always have (a dynamic degree of)
lookahead, unless all the variables in an iteration are com-
mitted in the next iteration.

Chien et al. (2000) presented an iterative repair method
for planning and scheduling NASA robots in an online fash-
ion. Our framework can be seen as using iterative repair to
deal with online problems as well, and can be thus used to
tackle these problems.

Note that this paper does not consider methods for speci-
fying robustness and stability criteria (Climent et al. 2014).
This remain as future work. Currently, specifying these cri-
teria is only possible when manually defined by the modeller
in the objective function, using the functionalities currently
available in our framework.

4 Modelling Online Problems

This section introduces our extensions to the MiniZinc lan-
guage to support the solver-independent modelling of on-
line optimisation problems. Recall the iterative algorithm of
Figure 2 for the online job-shop example from Section 2.2.
Compared to a standard algorithm for solving the offline
model M , this algorithm contained three additional compo-
nents: the functions get current data and get current soln
to retrieve the current data for the problem and the current
solution, both of which may update previous information;
and the constrain function which uses the current solution
and current data to generate the actual time dependencies of
the update-model.

Our extensions are based on annotations that modellers
can add to a standard, offline MiniZinc model to capture

these aspects in a concise and declarative way. The update-
model, together with the constrain functions, is then gen-
erated automatically from this annotated model (the genera-
tion of the update-model is discussed in Section 5).

The first annotation, :: extends, identifies parameters
that can be extended with new data at each time point. If a
parameter annotated with :: extends is used to define
other parameters (e.g., it is part of an array index set), those
other parameters automatically become extendable with new
data as well. Consider the offline job-shop problem intro-
duced in Figure 1, and assume that in its online version new
jobs can arrive as time progresses. To transform the offline
model for this problem into an online one, we start by an-
notating the parameter J in line 2, obtaining int: J ::
extends;, thus indicating that J might increase with time.
Since J is used to define the set JOB, this also indicates that
the amount of data in each of the arrays a, m, and p, might
similarly increase with time.

The second annotation, :: time, identifies decisions
that cannot be changed by the solver after a certain time
point. The most obvious of these affect time variables, that
is, variables whose domain is time itself. In particular, past
decisions that fixed a time variable to a value earlier than the
current time, cannot be changed by the solver. Also, if such a
variable is not yet fixed, the solver cannot fix it to a value that
is earlier than the current time. Continuing the job-shop ex-
ample, the only decision variables of the model are the start
times for each task of each job, that is, the array of variables
defined in line 10. The domain of these variables is indeed
time and, hence, the declaration must be annotated, yielding
array[JOB,TASK] of var 0..h: s :: time;

While the domain of some variables is not time itself, it
may nevertheless reflect decisions that cannot be changed by
the solver after a certain point in time. We say such decision
must be locked. To achieve this, modellers can annotate such
a variable v with :: lock_var_time(t), where t is a
variable whose domain is time and whose value is the time
point after which a decision for v cannot be changed. Note
that when annotating an array d of variables, t must also be
an array of variables with the same dimensions as d.

Consider an open-shop scheduling problem similar to that
of Figure 1, except that the allocation of tasks to machines
is not fixed, i.e., the array of parameters in line 7 is now de-
clared as an array of variables. This means the solver now
needs to decide the order of the tasks of a job by allocat-
ing each task to a machine, as this is no longer provided by
the input data. Clearly, once a task has started to be pro-
cessed, the machine that processes it cannot change. Thus,
the online model for this problem has in line 7 the dec-
laration array[JOB,TASK] of var MACH: m ::
lock_var_time(s);. Note that the dimensions of ar-
rays s and m are the same. This annotation ensures that if
the start time s[j,k] for task k of job j is less than or
equal to the current time, then the machine m[j,k] chosen
for this task cannot be changed.

A more complex form of time constraint common in on-
line problems, involves checking the values of a variable:
while some of these values might need to be locked once se-
lected, others might become unavailable as time progresses.

1480

To achieve this, modellers can annotate such a variable v
with lock_val_time(t), where t is a one-dimensional
array that corresponds to the declared domain of v.

To illustrate this, consider a package delivery routing
problem for C customers and V vehicles, where all cus-
tomers must be visited once. Assume the problem is mod-
elled using a graph with N = C +2V nodes, where there is
one node for each customer and two nodes for each vehicle
v, representing the time when v leaves from and returns to
the depot. The decision variables for each node n, are the
arrival time at n, the next node visited from n, and the ve-
hicle that visits n. The following partial model for an online
version of this problem:

1 int: V :: extends; % # of vehicles
2 int: C :: extends; % # of customers
3 int: h :: extends; % scheduling horiz.
4 int: N = C + 2*V; % # of nodes
5 set of int: NODE = 1..N;
6 set of int: CUST = 1..C;
7 set of int: VEH = 1..V;
8 array[NODE] of var 0..h: arr :: time;
9 array[NODE] of var NODE: next

10 ::lock_var_time([arr[n]|n in NODE]);
11 array[NODE] of var VEH: veh
12 ::lock_val_time([arr[C+v]|v in VEH]);

indicates new customers and new vehicles might appear (a
vehicle returning to the depot becomes available as a new ve-
hicle), and the time horizon for scheduling can also change
(as more customers arrive). The models also indicates that
the arrival time at each node is a time constrained variable
(line 8), and the decision about where to go next from node
n is locked at the time point where the vehicle arrives at
n (line 10). Also, since the packages must be loaded onto
vehicles v at the depot, the decision of which customers are
visited by vehicle v is locked at the time point where v leaves
the depot. This is recorded as the arrival time at the vehicle’s
start time node arr[C+v] (line 12).

Note that the lock_val_time annotation introduced
above, conflates two different kinds of restrictions: commit
and forbid. These indicate, respectively, that a decision can-
not be changed or is no longer available as time progresses.
We thus define two annotations commit_val_time and
forbid_val_time, to separate the two parts conflated
by lock_val_time.

Consider again the package delivery problem. When de-
ciding which vehicle should visit each customer, it is unre-
alistic to add (or remove) a customer to (or from) vehicle v
if v is about to leave the depot, since it takes time to load (or
unload) the package. Assuming we need 5 minutes to pack
a new delivery, and 15 minutes to find and remove a packed
delivery, we can substitute lines 11 and 12 with code:
array[NODE] of var VEH: veh
::forbid_val_time([arr[C+v]-5 | v in VEH])
::commit_val_time([arr[C+v]-15 | v in VEH]);

to reflect the correct behaviour. The annotations state that
the decision of assigning a customer to vehicle v cannot be
changed by the solver if in the current solution v leaves in the
next 15 minutes, and a customer cannot be (newly) assigned
to a vehicle leaving in the next 5 minutes.

The above seven annotations capture the most common
time constraints that arise when solving an online problem.
For problem-specific cases, where these annotations are not
sufficient, we extend MiniZinc to give modellers access to
the current solution via a generic function sol(x), which
returns, for each variable and parameter x, the value of x in
the current solution. This is analogous to the use of the func-
tion sol() in MiniSearch (Rendl et al. 2015) and other ex-
tensions of MiniZinc (Dekker et al. 2018) to refer to the pre-
vious solution to a problem. In addition, we give modellers
access to function has_sol(x) to test whether x actually
exists in the current solution, and to the now parameter for
use in their time constraints.

Consider a variation of the package delivery problem,
where we inform customers of the expected arrival times
within the next 24 hours. Consider also that, after inform-
ing clients about their arrival time, we want to ensure that
later solutions do not delay these arrival times by more than
an hour. Modellers can express this in the model as follows:

constraint forall(c in CUST where
has_sol(arr[c]))

(if sol(arr[c]) <= now + 24*60
then arr[c] <= sol(arr[c]) + 60 endif);

Note that, since has_sol always returns false if used of-
fline, the constraint will not be active then. Also, since only
modellers know how now relates to time in the real world,
they are the ones who must define now as a parameter com-
puted using the system time calls available in MiniZinc.

5 Transformation

Once modellers have created an online model MO by anno-
tating the offline model, the next step is to transform MO

into an update-model M . This is achieved by automatically
(i) adding a declaration for now and for the sol counterpart
(e.g., sol_s, in our job-shop model) of every parameter and
variable, as shown in Section 2.2, and (ii) transforming each
annotation as shown in the rest of this section.

Extends This annotation is used to generate the current
form of the data by appending old and new data. We use
MiniZinc itself to perform the append as follows. For any
parameter p :: extends, we generate two versions in
the update-model: p_old and p_new. The actual parame-
ter p is then computed as p = p_old+p_new for numeric
parameters, and p = p_old ++ p_new for array param-
eters. As mentioned in Section 4, if an online parameter p is
used to define the index set of another array parameter q,
then q is also considered to be an online parameter.

Time annotations The time annotation:

var D: x :: time;

where x is a variable over domain D, is transformed into the
following constraint:

if has_sol(x) /\ now >= sol(x)
then x=sol(x) else x>=now endif;

1481

This ensures a previous decision for x can only be changed if
its value is still in the future, and new decisions for x cannot
be set to the past (i.e., the past cannot be changed).

Variable annotations An annotation of the form:

var D: x :: lock_var_time(t);

where x and t are variables over D and time, respectively, is
transformed into the following constraint:

if has_sol(x) /\ now >= sol(t)
then x=sol(x) endif;

This ensures a previous decision for x is not changed once
the time point given by the value of t in the current solution
has arrived. The extension to an annotation for an array of
variables (rather than over a single one x) is straightforward.

Value annotations We show how commit and forbid an-
notations are transformed. (Recall that lock annotations sim-
ply combines the two.) A commit annotation is of the form:

var D: x :: commit_val_time(t);

where x is a variable over D, and t is an array of variables
indexed by D. It is transformed into:

if has_sol(x) /\ now >= sol(t[sol(x)])
then x = sol(x) endif;

This ensures that if the current time associated with the value
taken by x is in the past, then the decision is fixed. A forbid
annotation is of the form:

var D: x :: forbid_val_time(t);

where x is a variable over domain D, and t is an array of
variables indexed by D. It is transformed into:

forall(d in D
where has_sol(x) /\ sol(x) != d)

(if has_sol(t[d]) /\ now >= sol(t[d])
then x != d endif);

This ensures that, for each value d ∈ D of x (except its
current value), if the associated time point of d (given by
t[d]) has passed, then x cannot be newly assigned to d.

6 Garbage Collection

As defined, the iterative algorithm from Figure 2 will con-
struct larger problems as time progresses: more data is
added, which also leads to more variables and constraints. In
typical online problems, many variables will be fixed imme-
diately due to their time dependencies. While this may not
have a big impact on solving time, for long running online
problems it can lead to an increase in the time taken by he
instantiation phase (translating the MiniZinc model into the
solver-level language). If we can identify parts of the data
that can have no effect on the remaining solving, such data
can be omitted. We call this garbage collection of old data.

For example, in the online job-shop problem based on
Figure 1, jobs that are completely finished can have no fur-
ther effect on any jobs scheduled after now. Hence, they can
be omitted from the data. Jobs that have started but not yet

finished, however, can still affect new jobs, since they still
use resources, and must be kept.

Currently, the framework requires the modeller to iden-
tify the parts of the data that can be garbage collected, by
adding to their model new parameters that are annotated as
::gc (for garbage collection). An interesting avenue for fu-
ture work is to explore how (much of) this could be deter-
mined automatically from the model and its annotations.

For example, modellers can change the online version of
the job-shop model to enable garbage collection as follows:

1 int: LJ :: gc(arg_max([exists(i in TASK)
2 (sol(s[j,i]) + p[j,m[j,i]] > now)
3 | j in JOB] ++ [true]));
4 set of int: JOB = LJ..J; % meaningful jobs

Initially, LJ is set to 1. After instantiating the update-model,
the expression inside the gc annotation will be evaluated
to the index of the first job with a task that is still run-
ning (sol(s[j,i]) + p[j,m[j,i]] > now). Note
that because of the true entry in the array, arg_max re-
turns the first element where the Boolean condition evaluates
to true. If this expression determines, for example, that job
number 5 is the first such job, then LJ will be set to 5. For
the next iteration, the data for all parameter arrays that use
LJ in their index sets (a, m, and p) will be garbage collected
accordingly.

Note that this method always lags behind by one iteration:
the model computes which data would have been irrelevant
for the time point of the current iteration, and that data is
then excluded at next the iteration. Another weaknesses is
that if there are some very long running jobs that arrive early,
they will keep all the jobs after them alive until they finally
are finished. Still, the simplicity of the approach is very ap-
pealing, and if the jobs are reasonably uniform in duration,
this will not be a problem.

Currently, it is up to the modeller to make sure that the
constraints and the objective function stays consistent after
the garbage has been removed. Automating this process is
also an interesting avenue for future work.

7 Experiments

All experiments were run on a 2.2 GHz Intel Core i7 pro-
cessor with 16 GB RAM, using the lazy clause generation
solver Chuffed (version bundled with the MiniZinc IDE Ver-
sion 2.2.3). The MiniZinc interface for Python was used to
simulate data changes between iterations, and the garbage
collection mechanism described above was added to the
model to improve the combination of old and new data.

7.1 Using our Framework1

We have extended the MiniZinc-Python2 interface to au-
tomatically transform an online model and run it itera-
tively. Modellers can use this interface to define how time
passes and how their problem evolves over time. They
can also use it to to define how decisions are executed

1Code available at https://gitlab.com/minizinc/online-minizinc
2https://gitlab.com/minizinc/minizinc-python (21-Nov-2019)

1482

with GC without GC

instance solving (s) instn. (s) solving (s) instn. (s)

abz5 13.01 19.00 75.64 3,913.48
ft06 14.56 18.91 56.63 1,363.91
ft10 17.04 19.86 121.59 3,882.49
ft20 1,467.56 18.84 1,490.86 941.64

Table 1: Accumulated solving and instantiation time with
and without garbage collection (GC).

and data is realised. For example, modellers can over-
write the get execution interface method to connect
it to an external simulation or monitoring system, reflect-
ing some real-world execution. They can also overwrite the
get new data interface method to define how and from
where the new data is fetched, before solving is performed
in each iteration. Other functionalities allows modellers to,
e.g., define how time passes (e.g., real-time or stage-based)
and how to translate wall-clock (or simulation) time to the
time units used in their model.

7.2 The Effect of Garbage Collection

Our first experiment uses the online job-shop scheduling
problem described throughout the paper. The online data
used is constructed from the offline data file abz5 of the
MiniZinc benchmarks3 by repeatedly adding copies of the
jobs from abz5 into an endless queue. We then iterate
through the endless queue as follows. The first i jobs in the
queue form the initial iteration, where i is the greatest in-
teger such that the first iteration can be solved to optimality
within 5 seconds under perfect execution. Consecutively, the
next i/2 jobs from the queue form the next iteration, for as
many iterations as desired. The now parameter for each iter-
ation increases by p each time, where p is the lower bound
makespan for scheduling the new jobs, assuming all tasks
have the average processing time of the given instance.

The main focus of this experiment is to illustrate the effect
of garbage collection. We define now to be independent of
the solving time, so that we can compare identical iterations
that use/not use garbage collection.

Figure 3 shows the instantiation time (a) and solving time
(b) for each iteration, while Table 1 shows the accumulated
solving and instantiation time for multiple instances, each
running for 300 iterations. Without garbage collection, in-
stantiation time quickly starts dominating, which highlights
the importance of garbage collection for long running on-
line problems. Solving time also increases without garbage
collection, which is partly due to the fact that a much larger
initial model has to be parsed, and the additional propagation
for parts of the model that are fixed needs to be performed.
Note that we are using perfect execution in this experiment.

Given these results, all remaining experiments use
garbage collection.

3https://github.com/MiniZinc/minizinc-benchmarks/tree/
master/jobshop (21-Nov-2019)

0 240 480 720 960 1,200

0

10

20

30

40

jobs

tim
e

el
ap

se
d

(s
)

(a) instantiation time per iteration

without GC
with GC

0 240 480 720 960 1,200

0

0.2

0.4

0.6

0.8

1

jobs
tim

e
el

ap
se

d
(s

)

(b) solving time per iteration

without GC
with GC

Figure 3: How (a) instantiation time and (b) solving time
per iteration changes over time, with and without garbage
collection (GC), using abz5.

7.3 Real-Time Online Job-Shop Scheduling

Our second experiment also uses the online job-shop
scheduling problem. The online data used is constructed as
before, but using the offline data file ft20.

This experiment shows how our framework can deal with
real-time online problems with uncertain task durations. Be-
cause of the real-time aspect, now is defined as the time at
the end of the solving time limit. Each task duration is given
as an expected value of an unknown distribution, which
means that its realisation may differ from its given value.

As a result, the realisation of a task’s start time is also
uncertain, since it may have to be pushed forward during
execution, due to a predecessor task running slower than ex-
pected. We simulate the execution step in this experiment
as follows. The execution is based on the solution found by
solving the model. Then, each task that will be finished in
the next iteration (using the given task duration) becomes
its realised task duration, generated from a normal distri-
bution with the mean parameter as the original task dura-
tion (which is what was given to the model initially) and the
standard deviation as one tenth of the average task duration
in the instance file (ft20). If a task runs slower (or faster)
than expected, then all other tasks that depend on it are set

1483

makespan

time/iteration 4 jobs/s 8 jobs/s

0.25 s — —
0.50 s 117,845 —
1.00 s 117,973 70,663
2.00 s 118,170 68,549
4.00 s 118,749 67,892
8.00 s 119,581 68,632

16.00 s 121,352 71,687

Table 2: Real-time online job-shop scheduling (file ft20).
Showing average over 5 runs. The symbol — denotes a time-
out of an iteration along the way.

to their earliest possible start time respecting the constraints,
and this propagates throughout all tasks. See online schedule
generation (Sprecher, Kolisch, and Drexl 1995). The realised
data and decisions are then read into the model and accessed
as normal via the sol() command.

There is a trade-off for the amount of solver time allowed
between iterations. Assuming new jobs arrive every second,
the more time we allow the solver to spend and find solu-
tions, the further in the future these jobs will have to be
scheduled (to account for the solving time) and the more new
jobs will arrive for the next iteration to consider. However,
if we give the solver too little time, it may not be able to
make the optimal decisions within each iteration, and may
thus need to simply use the best solution found within the
time limit (or in the worst case, find no solution at all).

Table 2 shows the results for scheduling 1162 jobs in to-
tal (from ft20), with different time limits per iteration, and
different rates of new jobs per second. For the purpose of
this experiment, we assume that 1 wall-clock second corre-
sponds to 408 time units (based on the average task duration
in the chosen benchmark).

As we can see, if the rate of new jobs is low (e.g., 4 jobs
per second), then using short iterations (e.g., of 0.5 seconds
per iteration) yields the best overall makespan. However, too
short an iteration (e.g., of 0.25 seconds per iteration) can
result in a timeout with no solution. With a higher data rate
(e.g., 8 jobs per second), a timeout of 4 second per iteration
yields the best result. Being able to quickly experiment with
these settings, by translating the external time automatically
into model-specific time units, is a significant advantage of
our approach over manual approaches.

7.4 Sliding-Window Decomposition: Cargo
Assembly Planning

A common approach for large offline optimisation prob-
lems is sliding-window decomposition, which decomposes
the problem into a series of subproblems restricted to a small
time window that slides forward during the process. All de-
cisions before the window are fixed and all decisions after
the window are not considered. We can use our framework
to directly implement and solve sliding-window decomposi-
tions, simply by appropriately splitting the data.

To illustrate this, we use the cargo assembly planning

original sliding-window

instance time delay time delay

07 1s 133 — 10,563 40.35 5,868
08 222f 3475 — 70,068 90.38 66,085
09 1s 18 OPT — 7,117 0.41 22,958
10 15966f 2060 — 38,119 90.34 36,347
16 10720f 4243 — — 80.71 88,862
19 31058f 2548 — 141,119 77.30 129,748

Table 3: Cargo Assembly Planning Problems solved as a
single optimisation problem and using sliding-window de-
composition. The symbol — under time indicates a time out
(120s) and under delay indicates no solution was found.

problem (CAPP) from the MiniZinc benchmark suite,4 a
simplified version of the problem described by Belov et
al. (2014). In CAPP, vessels arrive at different times. Ev-
ery vessel has a set of cargoes that has to be assembled in a
stockyard, at an unoccupied part on a stacking pad, into a set
of stockpiles. Each stockpile is then loaded onto its vessel.
The aim is to minimize the total delay.

We modified the model in the following ways: the
number of vessels becomes an extends parameter, the
stacking and loading start times for each stockpile are
::time annotated, and the position of each stockpile is
::lock_var_time annotated with the assembly start
time of that stockpile.

Table 3 shows results for all instances from the MiniZinc
benchmarks with at least 16 vessels. We compare the offline
solving approach (original), as a baseline, with a sliding-
window of 10 non-arrived vessels, adding 5 new vessels at
each iteration. A total timeout of 120 seconds (only instan-
tiation and solving time) for each method was used, divided
equally amongst the sliding-window iterations.

Clearly, the sliding-window decomposition is usually bet-
ter than solving the original problem, the exception is for the
easiest of the problems, where the global viewpoint allows
the solver to find a better solution.

8 Conclusion and Future Work

This paper presents a systematic approach that simplifies
the modelling and solving of online optimisation problems
significantly, making it more efficient for experienced mod-
ellers and more accessible for novices. We introduce several
annotations that enable modellers to describe online aspects
of their problem, i.e., how the decisions in their models are
related to time, in a high-level way.

Experiments show the usefulness of the framework for
both online problems and a sliding-window decomposition,
as well as the importance of garbage collection. This paper
mostly focuses on the job-shop scheduling problem, because
of its brevity and clarity to explain online concepts. How-
ever, the framework can also be used for many other kinds of
online problems, including online vehicle routing problems,
where customers/packages are to be delivered (released over

4https://github.com/MiniZinc/minizinc-benchmarks/tree/
master/cargo (21-Nov-2019)

1484

time) with, e.g., uncertain travel times; online stage-based
assignment problems, where we need to (re-)assign (poten-
tially new/different) agents to (potentially new/different) tar-
gets; and other forms of scheduling problems.

Future work includes extending the framework to be able
to specify in the model the stochastic aspects of online
problems (i.e., where parameters have a priori distributions
or probabilities), incorporating predictions of future data
while solving, developing an improved garbage collection
mechanism, looking at stability and robustness criteria, us-
ing warm-starts and local repair methods, and using dy-
namically sized windows and multiple passes with sliding-
window decompositions.

References

Belov, G.; Boland, N.; Savelsbergh, M. W. P.; and Stuckey, P. J.
2014. Local search for a cargo assembly planning problem. In
CPAIOR’14, LCNS 8451, 159–175. Springer.
Bent, R., and Van Hentenryck, P. 2004. Scenario-based planning
for partially dynamic vehicle routing with stochastic customers.
Operations Research 52(6):977–987.
Bent, R., and Van Hentenryck, P. 2005. Online stochastic opti-
mization without distributions. In ICAPS’05, 171–180.
Beraldi, P.; Violi, A.; Scordino, N.; and Sorrentino, N. 2011.
Short-term electricity procurement: A rolling horizon stochas-
tic programming approach. Applied Mathematical Modelling
35(8):3980–3990.
Bertsimas, D.; Jaillet, P.; and Martin, S. 2019. Online vehicle
routing: The edge of optimization in large-scale applications. Op-
erations Research 67(1):143–162.
Brown, K. N., and Miguel, I. 2006. Uncertainty and change. In
Handbook of Constraint Programming. Elsevier. chapter 21, 731–
760.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Rabideau,
G. 2000. Using iterative repair to improve the responsiveness of
planning and scheduling. In AIPS’00, 300–307. AAAI Press.
Clark, A. R., and Clark, S. J. 2000. Rolling-horizon lot-sizing
when set-up times are sequence-dependent. International Journal
of Production Research 38(10):2287–2307.
Climent, L.; Wallace, R. J.; Salido, M. A.; and Barber, F. 2014. Ro-
bustness and stability in constraint programming under dynamism
and uncertainty. Journal of Artificial Intelligence Research 49:49–
78.
Dantzig, G. B. 1955. Linear programming under uncertainty. Man-
agement Science 1(3/4):197–206.
Dechter, R., and Dechter, A. 1988. Belief maintenance in dynamic
constraint networks. In AAAI’88, 37–42. AAAI Press.
Dekker, J. J.; Garcia de la Banda, M.; Schutt, A.; Stuckey, P. J.; and
Tack, G. 2018. Solver-independent large neighbourhood search. In
CP’18, LNCS 11008, 81–98.
Dunke, F., and Nickel, S. 2016. A general modeling approach to
online optimization with lookahead. Omega 63:134–153.
Fourer, R.; Gay, D. M.; and Kernighan, B. W. 2002. AMPL: A Mod-
eling Language for Mathematical Programming. Cengage Learn-
ing, 2nd edition.
Frank, J. 2016. Revisiting dynamic constraint satisfaction
for model-based planning. The Knowledge Engineering Review
31(5):429–439.

Frisch, A. M.; Harvey, W.; Jefferson, C.; Martı́nez-Hernández, B.;
and Miguel, I. 2008. Essence: A constraint language for specifying
combinatorial problems. Constraints 13(3):268–306.
He, S.; Wallace, M.; Gange, G.; Liebman, A.; and Wilson, C. 2018.
A fast and scalable algorithm for scheduling large numbers of de-
vices under real-time pricing. In CP’18, LNCS 11008, 649–666.
Springer.
Jaillet, P., and Wagner, M. R. 2008. Online vehicle routing prob-
lems: A survey. In The Vehicle Routing Problem: Latest Advances
and New Challenges, volume 43 of OR/CS Interfaces. Springer.
221–237.
Jaillet, P., and Wagner, M. R. 2012. Online Optimization. Springer.
Lim, B.; Hijazi, H.; Thiébaux, S.; and van den Briel, M. 2016. On-
line HVAC-aware occupancy scheduling with adaptive temperature
control. In CP’16, LNCS 9892, 683–700. Springer.
Marquant, J. F.; Evins, R.; and Carmeliet, J. 2015. Reducing com-
putation time with a rolling horizon approach applied to a MILP
formulation of multiple urban energy hub system. Procedia Com-
puter Science 51:2137–2146.
Nethercote, N.; Stuckey, P. J.; Becket, R.; Brand, S.; Duck, G. J.;
and Tack, G. 2007. MiniZinc: Towards a standard CP modelling
language. In CP’07, LNCS 4741, 529–543. Springer.
Pralet, C., and Verfaillie, G. 2008. Using constraint networks on
timelines to model and solve planning and scheduling problems. In
ICAPS’08, 272–279. AAAI Press.
Pruhs, K.; Sgall, J.; and Torng, E. 2004. Online scheduling. In
Handbook of Scheduling - Algorithms, Models, and Performance
Analysis. Chapman and Hall/CRC.
Rahbar, K.; Xu, J.; and Zhang, R. 2015. Real-time energy stor-
age management for renewable integration in microgrid: An off-
line optimization approach. IEEE Transactions on Smart Grid
6(1):124–134.
Rendl, A.; Guns, T.; Stuckey, P. J.; and Tack, G. 2015. MiniSearch:
A solver-independent meta-search language for MiniZinc. In
CP’15, LNCS 9255, 376–392. Springer.
Roelofs, M., and Bisschop, J. 2019. AIMMS: The Language Ref-
erence, May 2, 2019 edition. chapter 33, Time-Based Modelling.
Available at: www.aimms.com.
Sprecher, A.; Kolisch, R.; and Drexl, A. 1995. Semi-active, ac-
tive and non-delay schedules for the resource-constrained project
scheduling problem. European Journal of Operational Research
80:94–102.
Van Hentenryck, P., and Bent, R. 2009. Online Stochastic Combi-
natorial Optimization. MIT Press.
Van Hentenryck, P.; Michel, L.; Perron, L.; and Régin, J. C. 1999.
Constraint programming in OPL. In PPDP’99, LNCS 1702, 98–
116. Springer.
Verfaillie, G., and Jussien, N. 2005. Constraint solving in uncertain
and dynamic environments: A survey. Constraints 10(3):253–281.

1485

