
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Cardinal Improvement to Pseudo-Boolean Solving

Jan Elffers,1,2 Jakob Nordström2,3

1Lund University, 2University of Copenhagen, 3KTH Royal Institute of Technology
jan.elffers@cs.lth.se, jn@di.ku.dk

Abstract

Pseudo-Boolean solvers hold out the theoretical potential of
exponential improvements over conflict-driven clause learn-
ing (CDCL) SAT solvers, but in practice perform very poorly
if the input is given in the standard conjunctive normal form
(CNF) format. We present a technique to remedy this prob-
lem by recovering cardinality constraints from CNF on the
fly during search. This is done by collecting potential building
blocks of cardinality constraints during propagation and com-
bining these blocks during conflict analysis. Our implementa-
tion has a non-negligible but manageable overhead when de-
tection is not successful, and yields significant gains for some
SAT competition and crafted benchmarks for which pseudo-
Boolean reasoning is stronger than CDCL. It also boosts per-
formance for some native pseudo-Boolean formulas where
this approach helps to improve learned constraints.

1 Introduction
The Boolean satisfiability problem (SAT) is one of the most
formidable challenges—and impressive success stories—
of computer science. Although SAT is an NP-complete
problem (Cook 1971; Levin 1973), and is widely be-
lieved to be exponentially hard in the worst case, the last
few decades have witnessed the emergence of highly effi-
cient SAT solvers based on conflict-driven clause learning
(CDCL) (Marques-Silva and Sakallah 1999),1 with further
improvements in (Moskewicz et al. 2001) and later papers.
Today, these solvers are routinely used to solve large-scale
real-world problems in a wide range of application areas
(see (Biere et al. 2009) for a comprehensive reference).

One shortcoming of CDCL is that it uses a fairly weak
method of reasoning—namely resolution, for which expo-
nential lower bounds are known even for simple combinato-
rial principles (Haken 1985; Urquhart 1987). Another weak-
ness is that the input must be encoded in conjunctive normal
form (CNF), which deprives the solver of the possibility to
reason with more expressive higher-level constraints.

A natural strengthening of CNF is to allow pseudo-
Boolean (PB) constraints, i.e., integral linear inequalities

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A similar idea in the context of CSPs was independently de-
veloped in (Bayardo Jr. and Schrag 1997).

over Boolean variables, which gives a succinct way of
encoding problems in many domains. CDCL solvers can
then be applied to such problems by translating the input
to CNF (as in, e.g., MiniSat+ (Eén and Sörensson 2006),
Open-WBO (Martins, Manquinho, and Lynce 2014), and
NaPS (Sakai and Nabeshima 2015)) or by keeping the
pseudo-Boolean input but deriving new constraints in the
form of disjunctive clauses (as in methods implemented in
clasp (Gebser, Kaufmann, and Schaub 2012) and the Sat4j
library (Le Berre and Parrain 2010)). Another approach,
which is quite attractive from a theoretical point of view,
is to go beyond resolution and try to harness the power
of cutting planes (Cook, Coullard, and Turán 1987). The
conflict-driven paradigm has been extended to this setting
in pseudo-Boolean solvers like PRS (Dixon and Ginsberg
2002), Galena (Chai and Kuehlmann 2005), Pueblo (Sheini
and Sakallah 2006), Sat4j (Le Berre and Parrain 2010), and
RoundingSat (Elffers and Nordström 2018).

A critical flaw of current cutting-planes-based solvers,
however, is that while this method of reasoning is exponen-
tially more powerful than resolution in theory, and does not
care much about whether the input is presented in CNF or
pseudo-Boolean form, the algorithms actually used in im-
plementations of such solvers make them collapse to CDCL
as soon as the input is given in CNF (Hooker 1988; 1992;
Vinyals et al. 2018). This is clearly a highly unsatisfactory
state of affairs—all the more so since a user of the solver
might not be aware of that a problem can be rewritten more
efficiently using pseudo-Boolean constraints, or that such
low-level details of the syntactic representation can make an
exponential difference in performance.

Our goal is to address this problem in a principled way,
by rewriting CNF when a more efficient representation is
possible, while maintaining good overall performance when
no obvious improvement can be made. More concretely, in
this work we propose a way of recovering cardinality con-
straints, saying that at most k variables (or at least k vari-
ables) in some subset can be true, from CNF. Cardinality
constraints are already enough to make pseudo-Boolean rea-
soning exponentially stronger than resolution, and have been
argued to capture most of the improvement over CDCL in
practice (Chai and Kuehlmann 2005).

1495

Earlier work on recovering cardinality constraints, which
we will refer to as cardinality detection, was done
in (Ansótegui 2004; Ansótegui et al. 2007). Some SAT
solvers in the SAT competition also include recovery of car-
dinality constraints in the preprocessing phase (Biere 2013),
though in these solvers the cardinality constraints are only
used in a variable elimination algorithm to check for unsatis-
fiability during preprocessing. To the best of our knowledge,
the only previous systematic investigation of cardinality de-
tection in the context of pseudo-Boolean reasoning is (Biere
et al. 2014). There, two types of detection were proposed:
syntactic and semantic. They are both performed during a
preprocessing step, and the recovered cardinality constraints
are added to the formula before starting the pseudo-Boolean
search. The general idea is to discover building blocks in the
form of short clauses, and then extend them as far as possi-
ble to larger cardinality constraints. As an example, consider
the at-most-1 constraint x1 + x2 + x3 + x4 ≤ 1, which can
be encoded in CNF as S = {x1 ∨ x2, x1 ∨ x3, x1 ∨ x4, x2 ∨
x3, x2∨x4, x3∨x4}. Cardinality detection starts from a sin-
gle clause, say, x1 + x2 ≤ 1 (which is the PB representation
of x1 ∨ x2), extends this constraint by adding x3 after de-
tecting the clauses {x1∨x3, x2∨x3}, and then also adds x4

after finding the remaining clauses in S. In syntactic cardi-
nality detection, the building blocks are found by syntactic
checks of the input formula. In the semantic approach they
are found by probing, i.e., assigning a variable and study-
ing what other assignments are propagated. For example, to
detect all binary clauses containing x1, one sets x1 to true
and collects literals � propagated to false—for all such lit-
erals we have a building block x1 ∨ � that could be part
of an at-most-1 constraint. For k > 1 one can set k-tuples
of literals {�1, . . . , �k} to true and gather building blocks
�1 ∨ . . . ∨ �k ∨ �′ for every literal �′ propagated to false.

1.1 Our Contribution

Our approach differs from (Biere et al. 2014) in several
key aspects. We do not perform cardinality detection dur-
ing a separate preprocessing step, but continuously during
the solver execution. We have no syntactic detection, which
is the main focus of (Biere et al. 2014), but instead use a se-
mantic technique. However, we do not use dedicated prob-
ing, which quickly becomes too inefficient as k grows. In-
stead, we analyze the directed acyclic graph of unit propa-
gations constructed during the “forward phase” of the solver
search algorithm, and find clauses by considering cuts in this
graph. During the “backward phase” of conflict analysis, we
check on-the-fly if the short clauses involved in the conflict
can be strengthened to cardinality constraints using previ-
ously detected building blocks. Importantly, these modifica-
tions allow us to recover at-most-k constraints not only for
k ∈ {1, 2} as in (Biere et al. 2014) but also for larger k.

Furthermore, the fact that cardinality detection is per-
formed throughout the search means that the solver can also
discover and exploit cardinality constraints that were not
there in the original input, but have arisen as a result of the
constraints learned during search. Recovery of short clauses
during CDCL search has been considered before (Han, Jin,

and Somenzi 2011; Heule, Järvisalo, and Biere 2013). How-
ever, our work differs from these papers in that they detect
only binary clauses whereas we find also longer (though still
comparatively short) clauses, and in that we use the found
clauses to form syntactic cardinality constraints.

We have implemented our cardinality detection algorithm
inside the pseudo-Boolean solver RoundingSat (Elffers and
Nordström 2018). Our main conclusion is that the overhead
of our approach is not too high on average, while at the
same time we are able to solve a number of formulas faster
than other CDCL and PB solvers. In more detail, in the
relevant decision track in the latest pseudo-Boolean com-
petition our solver performs similarly to though somewhat
worse than the baseline RoundingSat solver. On CNF for-
mulas from the SAT competitions, CDCL solvers run much
faster in general, as is to be expected. Nevertheless, there are
a number of benchmarks where the extra effort of our ap-
proach pay off, and where our solver is the only solver that
finishes within the time limit. Besides that, there are many
examples of crafted benchmarks where the new cardinality
detection solver is better than existing CDCL and pseudo-
Boolean approaches, including the earlier mentioned PB
solver with cardinality detection from (Biere et al. 2014). In-
terestingly, we have also found that cardinality detection im-
proves performance dramatically for some pseudo-Boolean
formulas which are very hard in practice for PB solvers such
as RoundingSat although the encoding seems to be the most
natural one and the solvers should be able to prove unsatisfi-
ability very efficiently in principle. While our work certainly
leaves room for further improvement, this suggests that on-
the-fly cardinality detection could be a useful technique in
improving pseudo-Boolean reasoning in general, in contrast
to just recovering cardinality constraints encoded in an un-
helpful manner as a set of clauses.

1.2 Organization of This Paper

After giving some very brief preliminaries in Section 2, we
describe our method for cardinality detection in more detail
in Section 3 and report results from experimental evalua-
tions in Section 4. We end in Section 5 with a discussion of
possible directions for future work.

2 Preliminaries
Throughout this paper we use the term pseudo-Boolean (PB)
constraint to refer to a linear inequality

∑
i ai�i ≥ A or∑

i ai�i ≤ A, where ai and A are integers and �i ∈ {xi, xi}
are positive or negative literals over Boolean variables re-
lated by xi + xi = 1. This last equality can always be used
to rewrite any PB constraint in so-called normalized form
as a greater-than-or-equal constraint with all coefficients ai
non-negative, and so we can freely assume that this is the
case in what follows. A cardinality constraint is a PB con-
straint with all ai ∈ {0, 1}, where an at-most-k constraint
is of the form

∑
i �i ≤ k and an at-least-k constraint looks

like
∑

i �i ≥ k. Semantically speaking, a disjunctive clause
D = �1 ∨ · · · ∨ �w is exactly the same as an at-least-1 con-
straint �1 + · · · + �w ≥ 1, and so we identify the two. We
can also view D as a set of literals, and say that D is a sub-
clause of D′ if D ⊆ D′ viewed as sets. We note that any

1496

pseudo-Boolean constraint
∑

i ai�i ≥ A with ai, A positive
can be rounded to a clause

∑
i �i ≥ 1 that is implied by the

constraint.
Due to limited space we cannot go into too much detail

regarding conflict-driven pseudo-Boolean solving, but here
follows a condensed description of the notions that we will
need. At all times, the solver maintains an ordered trail of
literals � assigned to true, where every assignment is either a
free decision or a unit propagation caused by some PB con-
straint C that would be violated if � were to be set to false;
such a C is referred to as a reason for �. The solver alternates
between making decisions and exhaustively inferring all unit
propagations that follow from each such decision until either
a satisfying assignment is found or a conflict is reached in
the form of a violated constraint. In the latter case, the solver
switches to conflict analysis. Here the solver combines the
conflicting constraint with the reason constraints responsi-
ble for the propagations falsifying it one by one in reverse
chronological order using the so-called resolution rule, after
first reducing every reason constraint to suitable form (this
reduction step is the main difference between PB solving
and CDCL). The conflict analysis ends when an assertive
constraint has been derived that will automatically flip some
literal assignment when the solver backtracks.

Typically, the solver spends the vast majority of its time
on unit propagation, and so achieving fast propagation is
crucial for good performance. Another interesting measure
is the number of conflicts reached before the solver termi-
nates, which can be viewed as an indicator of the quality of
the search. We refer the reader to the survey chapter (Buss
and Nordström 2020) for a more in-depth comparison of
CDCL and pseudo-Boolean solving.

3 Cardinality Detection Method

As explained above, our cardinality detection algorithm con-
sists of two phases. During the solver “forward phase” of de-
cisions and unit propagation we derive short clauses, which
we call building blocks, that could potentially be used to
form cardinality constraints. During the “backward phase”
of conflict analysis we try to obtain cardinality constraints
from these building blocks. The second phase is fairly stan-
dard, but the first phase, and how everything fits together, is
novel. In this section, we describe all of this in more detail
and give some illustrating examples.

3.1 Finding Cardinality Building Block Clauses

As a motivating example, consider again the at-most-1 con-
straint x1 + x2 + x3 + x4 ≤ 1, encoded in clausal form as
{xi ∨ xj | 1 ≤ i < j ≤ 4}. In order to recover this cardinal-
ity constraint, we need to detect the clausal building blocks.
If, say, x1 ∨x2 is not part of the the original formula syntac-
tically, then we would hope that the solver would detect the
implication x1 → x2 or x2 → x1 during unit propagation.
However, such an implication might be indirect: it could be
that x1 implies y and z through the clauses x1∨y and x1∨z,
which in turn imply x2 through the clause y ∨ z ∨ x2. The
solver needs to be able to discover also such indirect impli-
cations.

The sequence of decisions and unit propagations a solver
makes during search can be described by a directed implica-
tion graph, where there is a vertex for every literal assigned
to true, and for a propagated literal this vertex has incoming
edges from the negations of all other literals in the clause
that propagated it (these negated literals have also been set to
true, since the clause is propagating, and so there are vertices
for them in the graph). In our example, we could read off
from the implication graph that it is sound to derive x1 ∨x2.
This is so since every path to x2 in the implication graph
goes through x1, and hence setting x1 to true is sufficient to
propagate x2 to false. In general, for every set of literals L
such that all paths from decisions to a literal p go through
a vertex in L, we have the implication (

∧
�∈L �) → p, or

in clausal form
∨

�∈L � ∨ p. We refer to such a set L as a
cut, and the building blocks that our algorithm derives are
clauses corresponding to such cuts.

Importantly, we do not collect all cuts and clauses that can
be obtained from them, but only one cut and clause for each
propagated literal. The intuition is that this clause should es-
sentially contain the decisions directly responsible for prop-
agating the literal plus the literal itself.

In more detail, our cut generation algorithm for deriving
clausal building blocks takes a parameter wmax specifying
the maximum width of clauses to detect. For example, if
wmax = 2, then only binary clauses are derived, which only
suffices to form at-most-1 constraints. The idea is that dur-
ing the search the solver should find such clauses for prop-
agated literals by computing a cut containing the decisions
that have a path to this literal in the implication graph and
adding the clause encoding that this cut implies the prop-
agated literal as described above. We need a slight adjust-
ment of this, however, in that in addition to decisions literals
we also include in the cut propagated literals for which the
already computed cuts hit the wmax size bound. See Algo-
rithm 1 for the pseudocode, where cut [p], if defined, con-
tains a (recursively computed) cut of size less than wmax

for the literal p in the implication graph. In Algorithm 1, the
roundToClause method reduces the pseudo-Boolean reason
constraint

∑
i ai�i ≥ A for literal p to a clause

∑
i �i ≥ 1

(possibly after first having weakened the constraint by re-
moving some literals, so that the rounded clause is still prop-
agating). Next, the decision cut for p is constructed. For each
literal � in the reason clause, if � has a decision cut already
calculated, we add the set of decisions responsible for prop-
agating it to the cut for p. Otherwise, we add � itself.

3.2 Filtering Building Block Clauses

A first naive approach would be to add all found building
block clauses to the constraint database and let the solver
use all of them for propagation and conflict analysis. This
turns out not to be a good idea, however: it slows down the
search speed, and also significantly worsens search quality
measured in total number of conflicts. One way to decrease
the number of clauses is to compute cuts for all literals dur-
ing propagation, but only add the corresponding clauses for
literals that actually take part in the conflict analysis dur-
ing the backward phase. Furthermore, for such clauses we

1497

Data: Propagated literal p; max width wmax of clauses
Result: A cut for p of size at most wmax − 1
if p was propagated by constraint Creason then

C ← roundToClause(Creason , p)
cut [p]← ∅
foreach � ∈ C \ {p} do

if cut [�]
= UNDEFINED then
cut [p]← cut [p] ∪ cut [�]

else
cut [p]← cut [p] ∪ {�}

end

end

end
if |cut [p]| > wmax − 1 then cut [p]← UNDEFINED
Algorithm 1: Algorithm for deriving building blocks.

also apply a filtering step, and send clauses not passing this
filter to a separate storage of inactive constraints that do not
take part in the search (i.e., the solver does not consider such
clauses when performing unit propagation).

Our filter accepts only building blocks C that are part
of an at-least-2 constraint, by which we mean that there
is some literal � /∈ C such that for all literals �0 ∈ C the
clause (C \ {�0}) ∪ {�} can be found in storage. This is
perhaps best illustrated by an example. Suppose that build-
ing blocks C1 = x1 ∨ x2 ∨ x4, C2 = x1 ∨ x3 ∨ x4, and
C3 = x2 ∨ x3 ∨ x4 have previously been detected. Then
if the clause C4 = x1 ∨ x2 ∨ x3 is added, we see that all
clauses (C4 \ {xi}) ∪ {x4} for i = 1, 2, 3 are is in stor-
age, and these clauses together with C4 imply the constraint
x1 + x2 + x3 + x4 ≥ 2. Hence, the filter accepts C4 (and
also retroactively C1, C2, and C3).

A more generous criterion for being part of an at-least-2
constraint could have been that all clauses (C \ {�0}) ∪ {�}
or subclauses thereof could be found (in our example, that
x1∨x2∨x4 and x3∨x4 were present, say). However, we have
found that using such a filter degrades performance substan-
tially on certain benchmarks.

3.3 Forming Cardinality Constraints

The actual construction of cardinality constraints happens
during the backward phase while the solver is analysing the
conflict it just reached. When a short clause appears as the
reason in the conflict analysis, the solver attempts on the fly
to extend this clause to a largest possible cardinality con-
straint. As described in the introduction, this is done by a
greedy algorithm that considers variables in decreasing or-
der of activity in recent conflicts (in more technical terms,
variables with higher scores as measured by the variable
state independent decaying sum (VSIDS) (Moskewicz et al.
2001) are tried first). We have also attempted to use heuris-
tics based on the activity of building block clauses in conflict
analysis, as well as other non-adaptive heuristics, but have
found that the approach based on variable acticity worked
best.

This recovery of cardinality constraints is integrated in
the pseudo-Boolean conflict analysis as described in Algo-

while Cconfl is not assertive do
�← literal assigned last on the trail ρ
if �̄ occurs in Cconfl then

Creason ← reason(�, ρ)
Creason ← reduceReason(Creason, �, ρ)
if Creason is clause of size ≤ wmax then

Creason ← cardDetect(Creason)
end

Cconfl ← resolve(Cconfl, Creason, �̄)
end
ρ← removeLast(ρ)

end
return Cconfl

Algorithm 2: Conflict analysis with cardinality detection.

rithm 2. In this algorithm, we resolve the conflicting con-
straints with reason constraints for the propagations falsify-
ing it until the derived constraint is such that it will flip the
value assigned to some literal before the last decision was
made. As mentioned in Section 2, an extra step in PB conflict
analysis compared to CDCL is that the reason constraints
need to be reduced in order for the algorithm to work. What
we add further to do on-the-fly cardinality detection is the
cardDetect function, which recovers cardinality constraints
from building block clauses as has been described above.

One important difference from the limited cardinality
constraint detection during the filtering step, however, is that
during cardinality constraint recovery we do not require ex-
act syntactic matches of clauses taking part in cardinality
constraints, but also look for subclauses of such clauses.
The reason for this is that it might well happen that a car-
dinality constraint is formed by stronger clauses than those
in its canonical encoding to CNF. All short clauses partic-
ipate in forming cardinality constraints, including building
block clauses in inactive storage that have not yet passed
our filtering test.

3.4 A Worked-out Toy Example

Let us now show how our PB solver with cardinality de-
tection can efficiently solve a pseudo-Boolean formula with
some clausal constraints. We consider a toy formula encod-
ing the contradictory constraints x1+x2+x3+x4 ≥ 3 and
x1 + x2 + x3 + x4 ≤ 2, but with the second constraint ob-
fuscated as a set of clauses with extra variables added as in
Figure 1. Note that the last two constraints x1+x3+x4 ≥ 1
and x2+x3+x4 ≥ 1 are just the pseudo-Boolean represen-
tations of the clauses x1 ∨ x3 ∨ x4 and x2 ∨ x3 ∨ x4, which
are the building blocks we are expecting for the at-most-2
constraint.

Suppose that the solver decides to set x2 true and then
x1 true. Then the two top right constraints propagate y1 to
true and then x3 to false as shown in the implication graph in
Figure 2 (where we also show the propagating constraints in
clausal form to make the illustration easier to follow). Also,
the three bottom left constraints in Figure 1 propagate z1
and z2 to true, which in turn propagates x4 to false as shown
in the implication graph in Figure 3. From cuts in these im-

1498

x1 + x2 + x3 + x4 ≥ 3 x1 + y1 ≥ 1

x2 + z1 + z2 ≥ 1 x2 + y1 + x3 ≥ 1

x1 + z1 ≥ 1 x1 + x3 + x4 ≥ 1

z2 + x4 ≥ 1 x2 + x3 + x4 ≥ 1

Figure 1: Toy pseudo-Boolean formula.

x1

x2

y1

x3

x1 ∨ y1

y1 ∨ x2 ∨ x3

Figure 2: Implication graph for detection of x1 ∨ x2 ∨ x3.

plication graphs the solver can derive the clausal building
blocks x1 ∨ x2 ∨ x3 and x1 ∨ x2 ∨ x4, respectively.

A this point, the solver also discovers that the constraint
x1 + x2 + x3 + x4 ≥ 3 is falsified, and so we have a con-
flict. In the conflict analysis, if x4 was propagated last, then
the first reason constraint in reverse chronological order is
the clause x1 + x2 + x4 ≥ 1. When cardinality detection is
applied on this clause, the solver finds that x3 can be added
because all subclauses of length 3 of x1 ∨ x2 ∨ x3 ∨ x4

are present. Thus, the reason constraint is strengthened to
x1 + x2 + x3 + x4 ≥ 2 (which is just the constraint
x1+x2+x3+x4 ≤ 2 written in normalized form). When the
solver resolves the reason constraint x1 + x2 + x3 + x4 ≥ 2
with the conflict constraint x1+x2+x3+x4 ≥ 3 by adding
them together, all literal pairs xi and xi cancel leaving con-
stants 1 and we are left with 5 ≥ 2 + 3, or after simpli-
fication 0 ≥ 1. This is a contradiction, and the solver im-
mediately terminates and declares the instance unsatisfiable.
Although we do not have space to discuss this here, it is
straightforward to verify that PB conflict analysis without
cardinality detection would instead derive the learned con-
straint x3 ≥ 1, i.e., the unit clayse x3. This would cause the
solver to backtrack to top level, undoing the decisions made
on x1 and x2, and then propagate x3 to true. After this, the
solver would need to start over with new decisions and prop-
agations, though.

4 Experimental Evaluation

We have implemented our approach within the pseudo-
Boolean solver RoundingSat (Elffers and Nordström 2018).
We refer to the solver with cardinality detection as
RoundingSat-Card. We set wmax = 5 in all experiments.
In (Biere et al. 2014), the bound is set to wmax = 3 (bi-
nary and ternary clauses), and this low value is necessary
for their approach to run fast enough. We report results from
two types of benchmarks: SAT and PB competitions from
2016–2018, and a number of crafted benchmarks. The mo-
tivation for including these crafted benchmarks is to make
clear that the approach put forward in this paper has poten-
tial to solve formulas which earlier solvers could not deal

x1

x2

z1

z2 x4

x1 ∨ z1

x2 ∨ z1 ∨ z2

z2 ∨ x4

Figure 3: Implication graph for detection of x1 ∨ x2 ∨ x4.

with. This is hard to see from the results in the competitions
because the benchmarks in the competitions were selected
to be challenging but not completely out of reach for exist-
ing solvers. This means that if some benchmarks critically
required on-the-fly cardinality detection to be solved fast,
then by design such formulas would have been likely to be
omitted from the competition sets.

On CNF formulas, we compared our solver to Sat4j Card
from (Biere et al. 2014) as well as to the state-of-the-art
SAT solvers CaDiCaL (CaDiCaL 2019) and Glucose (Au-
demard and Simon 2009). On pseudo-Boolean (OPB) for-
mulas, we again compared our solver to Sat4j Card and also
to the state-of-the-art PB solvers Sat4j (Le Berre and Par-
rain 2010) and clasp (Gebser, Kaufmann, and Schaub 2012).
Sat4j comes in one version Sat4j Res that only reasons with
clauses, and another Sat4j Res+CP that runs in parallel the
clause-based solver and a solver that reasons with general
PB constraints. The solver Sat4j CP is too slow to run on
its own in a competition setting. However, Sat4j Card uses
only this solver plus cardinality detection. The experiments
in (Biere et al. 2014) used also a different tool for cardi-
nality detection, namely Riss (Manthey 2012). However, the
solvers using Riss for preprocessing were found to do worse
than what was reported in the paper, and therefore we dis-
carded them.

For our experiments on SAT competition benchmarks we
used a timeout of 5000 seconds. The results are as given in
Figure 4. Here we see that RoundingSat-Card is not able to
keep up with the fastest CNF SAT solvers, but that there ex-
ist benchmark families for which our cardinality detection
turns out to be essential to solve the formula quickly. These
families are, among others, synthesis of shortest straight-
line programs (Fuhs and Schneider-Kamp 2010) and the
GrandTourobs puzzle (Chowdhury, Müller, and You 2018).
For the pseudo-Boolean competition 2016, using a timeout
of 1800 seconds, RoundingSat-Card solves 1097 problems,
compared to 1150 for RoundingSat, 1047 for Sat4j Res+CP,
665 for Sat4j Card and 963 for clasp. For this setting the car-
dinality detection is implemented efficiently enough for the
solver to not slow down too much. The reason that clasp has
a worse result is because some of these benchmarks are dif-
ficult for solvers reasoning with clauses, and easy for those
reasoning with general PB constraints.

Let us next discuss our experiments on crafted bench-
marks, starting with a number of variations on pigeonhole
principle (PHP) formulas. First, we test cardinality detection
on a number of encodings of standard PHP formulas (Biere
et al. 2014). The results are given in Figure 5. We see that the
solvers implementing cardinality detection perform signifi-
cantly better than those that do not. Both pseudo-Boolean

1499

Year RSCard CaDiCaL Glucose Only RSCard
2016 107 214 169 3+18
2017 57 204 150 1
2018 166 559 404 3+8+10

Figure 4: Results (number of solved instances) for the SAT
competitions. The last column reports counts of instances
solved only by RSCard summed per benchmark family.

Encoding Sat4j Card RSCard CaDiCaL Glucose
Binomial 14 (5m) 14 (17m) 3 (334m) 1 (394m)

Binary 7 (211m) 6 (241m) 3 (335m) 4 (307m)
Sequential 13 (38m) 14 (1m) 3 (332m) 6 (251m)

Product 10 (123m) 7 (218m) 2 (362m) 5 (282m)
Commander 12 (64m) 14 (1m) 2 (367m) 5 (279m)

Ladder 12 (69m) 14 (1m) 3 (332m) 6 (258m)

Figure 5: Results for the pigeonhole principle: number of
solved instances (out of 14) and sum of run time for solved
instances.

solvers exhibit similar performance on these benchmarks.
Our second PHP-like formula is the two-pigeons-per-hole

principle formula, which encodes the claim that 2n − 1 pi-
geons do not fit into n − 1 holes if each hole has room
for at most 2 pigeons. We use this benchmark to test de-
tection of at-most-2 constraints. We consider four differ-
ent encodings: the binomial encoding, which lists all build-
ing blocks in the input, and the three encodings of Min-
iSat+ (Eén and Sörensson 2006): sorter networks, BDDs and
adder networks. The reason that we use different encodings
than in (Biere et al. 2014) is that the encodings used there are
specifically for at-most-1 constraints. See Figure 6 for the re-
sults (except that the binomial encoding was so much easier
than the other encodings for all solvers that we omit them).
Here we see that RoundingSat-Card scales better than Sat4j
Card, and also better than the best CDCL solvers.

We consider one more PHP-inspired formula. Here the
needed building blocks are not already implied by unit prop-
agation but have to be found through clause learning. These
benchmarks are 3-colouring formulas generated by a reduc-
tion from the so-called graph functional pigeonhole princi-
ple. This reduction was proposed in the paper (Lauria and
Nordström 2017).2 The results are presented in Figure 7. Ob-
serve that RSCard scales reasonably well and much better
than RoundingSat without cardinality detection, for which
these formulas are exponentially hard. We wish to high-
light two technical challenges when solving this formula.
Firstly, typically multiple cardinality constraints can be de-
tected, but only one choice works. It turns out that extend-
ing with variables in the order of VSIDS scores selects the
right constraint. Secondly, adding all ternary clause building
blocks degrades performance (in terms of number of reason-
ing steps, not only running time), but adding a filtering step

2A technical detail is that in order to solve these formulas us-
ing at-most-1 constraints we need to fix the colours of the “main
gadget”—this corresponds to setting three variables to true (the for-
mula can be solved by solving 3! = 6 such subproblems).

Encoding Sat4j Card RSCard CaDiCaL Glucose
Sorter 4 (1504m) 12 (209m) 7 (1008m) 7 (1007m)
BDD 4 (1501m) 10 (572m) 8 (862m) 8 (844m)
Adder 4 (1500m) 9 (701m) 6 (1167m) 6 (1168m)

Figure 6: Results for the two-pigeons-per-hole principle
(13 benchmarks in total).

Figure 7: Results for 3-colouring formulas reduced from
functional graph pigeonhole principle with left-degree 3.

for building blocks resolves this issue.
When comparing RSCard and Sat4j Card on pigeonhole

principle-like problems, we note that probing can only re-
cover clauses which were implied by unit propagation from
the initial set of clauses. An encoding of a cardinality con-
straint into CNF is called arc-consistent if unit propagation
on the set of clauses does not miss any propagations that
one gets when running unit propagation on the cardinality
constraint. For probing to find all building blocks of a cardi-
nality constraint, the CNF encoding must be arc-consistent.
This holds for all encodings of the pigeonhole principle in
Figure 5. However, the sorter network and BDD encoding
of the two pigeons per hole principle are also arc-consistent,
but Sat4j Card does not perform well on these formulas.
This indicates that a necessary condition for Sat4j Card to
solve a formula efficiently is that all cardinality constraints
the solver needs to run fast consist of clauses that are already
implied by unit propagation by the initial set of clauses.
From the results on the two pigeons per hole principle, we
see that this is not a sufficient condition for Sat4j Card to
recover the cardinality constraints.

Next, let us investigate a family of unsatisfiable bench-
marks where the difficulty is not in finding the building
blocks, but in combining them in the right way, because
there are many possible overlapping cardinality constraints
to find. These benchmarks encode the claim that a (k − 1)-
colourable graph cannot contain a k-clique. This formula is
easy for cutting planes, because a (k − 1)-colouring can
be mapped to (k − 1) at-most-1 constraints which when
added to the clique constraint give a contradiction. However,
every independent set in the graph is a possible at-most-1

1500

Figure 8: Results for k-clique formulas on (k−1)-colourable
graphs (k = 25).

Figure 9: Results for even colouring formulas on random
4-regular graphs with a split edge.

constraint, so it is not clear how the solver would find
(k − 1) such constraints that partition the graph. In our ex-
periments, we set k = 25 and let the graph be a random
(k−1)-colourable graph with each edge between differently
coloured vertices present with probability n−2/(k−1). This
is the probability where the transition between probably not
containing a clique and probably containing a clique hap-
pens, if we ignore that the graph is (k−1)-colourable. From
Figure 8 we can see that cardinality detection significantly
improves the solving power of RoundingSat, though it still
seems that it does not work well when n gets large.

We also would like to highlight one formula where car-
dinality detection pays off even though the formula as pre-
sented to the pseudo-Boolean solver is already easy in the-
ory. The even colouring formula (Markström 2006) is an un-
satisfiable benchmark where it seems that PB solvers have
to combine addition and and division in the right way to run
fast. This turns out to be very challenging for PB solvers

Encoding Sat4j Card RSCard RS clasp
CNF 10 10 2 1
OPB 10 10 10 1

recoverTree 1 10 2 2
recoverTreeReuse 1 10 2 2

recoverInput 1 6 2 2

Figure 10: Results for division-friendly formulas (10 bench-
marks per family).

in practice, however. In slightly more details, the formula
encodes that for a graph with all vertices having even de-
gree but with an odd number of edges, it is not possible to
colour edges black and white so that each vertex has the
same number of black and white adjacent edges. See Fig-
ure 9 for experimental results on 4-regular random graphs
with a split edge (to make the edge count odd). Quite in-
terestingly, cardinality detection significantly improves per-
formance of RoundingSat not only for the CNF encoding
(where original RoundingSat has no chance) but also for the
PB encoding.

Finally, let us discuss a set of benchmarks called
division-friendly formulas (Gocht, Nordström, and Yehu-
dayoff 2019), which are obfuscated versions of (otherwise
extremely easy) subset cardinality formulas (Mikša and
Nordström 2014). The encodings allow a PB solver imple-
menting the division rule, such as RoundingSat, to solve the
formulas efficiently in theory, but in practice these formulas
are very hard for all pseudo-Boolean solvers. We see in Fig-
ure 10 that our solver with cardinality detection deals much
more successfully with these obfuscated formulas, although
it has difficulties with one specific encoding.

5 Conclusion and Future Work

In this paper we present a new approach to cardinality detec-
tion in pseudo-Boolean solvers that, in contrast to previous
works such as (Biere et al. 2014), is not applied during pre-
processing but throughout the execution of the solver, and is
not based on probing or syntactic checks but extracts infor-
mation semantically during search. Our experiments show
that our approach incurs only a moderate overhead in the
worst case, and sometimes yields dramatic improvements
in efficiency. In particular, for formulas in CNF that en-
code cardinality constraints this technique allows pseudo-
Boolean solvers to go beyond CDCL and harness the power
of cutting-planes-based reasoning.

When running on CNF formulas, pseudo-Boolean reason-
ing is at a disadvantage to CDCL, because the data structures
and algorithms required are more involved, and we can-
not match the overall performance of state-of-the-art CDCL
SAT solvers in a competition setting. However, our pseudo-
Boolean solver enhanced with cardinality detection manages
to solve some challenging benchmarks that are out of reach
for existing CDCL and PB solvers. This shows that already
our proof-of-concept implementation could play a useful
role as a part of a portfolio SAT solver. Furthermore, even
for some native pseudo-Boolean formulas, where there are
no hidden PB constraints to detect, our experiments show

1501

that adding on-the-fly cardinality detection can improve the
pseudo-Boolean search and make the solver run faster.

As to future work, we believe that there is substantial
room for improvements of our technique for cardinality de-
tection. We would like to develop better heuristics for how
to generate building block clauses from cuts in the implica-
tion graph and for which building blocks to keep or throw
away. Another possible direction is to perform the cardinal-
ity detection in an adaptive fashion, where the solver would
spend more or less time on detection depending on how
much this work has paid off so far during search (provided
that a meaningful way of measuring this could be found).
We already know of crafted CNF formulas for which our ap-
proach does not work, although the formulas contain cardi-
nality constraints (e.g., the so-called relativized pigeonhole
principle (RPHP) formulas in (Atserias, Lauria, and Nord-
ström 2016)), and as a first step would want to be able to
solve also such formulas.

Another highly relevant challenge would be to detect
cardinality constraints without going via the binomial en-
coding in our building block clauses. For example, an
at-most-50-out-of-100 constraint is completely infeasible
to detect with our current method, since the intermediate
clausal representation becomes prohibitively large. How-
ever, if such a constraint were provided in the BDD encod-
ing of MiniSat+ (Eén and Sörensson 2006), then a proce-
dure recognizing this encoding might be able to recover the
constraint. Thus, we are suggesting to go back to a mix of
semantic and syntactic detection techniques.

We would also like to extend the pseudo-Boolean detec-
tion to recover not only cardinalities but also more general
linear inequalities where some of the coefficients are greater
than 1, such as, e.g., 2x1 + x2 + x3 + x4 ≥ 2. So far we
have not been able to implement detection and recovery of
such constraints, since it would seem to require a redesign
of the filtering method that we use to retain or throw away
building blocks of cardinality constraints. Dropping the fil-
ter completely does not seem to be an option, as this ruins
the effectiveness of the approach.

A final remark is that we have observed that prob-
ing sometimes beats our implication-graph-cut technique
in finding useful building block clauses. However, if the
decision heuristic of the solver is modified by setting the
VSIDS decay factor to the fastest possible decay—meaning
that when prioritizing variables to decide on the solver has
very little memory and quickly forgets everything except
the variables involved in the very latest conflicts—then our
solver seems to be equally good as probing at finding the
right building blocks. We would like to understand better
the relationship between probing on the one hand and our
implication-graph-cut technique combined with with fast
VSIDS decay factor on the other.

Acknowledgments
We thank Daniel Le Berre for providing us with the
solvers and benchmarks used in (Biere et al. 2014), and
Romain Wallon for helping us figure out the correct versions
of the solvers to use. We are grateful to Massimo Lauria for
sharing the generator scripts for the benchmarks described

in (Lauria and Nordström 2017). We gratefully acknowl-
edge useful feedback from the participants of the workshop
Pragmatics of SAT 2019, where a preliminary version of this
work was presented. Throughout this project, we have ben-
efited greatly from many interesting and enjoyable discus-
sions with Jo Devriendt, Stephan Gocht, and Janne Kokkala.
Last but not least, we are thankful to the anonymous re-
viewers for many detailed comments and useful suggestions,
which helped improve this manuscript considerably.

Our computational experiments used resources provided
by the Swedish National Infrastructure for Computing
(SNIC) at the High Performance Computing Center North
(HPC2N) at Umeå University. The authors were supported
by the Swedish Research Council grants 621-2012-5645 and
2016-00782, and the second author also received funding
from the Knut and Alice Wallenberg grant KAW 2016.0066.

References
Ansótegui, C.; Larrubia, J.; Li, C. M.; and Manyà, F. 2007. Ex-
ploiting multivalued knowledge in variable selection heuristics for
SAT solvers. Annals of Mathematics and Artificial Intelligence
49(1-4):191–205.
Ansótegui, C. 2004. Complete SAT solvers for Many-Valued CNF
Formulas. Ph.D. Dissertation, University of Lleida.
Atserias, A.; Lauria, M.; and Nordström, J. 2016. Narrow proofs
may be maximally long. ACM Transactions on Computational
Logic 17(3):19:1–19:30. Preliminary version in CCC ’14.
Audemard, G., and Simon, L. 2009. Predicting learnt clauses qual-
ity in modern SAT solvers. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI ’09), 399–404.
Bayardo Jr., R. J., and Schrag, R. 1997. Using CSP look-back
techniques to solve real-world SAT instances. In Proceedings of
the 14th National Conference on Artificial Intelligence (AAAI ’97),
203–208.
Biere, A.; Heule, M. J. H.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers in Arti-
ficial Intelligence and Applications. IOS Press.
Biere, A.; Le Berre, D.; Lonca, E.; and Manthey, N. 2014. De-
tecting cardinality constraints in CNF. In Proceedings of the 17th
International Conference on Theory and Applications of Satisfia-
bility Testing (SAT ’14), volume 8561 of Lecture Notes in Computer
Science, 285–301. Springer.
Biere, A. 2013. Lingeling, plingeling and treengeling entering the
SAT competition 2013. In Proceedings of SAT Competition 2013,
51–52.
Buss, S., and Nordström, J. 2020. Proof complexity and SAT
solving. Chapter to appear in the 2nd edition of (Biere et
al. 2009). Draft version available at https://www.math.ucsd.edu/
∼sbuss/ResearchWeb/ProofComplexitySAT/.
2019. CaDiCaL. http://fmv.jku.at/cadical/.
Chai, D., and Kuehlmann, A. 2005. A fast pseudo-Boolean con-
straint solver. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24(3):305–317. Preliminary ver-
sion in DAC ’03.
Chowdhury, M. S.; Müller, M.; and You, J.-H. 2018.
GrandTourobs puzzle as a SAT benchmark. In Proceedings of SAT
Competition 2018: Solver and Benchmark Descriptions, 59–60.
Cook, W.; Coullard, C. R.; and Turán, G. 1987. On the com-
plexity of cutting-plane proofs. Discrete Applied Mathematics
18(1):25–38.

1502

Cook, S. A. 1971. The complexity of theorem-proving procedures.
In Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing (STOC ’71), 151–158.
Dixon, H. E., and Ginsberg, M. L. 2002. Inference methods
for a pseudo-Boolean satisfiability solver. In Proceedings of the
18th National Conference on Artificial Intelligence (AAAI ’02),
635–640.
Eén, N., and Sörensson, N. 2006. Translating pseudo-Boolean
constraints into SAT. Journal on Satisfiability, Boolean Modeling
and Computation 2(1-4):1–26.
Elffers, J., and Nordström, J. 2018. Divide and conquer: Towards
faster pseudo-Boolean solving. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence (IJCAI ’18),
1291–1299.
Fuhs, C., and Schneider-Kamp, P. 2010. Synthesizing shortest lin-
ear straight-line programs over GF(2) using SAT. In Proceedings
of the 13th International Conference on Theory and Applications
of Satisfiability Testing (SAT ’10), volume 6175 of Lecture Notes in
Computer Science, 71–84. Springer.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-driven
answer set solving: From theory to practice. Artificial Intelligence
187–188:52–89.
Gocht, S.; Nordström, J.; and Yehudayoff, A. 2019. On division
versus saturation in pseudo-Boolean solving. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence
(IJCAI ’19), 1711–1718.
Haken, A. 1985. The intractability of resolution. Theoretical Com-
puter Science 39(2-3):297–308.
Han, H.; Jin, H.; and Somenzi, F. 2011. Clause simplification
through dominator analysis. In Proceedings of the Design, Au-
tomation & Test in Europe Conference (DATE ’11), 143–148.
Heule, M.; Järvisalo, M.; and Biere, A. 2013. Revisiting hyper
binary resolution. In Proceedings of the 10th International Con-
ference on Integration of Artificial Intelligence and Operations Re-
search Techniques in Constraint Programming (CPAIOR ’13), vol-
ume 7874 of Lecture Notes in Computer Science, 77–93. Springer.
Hooker, J. N. 1988. Generalized resolution and cutting planes.
Annals of Operations Research 12(1):217–239.
Hooker, J. N. 1992. Generalized resolution for 0-1 linear in-
equalities. Annals of Mathematics and Artificial Intelligence
6(1):271–286.
Lauria, M., and Nordström, J. 2017. Graph colouring is hard for al-
gorithms based on Hilbert’s Nullstellensatz and Gröbner bases. In
Proceedings of the 32nd Annual Computational Complexity Con-
ference (CCC ’17), volume 79 of Leibniz International Proceed-
ings in Informatics (LIPIcs), 2:1–2:20.
Le Berre, D., and Parrain, A. 2010. The Sat4j library, release
2.2. Journal on Satisfiability, Boolean Modeling and Computation
7:59–64.
Levin, L. A. 1973. Universal sequential search problems. Problemy
peredachi informatsii 9(3):115–116. In Russian. Available at http:
//mi.mathnet.ru/ppi914.
Manthey, N. 2012. Solver description of RISS 2.0 and PRISS 2.0.
Technical Report KRR Report 12-02, Technische Universität Dres-
den. Available at http://www.wv.inf.tu-dresden.de/Publications/
2012/report12-02.pdf.
Markström, K. 2006. Locality and hard SAT-instances. Journal on
Satisfiability, Boolean Modeling and Computation 2(1-4):221–227.
Marques-Silva, J. P., and Sakallah, K. A. 1999. GRASP: A search
algorithm for propositional satisfiability. IEEE Transactions on
Computers 48(5):506–521. Preliminary version in ICCAD ’96.

Martins, R.; Manquinho, V. M.; and Lynce, I. 2014. Open-WBO:
A modular MaxSAT solver. In Proceedings of the 17th Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing (SAT ’14), volume 8561 of Lecture Notes in Computer Science,
438–445. Springer.
Mikša, M., and Nordström, J. 2014. Long proofs of (seemingly)
simple formulas. In Proceedings of the 17th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT ’14),
volume 8561 of Lecture Notes in Computer Science, 121–137.
Springer.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and Ma-
lik, S. 2001. Chaff: Engineering an efficient SAT solver. In Pro-
ceedings of the 38th Design Automation Conference (DAC ’01),
530–535.
Sakai, M., and Nabeshima, H. 2015. Construction of an
ROBDD for a PB-constraint in band form and related techniques
for PB-solvers. IEICE Transactions on Information and Systems
98-D(6):1121–1127.
Sheini, H. M., and Sakallah, K. A. 2006. Pueblo: A hybrid
pseudo-Boolean SAT solver. Journal on Satisfiability, Boolean
Modeling and Computation 2(1-4):165–189. Preliminary version
in DATE ’05.
Urquhart, A. 1987. Hard examples for resolution. Journal of the
ACM 34(1):209–219.
Vinyals, M.; Elffers, J.; Giráldez-Cru, J.; Gocht, S.; and Nordstrüm,
J. 2018. In between resolution and cutting planes: A study of
proof systems for pseudo-Boolean SAT solving. In Proceedings of
the 21st International Conference on Theory and Applications of
Satisfiability Testing (SAT ’18), volume 10929 of Lecture Notes in
Computer Science, 292–310. Springer.

1503

