
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Incremental Symmetry Breaking
Constraints for Graph Search Problems

Avraham Itzhakov, Michael Codish
Department of Computer Science

Ben-Gurion University of the Negev
{itzhakoa, mcodish}@cs.bgu.ac.il

Abstract

This paper introduces incremental symmetry breaking con-
straints for graph search problems which are complete and
compact. We show that these constraints can be computed
incrementally: A symmetry breaking constraint for order n
graphs can be extended to one for order n+ 1 graphs. More-
over, these constraints induce a special property on their
canonical solutions: An order n canonical graph contains a
canonical subgraph on the first k vertices for every 1 ≤ k ≤
n. This facilitates a “generate and extend” paradigm for par-
allel graph search problem solving: To solve a graph search
problem ϕ on order n graphs, first generate the canonical
graphs of some order k < n. Then, compute canonical so-
lutions for ϕ by extending, in parallel, each canonical order k
graph together with suitable symmetry breaking constraints.
The contribution is that the proposed symmetry breaking con-
straints enable us to extend the order k canonical graphs to
order n canonical solutions. We demonstrate our approach
through its application on two hard graph search problems.

1 Introduction

Graph search problems deal with existence and enumera-
tion of simple graphs with certain properties which are in-
variant under isomorphism. One of the most famous graph
search problems is the search for Ramsey (s, t;n) graphs
which seeks order n graphs with no clique of size s and no
independent set of size t (Radziszowski 1994). The set of
Ramsey (4, 5; 24) graphs was determined only recently (An-
geltveit and McKay 2018). Such problems are often chal-
lenging due to the large number of symmetries in graph rep-
resentations, and enormous search space. For graph search
problems, each isomorphism class of graphs consists of ei-
ther symmetric solutions or symmetric non-solutions.

Ultimately, symmetry breaking is about restricting the
search to a reduced space which considers a single graph
from each isomorphism class. If symmetries are eliminated,
the size of the search space is significantly reduced, and it
can be explored more efficiently because paths that lead to
symmetric (non-)solutions are avoided.

Symmetry breaking in constraint programming and satis-
fiability solving is often achieved by introducing symmetry
breaking constraints (Crawford et al. 1996; Shlyakhter 2001;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Walsh 2006; Shlyakhter 2007) which are satisfied by at least
one member of each isomorphism class. A symmetry break-
ing constraint is called complete if it is satisfied by exactly
one member from each isomorphism class and partial oth-
erwise. Ideally, a symmetry breaking constraint should be
compact in size, and complete. This enables solvers to avoid
symmetries without imposing an overhead due to the size of
the constraint.

Computing compact and complete symmetry breaking
constraints is, most often, intractable (Crawford et al. 1996).
A universal measure for the size of a symmetry breaking
constraint is the number of clauses in its CNF representa-
tion. For graph search problems, it is unknown if there ex-
ists a complete symmetry breaking constraint that is poly-
nomial in the size of the graph. The well-known lex-leader
approach (Read 1978), selects the smallest member of each
class, with respect to a lexicographic ordering, as a canonical
representative. Testing if a given graph is a lex-leader canon-
ical representative is known to be co-NP complete (Luks and
Roy 2004). Hence, it is unlikely that there exists a polyno-
mial size symmetry breaking constraint that identifies lex-
leader canonical representatives.

In theory, a complete lex-leader symmetry breaking con-
straint should impose one lexicographic order constraint
for every symmetry. As an example, for order 10 graphs
this translates to 10! = 3,628,800 constraints. In practice
many of the these constraints are redundant. Itzhakov and
Codish (2016) compute a complete symmetry breaking con-
straint for order 10 graph search problems consisting of only
7,853 lexicographic order constraints instead of all 10! con-
straints. Codish et al. (2018) show that a further reduction is
made when expressing the symmetry breaking constraint us-
ing the implications derived from the AND-decomposition
of the lexicographic order constraints (Frisch et al. 2006).
In their approach, symmetry breaking constraints are more
compact and faster to compute. They compute, for the first
time, a complete and compact symmetry breaking con-
straint for order 11 graph search problems. Heule (2016;
2019) computes complete symmetry breaking constraints
which are optimal in size for graphs up to order 5, and small
for graphs up to order 8.

This paper introduces incremental symmetry breaking
constraints for graph search problems which are complete,
compact and have two special properties: First, the symme-

1536

try breaking constraint for graphs of order n can be extended
to one for graphs of order n+1. Second, if an order n graph
satisfies the symmetry breaking constraint, then so does its
subgraph on the first k ≤ n vertices. The first property im-
plies that symmetry breaking constraints can be computed
incrementally. The second property facilitates a “generate
and extend” paradigm for parallel graph search problem
solving: to solve an order n graph search problem ϕ, first
generate the canonical graphs of some order k < n. Then
compute canonical solutions for ϕ by extending, in parallel,
each canonical graph of order k, applying a corresponding
symmetry breaking constraint for order n graphs. The cru-
cial point is that these symmetry breaking constraints are
consistent with the order k canonical subgraphs. We show
that this generate and extend paradigm can be effectively
applied for order n ≤ 12 graph search problems.

We demonstrate the application of incremental symme-
try breaking constraints on two hard graph search prob-
lems: enumeration of “totally magic-” (Exoo et al. 2002;
Gallian 2018) and “word-representable-” (Kitaev and Py-
atkin 2018; Akgün et al. 2019) graphs. For both, state-of-
the-art solutions apply a generate and test approach where
each graph is tested for the corresponding property. Solv-
ing the order 11 instances involves huge resources and thou-
sands of CPU days. Moreover, this approach cannot be ap-
plied for larger graphs. We show that a generate and extend
approach with complete symmetry breaking constraints is
significantly more efficient.

The computations described in this paper are performed
using the finite-domain constraint compiler BEE (Metodi,
Codish, and Stuckey 2013) which compiles constraints to a
CNF, and solves it applying an underlying SAT solver (we
use Glucose 4.0 (Audemard and Simon)). All computations
were performed on a cluster of servers, each with 56 Intel
Xeon E5-2620 cores and 256GB of RAM memory, clocked
at 2 GHz. Each SAT instance is run on a single thread. All
running times reported are CPU times and specified in an
appropriate unit: (s) seconds, (h) hours, (d) days or (y) years.

2 Preliminaries

Lexicographic Order Constraints: The lexicographic
order constraint between two vectors x̄ = 〈x1, . . . , xn〉 and
ȳ = 〈y1, . . . , yn〉, each consisting of n finite domain vari-
ables, is denoted x̄ ≤lex ȳ. The AND-decomposition of a
lexicographic order constraint (Frisch et al. 2006) can be ex-
pressed as follows:

x̄ ≤lex ȳ =

n∧
k=1

impk(x̄, ȳ) (1)

where each of the conjuncts impk(x̄, ȳ) is called a k-length
lex-implication and is defined by:

impk(x̄, ȳ) = ((

k−1∧
i=1

xi = yi)⇒ xk ≤ yk) (2)

Permutations: We denote by Sn the group of all permu-
tations on {1 . . . n}. We represent a permutation π ∈ Sn as
an array of size n where the number 1 ≤ i ≤ n is mapped

to π(i). For example: the permutation [2, 3, 1] ∈ S3 maps as
follows: {1 �→ 2, 2 �→ 3, 3 �→ 1}.
Graphs and Graph Orderings: The set of simple graphs
on n vertices is denoted Gn. The vertex set of a graph
G = (V,E) of order n, is assumed to be V = {1, . . . , n}
and in abuse of notation its adjacency matrix representation
is also denoted G. We denote by R(G) and by C(G) the
strings obtained by respectively concatenating the rows and
columns of the upper triangular part of the adjacency ma-
trix of G. We denote by G(k) for k ≤ n the induced sub-
graph of G on the vertex set {1, . . . , k}. This is the upper
left k× k corner of the adjacency matrix of G. An unknown
graph of order n is represented as an n × n adjacency ma-
trix of Boolean variables which is symmetric and has values
false (denoted by 0) on the diagonal. All of the notations for
given graphs, such as C(G), R(G) and G(k), hold also for
unknown graphs. For simplicity, unknown graphs are also
called graphs. For (possibly unknown) graphs G,H of the
same order and X ∈ {R,C}, we denote the lexicographic
order and the k-length lex-implication constraints with re-
spect to X by:

G ≤X
lex H ≡ X(G) ≤lex X(H)

impXk (G,H) ≡ impk(X(G), X(H)).

Permutations act on graphs in the natural way: viewing
G ∈ Gn as an adjacency matrix and given a permutation
π ∈ Sn, then π(G) is the adjacency matrix obtained by map-
ping each element Gi,j to Gπ(i),π(j) (for 1 ≤ i, j ≤ n). Two
graphs G,H ∈ Gn are called isomorphic if there exists a
permutation π ∈ Sn such that G = π(H).

Example 1 The following depicts an unknown graphG and
its permutation π(G), for π = [2, 1, 3, 5, 4], both represented
as adjacency matrices of Boolean variables.

G =

⎡
⎣

0 x1 x2 x3 x4
x1 0 x5 x6 x7
x2 x5 0 x8 x9
x3 x6 x8 0 x10
x4 x7 x9 x10 0

⎤
⎦ π(G) =

⎡
⎣

0 x1 x5 x7 x6
x1 0 x2 x4 x3
x5 x2 0 x9 x8
x7 x4 x9 0 x10
x6 x3 x8 x10 0

⎤
⎦

The strings R(G) and C(G) are obtained by respectively
concatenating the rows and the columns of the upper trian-
gular part of G.

R(G) = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]

C(G) = [x1, x2, x5, x3, x6, x8, x4, x7, x9, x10]

The constraints G ≤R
lex π(G) and G ≤C

lex π(G) are:

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex

[x1, x5, x7, x6, x2, x4, x3, x9, x8, x10] and
[x1, x2, x5, x3, x6, x8, x4, x7, x9, x10] ≤lex

[x1, x5, x2, x7, x4, x9, x6, x3, x8, x10] .

These can be simplified respectively (per constraint, see for
example (Frisch and Harvey 2003)) to:

[x2, x3, x4, x8] ≤lex [x5, x7, x6, x9] and
[x2, x3, x6, x8] ≤lex [x5, x7, x4, x9] .

1537

The lex-implication constraint impR3 (G, π(G)) is

(x1 = x1) ∧ (x2 = x5) =⇒ x3 ≤ x7.
Given an isomorphism class of a graphs, a classic way to

define the canonical representative of the class is to take the
smallest graph with respect to some order. In this paper we
consider two specific order relations and define a canonical
representative in the following way.

Definition 1 [LEXLEADER] We say that G ∈ Gn is row-
wise canonical if the following constraint holds for X = R,
and column-wise canonical if the following constraint holds
for X = C.

LEXLEADERX(G) ≡
∧

π∈Sn

G ≤X
lex π(G)

The following property of column-wise canonical graphs
is stated in (Kvasnička and Pospı́chal 1990).

Theorem 1 (column-wise canonical subgraphs)
If G ∈ Gn is column-wise canonical then G(k) is also
column-wise canonical for any 1 ≤ k ≤ n.

The following example demonstrates that Theorem 1 does
not hold for row-wise canonical graphs.

Example 2 The following graph G (on the left) is row-wise
canonical, while its subgraph G(6) (bold text) is not; G′ (on
the right) is the row-wise canonical isomorph of G(6).

G =

⎡
⎢⎣

0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 0 0 1
1 0 1 1 1 0 0 1
1 1 1 1 0 1 1 0

⎤
⎥⎦ G′ =

⎡
⎣

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 1 1 0 0 0

⎤
⎦

Graph Search Problems: Graph search problems are
about the search for a graph that satisfies certain graph prop-
erties which are invariant under isomorphism. If G is a so-
lution to a graph search problem, then so is any G′ that is
isomorphic to G. More formally, an order n graph search
problem is a predicate, ϕ(G), on an unknown order n graph
G, which is closed under isomorphism. A solution to ϕ(G)
is a satisfying assignment for the variables of G.

Symmetry Breaking: We focus in this paper on two par-
ticular types of complete symmetry breaking predicates:
row-wise and column-wise, that are satisfied exactly by the
row-wise and column-wise canonical graphs, respectively.

Consider the two predicates LEXLEADERX(G) for X ∈
{R,C} from Definition 1. When G is an unknown graph,
expressed in terms of Boolean variables, then Defini-
tion 1 can be viewed as specifying a conjunction of lex-
icographic order constraints over these variables. Each of
these two conjunctions specifies, a predicate that is true ex-
actly when its argument graph is respectively row-wise or
column-wise canonical. Hence, these predicates are com-
plete symmetry breaking constraints. We can view the con-
straints in LEXLEADERX(G), either as a set of lexico-
graphic order constraints, or as a set of their correspond-
ing lex-implications as specified by Equation 1. We de-
note these sets, respectively by LEXLEADERlex

X (G) and by

Algorithm 1 Compute a compact complete symmetry break
for X ∈ {R,C}, Y ∈ {lex , imp}

procedure SYMBREAKY
X (G)

Input: unknown order n graph G
Output: compact complete symmetry breaking con-

straint
ψ ← {}
while (∃c ∈ LexLeaderYX(G) s.t. ψ =⇒ c) do

ψ ← ψ ∪ {c}
return Reduce(ψ)

LEXLEADERimp
X (G). For any symmetry breaking predicate

ψ defined as a conjunction of lexicographic order constraints
(or lex-implications), we define the size of ψ to be the num-
ber of lex-implications in the AND-decomposition of these
constraints. This measure is polynomial in the size of the
CNF representation of ψ.

Computing Compact Symmetry Breaking Constraints:
For an unknown graph G, for X ∈ {R,C}, and for
Y ∈ {lex , imp}, the set of constraints LEXLEADERY

X(G)
(over the variables in G) is of size exponential in the size
of G. However, many of these constraints are redundant
(implied by the others). One can compute an equivalent
set of irredundant constraints which is more concise. From
here on, we call a set of irredundant constraints, compact.
Luks (2004) proves a result from which it follows that unless
P = NP, there is no polynomial-time algorithm that com-
putes a compact lex-leader symmetry breaking constraint
for graph search problems. Nevertheless, we aim to com-
pute compact lex-leader symmetry breaking constraints for
small graph search problems. Algorithm 1 computes a com-
pact complete symmetry breaking constraint for G given X
and Y . The symmetry breaking constraint is computed iter-
atively by adding a constraint c from LEXLEADERY

X(G), as
long as it is not implied by the constraints selected so far. In
the implementation, the SAT solver identifies a constraint c
which is not implied by the current set of constraints ψ (the
condition in the while loop). Possibly, when a new constraint
is added, a constraint, already present, becomes redundant.
Therefore, the Algorithm applies an operation, Reduce(ψ),
to remove redundant constraints. For each constraint the test
of redundancy is performed using a SAT-solver. This algo-
rithm generalizes the ones presented in (Itzhakov and Codish
2016) and in (Codish et al. 2018).
Example 3 Let G be the unknown order 5 graph detailed in
Example 1. Algorithm 1 (with X = R, Y = lex) computes
a compact row-wise symmetry breaking constraint consist-
ing of the following 7 lexicographic order constraints (af-
ter some simplifications, as in Example 1 instead of the 120
constraints in LEXLEADERlex

R (G).

[x1,x6,x7]≤ [x2,x8,x9]
[x2,x5,x9]≤ [x3,x6,x10]
[x1,x2,x3, . . . ,x9]≤ [x5,x1,x7,x6,x2,x9,x8,x4,x3]
[x2,x3,x4, . . . ,x10]≤ [x4,x2,x3,x7,x5,x6,x9,x10,x8]
[x1,x2,x3,x5,x6,x7, . . . ,x10]≤ [x9,x10,x7,x8,x5,x2,x6,x3,x1]
[x2,x3,x4,x5, . . . ,x10]≤ [x7,x5,x6,x4,x2,x3,x9,x10,x8]
[x1,x2,x3, . . . ,x10]≤ [x6,x1,x7,x5,x3,x10,x8,x4,x2,x9]

1538

3 Incremental Computation of Symmetry

Breaking Constraints

In this section we describe an incremental computation of
compact column-wise symmetry breaking constraints for
graphs. Our goal is to be able to extend a given compact
column-wise symmetry breaking constraint ψ for graphs of
order k, with a set of constraints Δ such that ψ′ = ψ ∧ Δ
is a compact column-wise symmetry breaking constraint for
graphs of order k+1. We show that we can achieve this goal
when focusing on column-wise symmetry breaking predi-
cates. This ability to extend compact column-wise symme-
try breaking constraints facilitates an incremental approach
to compute them.

Theorem 2 Let G be an order k unknown graph and let
ψ ⊆ LEXLEADERimp

C (G(k−1)) be a compact column-wise
symmetry breaking constraint for order k− 1 graphs. Then,
there exists Δ ⊆ LEXLEADERimp

C (G) such that ψ ∧ Δ
is a compact column-wise symmetry breaking constraint for
order k graphs.

Proof: Let G and ψ be as in the premise of the statement,
and let Δ∗ =

{
x ∈ LEXLEADERimp

C (G) |ψ =⇒ x
}

. By
construction, ψ ∧ Δ∗ is a column-wise symmetry breaking
constraint for order k graphs. We show that any redundant
implication in ψ ∧ Δ∗ must be from Δ∗. Hence, we can
obtain Δ ⊆ Δ∗ for which ψ ∧ Δ is a compact column-
wise symmetry breaking constraint for order k graphs. Let
c ∈ ψ be redundant in ψ ∧Δ∗. Since ψ is compact, ψ−{c}
is not a column-wise symmetry breaking constraint for or-
der k − 1 graphs. Hence, there exists H ∈ Gk−1 which is
not column-wise canonical and for which (ψ − {c})(H) is
true. By choice of c, (ψ−{c})∧Δ∗ is a column-wise sym-
metry breaking constraint for G and hence, by Theorem 1,
also a column-wise symmetry breaking constraint for order
k − 1 graphs. Hence, ((ψ − {c}) ∧ Δ∗)(H) is false which
implies that Δ∗(H) is false. So, Δ∗ contains an implica-
tion x which is false, and hence depends only on variables
from G(k−1). x ∈ Δ∗ implies that ψ =⇒ x. This means
that ψ not implies a lex-implication which depends only on
variables from G(k−1). The existence of such an implication
contradicts the assumption that ψ is a column-wise symme-
try breaking constraint for order k − 1 graphs. �

Algorithm 2 applies an incremental approach to
compute a compact set of constraints equivalent to
LEXLEADERimp

C (G). The input is an unknown graph G,
the output is a compact column-wise symmetry breaking
constraint expressed in terms of the variables in G. When
execution enters the outer for-loop at line 5 with a value
1 ≤ k ≤ n we have already computed a compact column-
wise symmetry breaking constraint ψ for order k−1 graphs.
At this stage, the goal of the k-th iteration of the for-loop
is to compute a set of constraints Δ such that ψ ∧ Δ is
a column-wise symmetry breaking constraint for order k
graphs. The while-loop at lines 7–8 computes a set Δ cor-
responding to Δ∗ in the proof of Theorem 2. The condi-
tion in the while-loop at line 7 asks if there exists a con-
straint c which is a witness to the fact that ψ ∧Δ is not yet

Algorithm 2 Incremental computation of compact column-
wise symmetry breaking constraints

1: procedure SYMBREAKINCREMENTAL(G)
2: Input: unknown order n graph G
3: Output: compact column-wise symmetry breaking

constraint for G
4: ψ ← {}
5: for k := 1 to n do
6: Δ← {}
7: while

(
∃c ∈ LEXLEADERimp

C (G(k))
such that ψ ∧Δ =⇒ c

)
do

8: Δ← Δ ∪ {c}
9: ψ ← Reduce(ψ ∪Δ)

10: return ψ

column-wise for k. Such a witness (if one exists) is to be
found in LEXLEADERimp

C (G(k)). In the implementation, to
determine if ψ ∧ Δ is not yet column-wise for k, we seek
a value i, an order k graph H , and a permutation π ∈ Sk

such that ψi = (ψ ∧ Δ)(H) ∧ ¬impi(C(H), C(π(H)))
holds. If ψi holds then the constraint we add to Δ is c =
impi(C(G

(k)), C(π(G(k)))). Otherwise, ψ ∧Δ is column-
wise for k and we exit the while-loop. The key step in the
implementation is to encode the search for ψi as a SAT in-
stance. By Theorem 2 (and its constructive proof), all redun-
dant constraints removed at line 9 are removed from Δ.

Table 1 details the time to compute compact column-
wise symmetry breaking constraints expressed in terms of
lex-implications for order n graphs. The table compares the
direct computation (using Algorithm 1) and the incremen-
tal computation (using Algorithm 2). All of the symme-
try breaking constraints computed (direct and incremental)
were verified by checking that the constraint for order n
graphs renders the exact set of column-wise canonical order
n graphs as solutions. The column labeled LEXLEADERimp

C

details the size of the LEXLEADERimp
C constraint. The two

columns labeled “direct” detail the computation (size and
time) of the column-wise symmetry breaking constraint by
application of Algorithm 1. The four columns labeled “in-
cremental” detail the computation by application of Algo-
rithm 2. The columns labeled Δ-size and Δ-time detail the
size and computation time to extend the symmetry break-
ing constraint from the previous row. The columns labeled
size and time detail aggregated size and time. The column
labeled speedup details the ratio between the direct and ag-
gregated incremental computation times.

The table clearly indicates that compact column-wise
symmetry breaking constraints are much smaller than
their LexLeaderimp

C (G) counterparts which are logically
equivalent. This is in line with the results of previous
works (Itzhakov and Codish 2016; Codish et al. 2018). The
table indicates that the incremental computation is more ef-
ficient (up to 2.2 times faster) and that the sizes of the con-
straints (direct and incremental) are similar.

1539

LEXLEADERimp
C direct incremental

n size size time Δ-size Δ-time size time speedup
3 18 3 0.00s 3 0.00s 3 0.00s 1.00
4 144 11 0.04s 7 0.01s 10 0.01s 4.00
5 1,200 23 0.07s 10 0.07s 20 0.08s 0.87
6 10,800 43 0.79s 22 0.72s 42 0.80s 0.98
7 105,840 130 8.61s 83 8.39s 125 9.19s 0.93
8 1,128,960 484 92.73s 342 75.26s 467 84.45s 1.09
9 13,063,680 2,845 799.54s 2,369 511.09s 2,836 595.54s 1.34

10 163,296,000 25,193 3.73h 22,436 1.94h 25,272 2.10h 1.77
11 2,195,424,000 289,698 12.39d 264,845 5.48d 290,117 5.56d 2.22

Table 1: Computation of compact column-wise symmetry breaking constraints for order 3 ≤ n ≤ 11 graphs using direct and
incremental approach.

specialized simplified
n time avg size max size avg size max size
8 0.47h 7.38 19 33.55 222
9 3.51h 26.57 75 225.15 1,792

10 24.06h 107.43 675 2,943.92 18,836
11 6.71d 873.03 15,433 58,561.44 257,121
12 65.68d 10,717.07 294,220 – –

Table 2: Computation of compact column-wise symmetry
breaking constraints for order 8 ≤ n ≤ 12 graphs extending
order 7 column-wise canonical graphs.

4 Generate and Extend

This sections introduces a “generate and extend” paradigm
for graph search problems which derives from the incre-
mental properties of column-wise symmetry breaking con-
straints. Let G be an order n unknown graph. To solve a
graph search problem ϕ(G), one can first generate all order
k < n canonical graphs (for a suitable value of k). Then,
one can pose, for each order k canonical graph G′, the ques-
tion: does there exist an order n solution for ϕ(G) which
extends G′? Basically this means, fixing the variables of the
subgraph G(k) to the values of G′ before applying a con-
straint (or SAT) solver on ϕ(G). The graph search problem:
extend G′ to a solution of ϕ(G) is denoted ϕ(G/G′).

For example, there are 1044 order 7 canonical graphs. To
solve an order n graph search problem ϕ(G), one can seek
solutions, in parallel, for the problems ϕ(G/G′) to extend
each G′ from these 1044 graphs.

The question is: how to break symmetries when solving
ϕ(G/G′)? There are two issues: (1) Given a graph G′ ∈ Gk,
how to break symmetries and obtain only non-isomorphic
solutions of ϕ(G/G′); and (2) Given a pair of graphs
G′, G′′ ∈ Gk, how to ensure that solutions in ϕ(G/G′) are
not isomorphic to those in ϕ(G/G′′). The beauty of column-
wise symmetry breaking constraints is that they address both
issues.

If G′, of order k, is column-wise canonical, then G′
is consistent with a column-wise symmetry breaking con-
straint ψ of order n (k < n). Therefore ψ can be applied
when solving ϕ(G/G′) and all solutions are column-wise
canonical. Given column-wise canonical graphs G′, G′′ ∈

Gk, the solutions for ϕ(G/G′) and ϕ(G/G′′) are column-
wise canonical, and hence, by definition, they cannot be iso-
morphic.

When solving graph search problems of the form
ϕ(G/G′) for a given column-wise canonical G′ ∈ Gk, we
can apply the column-wise symmetry breaking constraints
(direct or incremental) described in Table 1. Alternatively,
we can compute a specialized column-wise symmetry break-
ing constraint for each G′. These are considerably smaller
and facilitate the computation of compact column-wise sym-
metry breaking constraints for order 12 graph search prob-
lems. This is done by application of Algorithm 2 after fixing
the values corresponding to G′ in the unknown graph G.

Table 2 details the computation of compact column-wise
symmetry breaking constraints for graph search problems
of the type ϕ(G/G′) where G′ is one of the 1044 order
7 column-wise canonical graphs and G is of order 7 <
n ≤ 12. The three columns labeled “specialized” detail the
computation of specialized column-wise symmetry breaking
constraint for all order 7 column-wise canonical graphs. We
detail the total computation time (for all 1044 cases) and the
average and maximal size of the individual symmetry break-
ing constraints. The two columns labeled “simplified” detail
the size (average and maximal) of the symmetry breaking
constraints obtained from the symmetry breaking constraints
described in Table 1 by removing implications which be-
come true due to G′.

Specialized symmetry breaking constraints are consider-
ably smaller than the simplifications of the general counter-
parts described in Table 1. For example when n = 11 the
general symmetry breaking constraint consists of 289,698
implications while the average (maximal) size of the spe-
cialized symmetry breaking constraints is only 873 (15,433).
This means that each of the 1044 instances involve much
smaller symmetry breaking constraints. The row for n = 12
details 1044 specialized symmetry breaking constraints for
order 12 graphs. These cannot be computed by simplifying a
general symmetry breaking constraint. This is the first time
that a complete and compact lex-leader symmetry breaking
constraint for graphs with 12 vertices has been computed,
albeit distributed over 1044 cases.

The symmetry breaking constraints described in Table 2
apply when extending order 7 canonical graphs to order n

1540

canonical solutions. It follows from Theorem 1 that these
same constraints can also be applied when extending order
k > 7 canonical graphs to canonical solutions of order n. In
our experiments (in Section 5), when extending a canonical
order k > 7 graph G′ to an order n solution, we apply the
symmetry breaking constraint computed for G′(7).

5 Two Applications of Generate and Extend

In this section we apply a generate and extend approach
to solve two hard graph search problems: enumeration of
“totally magic-” (Exoo et al. 2002; Gallian 2018) and
“word-representable-” (Kitaev and Pyatkin 2018; Akgün
et al. 2019) graphs. For both of these problems, state-of-
the-art solutions apply a generate and test approach where
each non-isomorphic order n graph is tested for the cor-
responding property. Each such test is not trivial. De-
termining if a given graph is word-representable is NP-
complete (Halldórsson, Kitaev, and Pyatkin 2016). For to-
tally magic graphs, the complexity is unknown. Yet state-
of-the-art methods are exponential. Solving the instances for
n = 11 involves huge resources and thousands of CPU days.
Moreover, this approach cannot be applied for larger graphs.
We apply the proposed generate and extend paradigm with
column-wise symmetry breaking constraints and demon-
strate that this approach is significantly more efficient.

Totally Magic Graphs: The n vertex graph search prob-
lem ϕtm(n)(G) is about the search for a totally magic graph
G with n vertices (Exoo et al. 2002; Gallian 2018). A graph
G = (V,E), with |V | = n and |E| = m, is totally
magic if there exist a one-to-one labeling λ : V ∪ E →
{ 1, . . . , n+m } and two integer values h, k such that:

vertex magic constraint: the sum of the labels of each
node and its incident edges is h; and

edge magic constraint: the sum of the labels of each edge
and its endpoints is k.

Figure 1 depicts a totally magic graph with 9 vertices. The
sum of the labels of each node and its incident edges is 25.
The sum of the labels of each edge and its endpoints is 26.

11

3 13

15

7 5

9 1 17

12 2
10

64
14

16 8

Figure 1: An order 9 totally magic graph.

A relaxation of ϕtm(n) weakens the definition to consider
the vertex and edge magic constraints with arithmetics mod-
ulo p and also specifies the number of edges, m, in the so-
lutions. We denote the relaxed problem by ϕp

tm(n,m). Any
graph which is totally magic is also totally magic mod-
ulo p (Exoo et al. 2002; Jäger and Arnold 2015). So, we
can test the solutions of the relaxed problem to identify the
totally magic graphs.

step 1: generate and
extend for ϕ4

tm(n)

step 2: test the
ϕ4
tm(n) solutions

n solutions time solutions time
8 1,777 3.44m 0 28.82s
9 37,542 2.16h 2 0.48h

10 1,507,843 4.63d 0 2.58d
11 91,397,498 550.74d 0 425.62d

Table 3: A two step computation of totally magic graphs for
9 ≤ n ≤ 11 vertices.

Totally magic graphs are extremely rare. There are only
6 such graphs with 11 or fewer vertices. The only known
totally magic graphs, with> 11 vertices, are composed of an
odd number of triangles, or of an even number of triangles
with a path of length 2. It is unknown if there exist other
totally magic graphs with > 11 vertices.

In previous work, Jäger et al. (2015) enumerate all totally
magic graphs with n ≤ 11 vertices. Their approach is based
on an enumeration of all non-isomorphic graphs with n ver-
tices and testing each graph. These tests are based on, among
other criteria, the elimination of graphs which are not totally
magic modulo p ≤ 7. Jäger et al. (2015) report a total of
13,595 CPU days to show that there do not exist any order
11 totally magic graphs.

We apply a constraint based approach where for each in-
stance we consider the corresponding constraint model that
expresses the totally magic constraints in conjunction with
suitable symmetry breaking constraints.

We first applied a direct approach to solve instances of
the form ϕtm(n)(G) and ϕ4

tm(n,m)(G). For both types of
instances we found solutions only when n < 9 (with a
48 hours time-out). We then applied a generate and extend
approach focusing on the relaxed form ϕ4

tm(n,m)(G/G
′)

which enabled us to enumerate all totally magic graphs of
order n < 12.

Table 3 details a two step computation of totally magic or-
der n graphs. In the first step we apply a generate and extend
approach to compute all solutions of ϕ4

tm(n,m) (for all pos-
sible values of m). In the second step we test each solution
of the relaxed problem to check if it is totally magic.

Each order n instance of the relaxed problem corresponds
to a pair (G′,m) where G′ is one of the order 7 column-
wise canonical graphs and m is the number of edges in the
solution. We impose a 24 hour timeout on each instance. An
instance (G′,m) which timed out is further refined to a set
of instances of the form (G′′,m) where G′′ is an order 8
column-wise canonical graph which extends G′. Such time-
outs were encountered only for the case n = 11 (in 164 of
the 36,540 instances).

For the first step, Table 3 details (left side) the total num-
ber of ϕ4

tm(n,m) solutions and the aggregated computation
time (including the cost of the 24 hour time-outs). For the
second step, Table 3 details (right side) the computation time
for the tests on the solutions from the first step. To this end,
we apply a series of tests similar to those described in (Jäger
and Arnold 2015).

1541

1

4 3

2

Figure 2: A word-representable graph (represented by the
word 1413243).

Table 3 indicates for n = 10 and 11 total computation
times of 7.21 and 976.36 (days) in contrast to the 21.70 and
13,595 (days) reported in (Jäger and Arnold 2015). One can
view the first step (generate and extend) as a filter to the sec-
ond step. For example, instead of testing all 1,018,997,864
order 11 graphs for the total magic property, as in (Jäger and
Arnold 2015), we only have to test 91,397,498 which is less
than 9% of them.

Word Representable Graphs: A simple graph G =
(V,E) is called word-representable if there exists a word
w ∈ V ∗ containing each letter of the alphabet V such that
for every i, j ∈ V , i and j alternate in w if and only if
(i, j) ∈ E (Kitaev and Pyatkin 2018). Letters i and j alter-
nate in a word w if between every consecutive pair of i there
is a j, and between every consecutive pair of j there is an i.
In this case we say that G is represented by w. For example,
the graph depicted in Figure 2 is word-representable.

Akgün et al. (2019) compute the number of connected
non-word-representable order n ≤ 11 graphs. They adopt
a generate and test approach, testing each non-isomorphic
connected graph of the corresponding order. The test is per-
formed using the constraint solver Minion (Gent, Jeffer-
son, and Miguel 2006). To this end, they specify a con-
straint model based on the equivalence of word repre-
sentable graphs and so-called, semi-transitive graphs (Kitaev
and Pyatkin 2018). They report 1100 CPU days of compu-
tation time to accomplish this task for order 11 graphs.

We denote the graph search problem to find connected
order n word-representable graphs by ϕwr(n). We adopt the
same constraint model used by Akgün et al. (2019), together
with constraints to ensure connectivity, and with column-
wise symmetry breaking constraints.

We first applied a direct constraint based approach to
solve instances of the form ϕwr(n)(G). This approach works
well to find solutions for n < 10. We then apply a
generate and extend paradigm to enumerate solutions of
ϕwr(n)(G/G

′). In this way we succeed to enumerate all con-
nected word-representable graphs for order n ≤ 12. This is
the first time that a solution for n = 12 is reported.

Table 4 details the generate and extend approach and com-
pares its computation times with those of the generate and
test approach described by Akgün et al. (2019). To comply
with their results, we present the corresponding numbers of
connected and of connected non-word-representable graphs.
The first three columns detail the order, n, and the numbers
of connected graphs and connected non-word-representable
graphs. For the generate and extend paradigm, with 9 ≤ n ≤
12, we extend each order k column-wise canonical graph
to the set of its extensions which are canonical connected
word-representable graphs. The total computation times are

g & e g & t
n # connected # non-word-rep. k time time
8 11,117 929 7 5.80s 26s
9 261,080 54,957 7 1.55m 29m

10 11,716,571 4,880,093 8 1.41h 74h
11 1,006,700,565 650,853,916 9 4.04d 1,100d
12 164,059,830,476 135,950,114,622 9 6.40y —

Table 4: Numbers of connected non-word-representable
graphs computed using a generate and extend (g & e) ap-
proach, and a generate and test (g & t) approach.

detailed in the table. For the generate and test paradigm we
specify (right most column) the computation times detailed
in (Akgün et al. 2019). The generate and extend computa-
tions are orders of magnitude faster than the corresponding
generate and test computations. We note that for order 11
graphs, the results reported in (Akgün et al. 2019) are in er-
ror: (1) the correct number of order 11 connected graphs is
as specified in Table 4 (see sequence A001349 in (Sloane,
N. J. A., ed.)); and (2) the correct number of connected
non-word-representable graphs is as specified in Table 4 (we
found 2124 more connected word-representable graphs and
verified that they are connected, word-representable, and all
non-isomorphic). For n = 12, the entries in Table 4 are new.
The generate and test approach is not able to handle this
case. Due to the huge number of solutions for this case, BEE
with Glucose is unable to generate all solutions. Instead, we
apply the model counting capability of Clasp 3.1.3 (Gebser,
Kaufmann, and Schaub 2012) to count the number of solu-
tions.

6 Conclusion

This paper introduces incremental symmetry breaking con-
straints for graph search problems. We start from the notion
of column-wise canonicity introduced in (Kvasnička and
Pospı́chal 1990) where the authors show that the subgraph
of an order n canonical graph on the first k ≤ n vertices is
also canonical. We build on this property in two ways. First
we show that column-wise symmetry breaking constraints
can be computed incrementally. Then, we introduce a gen-
erate and extend paradigm where canonical solutions of an
order n graph search problem can be obtained using column-
wise symmetry breaking constraints by extending canonical
graphs of order k < n. We compute, for the first time, a
complete and compact lex-leader symmetry breaking con-
straint for order 12 graphs. We demonstrate the superiority
of our generate and extend approach through two hard graph
search problems and provide the previously unknown num-
ber of order 12 non-word-representable graphs.

There is a large body of work on generation of non-
isomorphic combinatorial objects (McKay 1998; Colbourn
and Read 1979). Still, there remain many open graph search
problems which involve surprisingly small graphs. The re-
sults obtained in this paper suggest that a constraint-based
approach combined with strong symmetry breaking meth-
ods will lead to breakthroughs for many of these problems.

Many graph search problems are hereditary: order n so-

1542

lutions can be obtained by extending order k < n solutions.
The generate and extend approach can take advantage of this
property by extending order k canonical solutions instead of
all order k canonical graphs.

The techniques presented in this paper can be adapted
for other combinatorial objects, such as matrix search prob-
lems (Flener et al. 2002). The symmetry breaking con-
straints described in this paper can be obtained from www.
cs.bgu.ac.il/∼mcodish/Papers/Tools/incrementalSBC. They
are “solver independent”, and can be applied in conjunction
with any constraint solver to restrict the search to canonical
solutions of a given graph search problem.

Acknowledgments. We acknowledge the support of the
Israel Science Foundation, grant 625/17.

References
Akgün, Ö.; Gent, I.; Kitaev, S.; and Zantema, H. 2019. Solv-
ing computational problems in the theory of word-representable
graphs. Journal of Integer Sequences 22(2):1–18.
Angeltveit, V., and McKay, B. D. 2018. R(5, 5) ≤ 48. Journal of
Graph Theory 89(1):5–13.
Audemard, G., and Simon, L. Glucose 4.0 SAT Solver. http://www.
labri.fr/perso/lsimon/glucose/.
Codish, M.; Ehlers, T.; Gange, G.; Itzhakov, A.; and Stuckey, P. J.
2018. Breaking symmetries with lex implications. In Gallagher,
J. P., and Sulzmann, M., eds., Functional and Logic Programming -
14th International Symposium, FLOPS 2018, Nagoya, Japan, May
9-11, 2018, Proceedings, volume 10818 of Lecture Notes in Com-
puter Science, 182–197. Springer.
Colbourn, C. J., and Read, R. C. 1979. Orderly algorithms for
generating restricted classes of graphs. Journal of Graph Theory
3(2):187–195.
Crawford, J. M.; Ginsberg, M. L.; Luks, E. M.; and Roy, A. 1996.
Symmetry-breaking predicates for search problems. In Aiello,
L. C.; Doyle, J.; and Shapiro, S. C., eds., Proceedings of the Fifth
International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’96), Cambridge, Massachusetts, USA,
November 5-8, 1996., 148–159. Morgan Kaufmann.
Exoo, G.; Ling, A. C.; McSorley, J. P.; Phillips, N.; and Wallis, W.
2002. Totally magic graphs. Discrete Mathematics 254(1):103 –
113.
Flener, P.; Frisch, A. M.; Hnich, B.; Kiziltan, Z.; Miguel, I.; and
Walsh, T. 2002. Matrix modelling: Exploiting common patterns
in constraint programming. In Proceedings of the International
Workshop on Reformulating Constraint Satisfaction Problems, 27–
41.
Frisch, A. M., and Harvey, W. 2003. Constraints for breaking all
row and column symmetries in a three-by-two matrix.
Frisch, A. M.; Hnich, B.; Kiziltan, Z.; Miguel, I.; and Walsh, T.
2006. Propagation algorithms for lexicographic ordering con-
straints. Artif. Intell. 170(10):803–834.
Gallian, J. A. 2018. A dynamic survey of graph labeling. The
Electronic Journal of Combinatorics 6. Version 21.
Gebser, M.; Kaufmann, B.; and Schaub, T. 2012. Conflict-driven
answer set solving: From theory to practice. Artif. Intell. 187:52–
89.
Gent, I. P.; Jefferson, C.; and Miguel, I. 2006. Minion: A fast,
scalable, constraint solver. In Proceedings of the 2006 Conference
on ECAI 2006: 17th European Conference on Artificial Intelligence

August 29 – September 1, 2006, Riva Del Garda, Italy, 98–102.
Amsterdam, The Netherlands, The Netherlands: IOS Press.
Halldórsson, M. M.; Kitaev, S.; and Pyatkin, A. 2016. Semi-
transitive orientations and word-representable graphs. Discrete
Appl. Math. 201(C):164–171.
Heule, M. J. H. 2016. The quest for perfect and compact symmetry
breaking for graph problems. In Davenport, J. H.; Negru, V.; Ida,
T.; Jebelean, T.; Petcu, D.; Watt, S. M.; and Zaharie, D., eds., 18th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2016, Timisoara, Romania, Septem-
ber 24-27, 2016, 149–156. IEEE Computer Society.
Heule, M. J. H. 2019. Optimal symmetry breaking for graph prob-
lems. Mathematics in Computer Scienc.
Itzhakov, A., and Codish, M. 2016. Breaking symmetries in graph
search with canonizing sets. Constraints 21(3):357–374.
Jäger, G., and Arnold, F. 2015. SAT and IP based algorithms for
magic labeling including a complete search for total magic label-
ings. J. Discrete Algorithms 31:87–103.
Kitaev, S. V., and Pyatkin, A. V. 2018. Word-representable
graphs: a survey. Journal of Applied and Industrial Mathematics
12(2):278–296.
Kvasnička, V., and Pospı́chal, J. 1990. Canonical indexing and
constructive enumeration of molecular graphs. J. Chem. Inf. Com-
put. Sci. 30(2):99–105.
Luks, E. M., and Roy, A. 2004. The complexity of symmetry-
breaking formulas. Ann. Math. Artif. Intell. 41(1):19–45.
McKay, B. D. 1998. Isomorph-free exhaustive generation. Journal
of Algorithms 26(2):306–324.
Metodi, A.; Codish, M.; and Stuckey, P. J. 2013. Boolean equi-
propagation for concise and efficient SAT encodings of combina-
torial problems. J. Artif. Intell. Res. (JAIR) 46:303–341.
Radziszowski, S. P. 1994. Small Ramsey numbers. Electronic
Journal of Combinatorics. Revision #14: January, 2014.
Read, R. C. 1978. Every one a winner or how to avoid isomor-
phism search when cataloguing combinatorial configurations. Ann.
Discrete Math. 2:107–120.
Shlyakhter, I. 2001. Generating effective symmetry-breaking pred-
icates for search problems. Electronic Notes in Discrete Mathemat-
ics 9:19–35.
Shlyakhter, I. 2007. Generating effective symmetry-breaking
predicates for search problems. Discrete Applied Mathematics
155(12):1539–1548.
Sloane, N. J. A., ed. The On-Line Encyclopedia of Integer Se-
quences. https://oeis.org. Accessed August 2019.
Walsh, T. 2006. General symmetry breaking constraints. In Ben-
hamou, F., ed., Principles and Practice of Constraint Program-
ming - CP 2006, 12th International Conference, CP 2006, Nantes,
France, September 25-29, 2006, Proceedings, volume 4204 of
LNCS, 650–664. Springer.

1543

