
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

D-SPIDER-SFO: A Decentralized Optimization
Algorithm with Faster Convergence Rate for Nonconvex Problems

Taoxing Pan,1 Jun Liu,2 Jie Wang1∗
1University of Science and Technology of China, 2Infinia ML, Inc.

tx1997@mail.ustc.edu.cn
jun.liu@infiniaml.com
jiewangx@ustc.edu.cn

Abstract

Decentralized optimization algorithms have attracted inten-
sive interests recently, as it has a balanced communication
pattern, especially when solving large-scale machine learn-
ing problems. Stochastic Path Integrated Differential Esti-
mator Stochastic First-Order method (SPIDER-SFO) nearly
achieves the algorithmic lower bound in certain regimes for
nonconvex problems. However, whether we can find a de-
centralized algorithm which achieves a similar convergence
rate to SPIDER-SFO is still unclear. To tackle this prob-
lem, we propose a decentralized variant of SPIDER-SFO,
called decentralized SPIDER-SFO (D-SPIDER-SFO). We
show that D-SPIDER-SFO achieves a similar gradient com-
putation cost—that is, O(ε−3) for finding an ε-approximate
first-order stationary point—to its centralized counterpart.
To the best of our knowledge, D-SPIDER-SFO achieves the
state-of-the-art performance for solving nonconvex optimiza-
tion problems on decentralized networks in terms of the com-
putational cost. Experiments on different network configura-
tions demonstrate the efficiency of the proposed method.

Introduction

Distributed optimization is a popular technique for solv-
ing large scale machine learning problems (Li et al. 2014),
ranging from visual object recognition (Huang et al. 2017;
He et al. 2016) to natural language processing (Vaswani
et al. 2017; Devlin et al. 2019). For distributed optimiza-
tion, a set of workers form a connected computational net-
work, and each worker is assigned a portion of the comput-
ing task. The centralized network topology, like parameter
server (Jianmin et al. 2016; Dean et al. 2012; Li et al. 2014;
Zinkevich et al. 2010), consists of a central worker con-
nected with all other workers. This communication mech-
anism could degrade the performance significantly in sce-
narios where the underlying network has low bandwidth or
high latency (Lian et al. 2017).

In contrast, the decentralized network topology offers bet-
ter network load balance—as all nodes in the network only
communicate with their neighbors instead of the central
node—which implies that they may be able to outperform
∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

their centralized counterparts. These motivate many works
on decentralized algorithms. Nedić and Ozdaglar (2009)
studied distributed subgradient method for optimizing a sum
of convex objective functions. Shi et al. (2014) analyzed
the linear convergence rate of the ADMM in decentralized
consensus optimization. Yuan, Ling, and Yin (2016) studied
the convergence properties of the decentralized gradient de-
scent method (DGD). They proved that the local solutions
and the mean solution converge to a neighborhood of the
global minimizer at a linear rate for strongly convex prob-
lems. Mokhtari and Ribeiro (2016) studied decentralized
double stochastic averaging gradient algorithm (DSA) and
Wei et al. (2015) proposed decentralized exact first-order al-
gorithm (EXTRA). Both of these two algorithms converge
to an optimal solution at a linear rate for strongly convex
problems. Lian et al. (2017) studied decentralized PSGD (D-
PSGD) and showed that decentralized algorithms could be
faster than their centralized counterparts. Tang et al. (2018)
proposed D2 algorithm which is less sensitive to the data
variance across workers. Scaman et al. (2018) provided two
optimal decentralized algorithms, called multi-step primal-
dual (MSPD) and distributed randomized smoothing (DRS),
and their corresponding optimal convergence rate for convex
problems in certain regimes. Assran et al. (2019) proposed
Stochastic Gradient Push (SGP) and proved that SGP con-
verges to a stationary point of smooth and nonconvex objec-
tives at the sub-linear rate.

On the other hand, to achieve a faster convergence rate,
researchers have also proposed many nonconvex optimiza-
tion algorithms. Stochastic Gradient Descent (SGD) (Rob-
bins and Monro 1951) achieves an ε-approximate station-
ary point with a gradient cost of O(ε−4) (Ghadimi and Lan
2013). To improve the convergence rate of SGD, researchers
have proposed variance-reduction methods (Roux, Schmidt,
and Bach 2012; Defazio, Bach, and Lacoste-Julien 2014).
Specifically, the finite-sum Stochastic Variance Reduced
Gradient method (SVRG) (Johnson and Zhang 2013; Reddi
et al. 2016) and online Stochastically Controlled Stochastic
Gradient method (SCSG) (Lei et al. 2017) achieve a gradi-
ent cost ofO(min(m2/3ε−2, ε−10/3)), where m is the num-
ber of samples. SNVRG (Zhou, Xu, and Gu 2018) achieves
a gradient cost of Õ(ε−3), while SPIDER-SFO (Fang et

1619

Table 1: Comparision of D-PSGD, D2 and D-SPIDER-SFO and their centralized competitors.

Algorithm Communication cost on Gradient Bounded data
the busiest node Computation Cost variance among workers

C-PSGD (Dekel et al. 2012) O(n) O(ε−4) ×
D-PSGD (Lian et al. 2017) O (Deg(network)) O(ε−4) need

D2(Tang et al. 2018) O (Deg(network)) O(ε−4) no need
C-SPIDER-SFO (Fang et al. 2018) O(n) O(ε−3) ×

D-SPIDER-SFO O (Deg(network)) O(ε−3) no need

al. 2018) and SARAH (Nguyen et al. 2017; 2019) achieve
a gradient cost of O(ε−3). Moreover, Fang et al. (2018)
showed that SPIDER-SFO nearly achieves the algorithmic
lower bound in certain regimes for nonconvex problems.
Though these works have made significant progress, conver-
gence properties of faster optimization algorithms for non-
convex problems in the decentralized settings are unclear.

In this paper, we propose decentralized SPIDER-SFO
(D-SPIDER-SFO) for faster convergence rate for noncon-
vex problems. We theoretically analyze that D-SPIDER-
SFO achieves an ε-approximate stationary point in gradi-
ent cost of O(ε−3), which achieves the state-of-the-art per-
formance for solving nonconvex optimization problems in
the decentralized settings. Moreover, this result indicates
that D-SPIDER-SFO achieves a similar gradient compu-
tation cost to its centralized competitor, called centralized
SPIDER-SFO (C-SPIDER-SFO). To give a quick compari-
son of our algorithm and other existing first-order algorithms
for nonconvex optimization in the decentralized settings,
we summarize the gradient cost and communication com-
plexity of the most relevant algorithms in Table1. Table 1
shows that D-SPIDER-SFO converges faster than D-PSGD
and D2 in terms of the gradient computation cost. Moreover,
compared with C-SPIDER-SFO, D-SPIDER-SFO reduces
much communication cost on the busiest worker. Therefore,
D-SPIDER-SFO can outperform C-SPIDER-SFO when the
communication becomes the bottleneck of the computa-
tional network. Our main contributions are as follows.

1. We propose D-SPIDER-SFO for finding approximate
first-order stationary points for nonconvex problems in
the decentralized settings, which is a decentralized paral-
lel version of SPIDER-SFO.

2. We theoretically analyze that D-SPIDER-SFO achieves
the gradient computation cost of O(ε−3) to find an ε-
approximate first-order stationary point, which is similar
to SPIDER-SFO in the centralized network topology. To
the best of our knowledge, D-SPIDER-SFO achieves the
state-of-the-art performance for solving nonconvex opti-
mization problems in the decentralized settings.

Notation: Let ‖ · ‖ be the vector and the matrix �2 norm
and ‖ · ‖F be the matrix Frobenius norm.∇f(·) denotes the
gradient of a function f . Let 1n be the column vector in R

n

with 1 for all elements and ei be the column vector with a 1
in the ith coordinate and 0’s elsewhere. We denote by f∗ the
optimal solution of f . For a matrix A ∈ R

n×n, let λi(A) be
the i-th largest eigenvalue of a matrix. For any fixed integer

j ≥ i ≥ 0, let [i : j] be the set {i, i + 1, . . . , j} and {x}i:j
be the sequence {xi, xi+1, . . . , xj}.

Basics and Motivation

Decentralized Optimization Problems

In this section, we briefly review some basics of the de-
centralized optimization problem. We represent the decen-
tralized communication topology with a weighted directed
graph: (V,W). V is the set of all computational nodes, that
is, V := {1, 2, . . . , n}. W is a matrix and Wi,j represents
how much node j can affect node i, while Wij = 0 means
that node i and j are disconnected. Therefore, Wij ∈ [0, 1],
for all i, j. Moreover, in the decentralized optimization set-
tings, we assume that W is symmetric and doubly stochastic,
which means that W satisfies (i) Wij = Wji for all i, j, and
(ii)
∑

j Wij = 1 for all i and
∑

i Wij = 1 for all j.
Throughout this paper, we consider the following decen-

tralized optimization problem:

min
x∈RN

f(x) :=
1

n

n∑
i=1

Eξ∈Di
Fi(x; ξ)︸ ︷︷ ︸

=:fi(x)

, (1)

where n is the number of workers, Di is a predefined dis-
tribution of the local data for worker i, and ξ is a random
data sample. Decentralized problems require that the graph
of the computational network is connected and each worker
can only exchange local information with its neighbors.

In the i-th node, xi, ξi, fi(xi), Fi(xi; ξi) is the local op-
timization variables, random sample, target function and
stochastic component function. Let S be a subset that
samples S elements in the dataset. For simplicity, we
denote by ξk,i the subset that i-th node samples at it-
erate k, that is, ∇Fi(xk,i; ξk,i) = ∇Fi(xk,i;Sk,i) =
1

Sk,i

∑
ξj∈Sk,i

∇Fi(xk,i; ξj). In order to present the core
idea more clearly, at iterate k, we define the concatena-
tion of all local optimization variables, estimators of full
gradients, stochastic gradients, and full gradients by matrix
Xk, Gk, ∂F (Xk; ξk), ∂f(Xk) ∈ R

N×n respectively:

Xk := [xk,1, · · · , xk,n],

Gk := [gk,1, · · · , gk,n],

∂F (Xk, ξk) := [∇F1(xk,1; ξk,1), · · · ,∇Fn(xk,n; ξk,n)],

∂f(Xk) := [∇f1(xk,1), · · · ,∇fn(xk,n)].

In general, at iterate k, let the stepsize be ηk. We define
ηkVk as the update, where Vk ∈ R

N×n. Therefore, we can

1620

view the update rule as:

Xk+1 ← XkW − ηkVk. (2)

D-SPIDER-SFO

In this section, we introduce the basic settings, assump-
tions, and the flow of D-SPIDER-SFO in the first subsec-
tion. Then, we compare D-SPIDER-SFO with D-PSGD and
D2 in a special scenario to show our core idea. In the final
subsection, we propose the error-bound theorems for finding
an ε-approximate first-order stationary point.

Algorithm 1 D-SPIDER-SFO on the ith node

Input: Require initial point X0, weighted matrix W ,
number of iterations K, learning rate η, constant q, and
two sample sizes S(1) and S(2)

Initialize: X−1 = X0, G−1 = 0
for k = 0, . . . ,K − 1 do

if mod(k, q) = 0 then

Draw S(1) samples and compute the stochastic
gradient ∇Fi(xk,i;S(1)k,i)

gk,i = ∇Fi(xk,i;S(1)k,i)

xk+ 1
2 ,i

= 2xk,i − xk−1,i − η(gk,i − gk−1,i)

else
Draw S(2) samples, and compute two stochastic

gradient ∇Fi(xk,i;S(2)k,i) and ∇Fi(xk−1,i;S(2)k,i)

gk,i = ∇Fi(xk,i;S(2)k,i) − ∇Fi(xk−1,i;S(2)k,i) +
gk−1,i

xk+ 1
2 ,i

= 2xk,i − xk−1,i − η(∇Fi(xk,i;S(2)k,i) −
∇Fi(xk−1,i;S(2)k,i))

end if
xk+1,i =

∑n
j=1 Wj,ixk+ 1

2 ,j

end for
Return x̃ = XK1n

n

Settings and Assumptions

In this subsection, we introduce the formal definition of
an ε-approximate first-order stationary point and commonly
used assumptions for decentralized optimization problems.
Moreover, we briefly introduce the key steps at iterate k for
worker i in D-SPIDER-SFO algorithm.

Definition 1 We call x̃ ∈ R
N an ε-approximate first-order

stationary point, if

‖∇f(x̃)‖ ≤ ε. (3)

Assumption 1 We make the following commonly used as-
sumptions for the convergence analysis.
1. Lipschitz gradient: All local loss functions fi(·) have

L-Lipschitzian gradients.
2. Average Lipschitz gradient: In each fixed node i,

the component function Fi(xi; ξi) has an average L-
Lipschitz gradient, that is,

E‖∇Fi(x; ξi)−∇Fi(y; ξi)‖2 ≤ L2‖x− y‖2, ∀x, y.

3. Spectral gap: Given the symmetric doubly stochastic ma-
trix W . Let the eigenvalues of W ∈ R

n×n be λ1 ≥ λ2 ≥
· · · ≥ λn. We denote by λ the second largest value of the
set of eigenvalues, i.e.,

λ = max
i∈{2,··· ,n}

λi = λ2.

We assume λ < 1 and λn > − 1
3 .

4. Bounded variance: Assume the variance of stochastic
gradient within each worker is bounded, which implies
there exists a constant σ, such that

Eξ∼Di‖∇Fi(x; ξ)−∇fi(x)‖2 ≤ σ2, ∀i, ∀x.
5. (For D-PSGD Algorithm only) Bounded data variance

among workers: Assume the variance of full gradient
among all workers is bounded, which implies that there
exists a constant ζ, such that

Ei∼U([n])‖∇fi(x)−∇f(x)‖2 ≤ ζ2, ∀i, ∀x.
Remark 1 The eigenvalues of W measure the speed of in-
formation spread across the network (Lian et al. 2017). D-
SPIDER-SFO requires λ2 < 1 and λn > − 1

3 , which is
the same as the assumption in D2 (Tang et al. 2018), while
D-PSGD only needs the former condition. D-PSGD needs
bounded data variance among workers assumption addi-
tionally, as it is sensitive to such data variance.

D-SPIDER-SFO algorithm is a synchronous decentral-
ized parallel algorithm. Each node repeats these four key
steps at iterate k concurrently:

1. Each node computes a local stochastic gradient on their
local data. When mod (k, q) 	= 0, all nodes compute
∇Fi(xk,i;S(2)k,i) and ∇Fi(xk−1,i;S(2)k,i) using the local
models at both iterate k and the last iterate; otherwise,
they compute ∇Fi(xk,i;S(1)k,i).

2. Each node updates its local estimator of the full gradient
gk,i. When mod (k, q) 	= 0, all nodes compute gk,i ←
∇Fi(xk,i;S(2)k,i)−∇Fi(xk−1,i;S(2)k,i) + gk−1,i; else they

compute gk,i ← ∇Fi(xk,i;S(1)k,i).

3. Each node updates their local model. When
mod (k, q) 	= 0, all nodes compute xk+ 1

2 ,i
← 2xk,i −

xk−1,i − η(∇Fi(xk,i;S(2)k,i) − ∇Fi(xk−1,i;S(2)k,i)); else
they compute xk+ 1

2 ,i
← 2xk,i−xk−1,i−η(gk,i−gk−1,i).

4. When meeting the synchronization barrier, each node
takes weighted average with its and neighbors’ local op-
timization variables: xk+1,i =

∑n
j=1 Wj,ixk+ 1

2 ,j
.

To understand D-SPIDER-SFO, we consider the update
rule of global optimization variable Xk1n

n . Let k0 =
k/q� ·
q. For convenience, we define

Δk =
(Xk+1 −Xk)1n

n
=

1

n

n∑
i=1

(xk+1,i − xk,i),

Hk(X) = ∂F (X; ξk)
1n

n
=

1

n

n∑
i=1

∇Fi(xi; ξk,i),

1621

where ξk denotes the samples at the k-th iterate. Therefore,
Δk

=Δk−1 − η(Hk(Xk)−Hk(Xk−1))

=− ηHk0(Xk0)− η

k∑
s=k0+1

(Hs(Xs)−Hs(Xs−1)).

As for centralized SPIDER-SFO, we have
xk+1 − xk

=− ηk(∇F (xk; ξk)−∇F (xk−1; ξk) + vk−1)

=− ηk0
∇F (xk0

; ξk0
)

−
k∑

s=k0+1

ηs(∇F (xs; ξs)−∇F (xs−1; ξs)).

Remark 2 Nguyen et al. propose SARAH for (strongly)
convex optimization problems. SPIDER-SFO adopts a sim-
ilar recursive stochastic gradient update framework and
nearly matches the algorithmic lower bound in certain
regimes for nonconvex problems. Moreover, Wang et al. [2]
propose SpiderBoost and show that SpiderBoost, a vari-
ant of SPIDER-SFO with fixed step size, achieves a simi-
lar convergence rate to SPIDER-SFO for nonconvex prob-
lems. Inspired by these algorithms, we propose decentral-
ized SPIDER-SFO (D-SPIDER-SFO). As we can see, the
update rule of D-SPIDER-SFO is similar to its centralized
counterpart with fixed step size.

Core Idea

The convergence property of decentralized parallel stochas-
tic algorithms is related to the variance of stochastic gradi-
ents and the data variance across workers. In this subsection,
we present in detail the underlying idea to reduce the gradi-
ent complexity behind the algorithm design.

The general update rule (2) shows that E[‖Vk‖2F] affects
the convergence, especially when we approach a solution.
For showing the improvement of D-SPIDER-SFO, we will
compare the upper bound of E[‖Vk‖2F] of three algorithms,
which are D-PSGD, D2, and D-SPIDER-SFO.

The update rule of D-PSGD is Xk+1 = XkW −
η∂F (Xk; ξk), that is, Vk = ∂F (Xk; ξk). Then, we have

E‖∂F (Xk; ξk)‖2F
≤4E‖∂F (Xk; ξk)− ∂f(Xk)‖2F

+ 4E

∥∥∥∥∂f(Xk)− ∂f

(
Xk1n

n
1T
n

)∥∥∥∥2
F

+ 4E

∥∥∥∥∂f (Xk1n

n
1T
n

)
−∇f

(
Xk1n

n

)
1T
n

∥∥∥∥2
F

+ 4E

∥∥∥∥∇f (Xk1n

n

)
1T
n

∥∥∥∥2
F

≤4nσ2 + 4nζ2 + 4L2
n∑

i=1

∥∥∥∥xk,i − Xk1n

n

∥∥∥∥2
+ 4E

∥∥∥∥∇f (Xk1n

n

)
1T
n

∥∥∥∥2
F

.

Moreover, the update rule of D2 is Xk+1 =
[2Xk −Xk−1 − η(∂F (Xk; ξk)− ∂F (Xk−1; ξk−1))]W .
For convenience, we define Qk = Xk−Xk−1

η . Therefore, we
can conclude the upper bound of E‖Vk‖2F .

E ‖[−Qk + (∂F (Xk; ξk)− ∂F (Xk−1; ξk−1))]W‖2F
≤2E ‖Qk‖2F + 2E‖∂F (Xk; ξk)− ∂F (Xk−1; ξk−1)‖2F
≤2E ‖Qk‖2F + 6E‖∂F (Xk; ξk)− ∂f(Xk)‖2F
+ 6E‖∂F (Xk−1; ξk−1)− ∂f(Xk−1)‖2F
+ 6E‖∂f(Xk)− ∂f(Xk−1)‖2F

≤ 2

η2

n∑
i=1

E ‖xk,i − xk−1,i‖2

+ 6

n∑
i=1

E‖∇Fi(xk,i; ξk,i)−∇fi(xk,i)‖2

+ 6

n∑
i=1

E‖∇Fi(xk−1,i; ξk−1,i)−∇fi(xk−1,i)‖2

+ 6

n∑
i=1

E‖∇fi(xk,i)−∇fi(xk−1,i)‖2

≤2 (η−2 + 3L2
) n∑
i=1

E‖xk,i − xk−1,i‖2 + 12nσ2.

Since the update rule of D-SPIDER-SFO has two different
patterns, we discuss them seperately. If mod (k, q) 	= 0,
we have Gk = [−Qk − (∂F (Xk; ξk)− ∂F (Xk−1; ξk))]W .

E ‖[Qk + (∂F (Xk; ξk)− ∂F (Xk−1; ξk))]W‖2F
≤2E ‖Qk‖2F + 2E‖∂F (Xk; ξk)− ∂F (Xk−1; ξk)‖2F
≤ 2

η2

n∑
i=1

E ‖xk,i − xk−1,i‖2

+ 2

n∑
i=1

E‖∇Fi(xk,i; ξk,i)−∇Fi(xk−1,i; ξk,i)‖2F

≤2 (η−2 + L2
) n∑
i=1

E‖xk,i − xk−1,i‖2.

If mod (k, q) = 0 and k > 0, we have Gk = [−Qk −
(∂F (Xk; ξk)−Gk−1)]W . Let k0 = k − q, and we have

E ‖[−Qk − (∂F (Xk; ξk)−Gk−1)]W‖2F
≤2E‖Qk‖2F + 2E‖∂F (Xk; ξk)−Gk−1‖2F
≤2E‖Qk‖2F + 4E‖∂F (Xk; ξk)− ∂F (Xk0 ; ξk0)‖2F

+ 4E

∥∥∥∥∥∥
k−2∑
j=k0

(∂F (Xj+1; ξj+1)− ∂F (Xj ; ξj+1)

∥∥∥∥∥∥
2

F

, (4)

where

Gk−1 =

k−2∑
j=k0

(∂F (Xj+1; ξj+1)− ∂F (Xj ; ξj+1))

+ ∂F (Xk0
; ξk0

).

1622

Assume that for any j ∈ [k0 : k], Xj has achieved the
optimum X∗ := x∗1T

n with all local models equal to the op-
timum x∗. Then, E[‖Vk‖2F] of D-PSGD, and D2, is bounded
byO(σ2+ζ2),O(σ2), which is similar to Tang et al. (2018).
For convenience, considering the finite-sum case, if we set
the batch size S1 equal to the size m of the dataset, that is,
we compute the full gradient at iteration k and k0. Moreover,
as for any j ∈ [k0 : k], Xj = X∗, then each term of (4) is
zero, that is, E[‖Vk‖2F] is bounded by zero. D-SPIDER-SFO
will stop at the optimum, while D-PSGD and D2 will escape
from the optimum because of the variance of stochastic gra-
dients or data variance across workers. If we need D2 stops
at the optimum, D2 should compute the full gradient at each
iteration, which is similar to EXTRA (Wei et al. 2015), while
D-SPIDER-SFO needs to compute full gradient per q itera-
tion. This is the key ingredient for the superior performance
of D-SPIDER-SFO. By this sight, D-SPIDER-SFO achieves
a faster convergence rate. In the following analysis, we show
that the gradient cost of D-SPIDER-SFO is O(1

ε3).

Convergence Rate Analysis

In this subsection, we analyze the convergence properties of
the D-SPIDER-SFO algorithm. We propose the error bound
of the gradient estimation in Lemma 1, which is critical in
convergence analysis. Then, based on Lemma 1, we present
the upper bound of gradient cost for finding an ε approxi-
mate first-order stationary point, which is the state-of-the-art
for decentralized nonconvex optimization problems.

Before analyzing the convergence properties, we consider
the update rule of global optimization variables as follows,

Xk+11n

n
=

(XkW − ηVk)1n

n
=

(Xk − ηVk)1n

n
.

To analyze the convergence rate of D-SPIDER-SFO, we
conclude the following Lemma 1 which bounds the error of
the gradient estimator V 1n

n .

Lemma 1 Under the Assumption 1, we have

1

K

K−1∑
k=0

E

∥∥∥∥∇f (Xk1n

n

)
− Vk1

n

∥∥∥∥2
≤
[
4L2C1

nD
+

24L4C1q

nDS2

]
E‖X1‖2F

K
+

2σ2

S1

+
1

K

[
4L4η4C2

Dn
+

24L4η4C2q

DS2

]K−1∑
k=0

E

∥∥∥∥Vk1n

n

∥∥∥∥2 ,
where

C1 = max

{
1

1− |bn|2 ,
1

(1− λ2)2

}
,

C2 = max

{
λ2
n

(1− |bn|2) ,
λ2
2

(1−√λ2)2(1− λ2)

}
,

bn = λn −
√

λ2
n − λn,

D = 1− 48C2qη
2L2

S2
.

In Appendix, we will give the upper bound of E‖X1‖2F .
Lemma 1 shows that the error bound of the gradient estima-
tor is related to the second moment of

∥∥Xk1n

n

∥∥. Then, we
give the analysis of the convergence rate. W.l.o.g., we as-
sume the algorithm starts from 0, that is X0 = 0, and define
ζ0 = 1

n

∑n
i=1 ‖∇fi(0)−∇f(0)‖.

Theorem 1 For the online case, set parameters S1, S2, η,
and q as constants, and C1, C2, and D as in Lemma 1. Then,
under the Assumption 1, for Algorithm 1, we have

1

K

K∑
k=1

E

∥∥∥∥∇f (Xk1n

n

)∥∥∥∥2 + M

K

K−1∑
k=0

E

∥∥∥∥Vk1n

n

∥∥∥∥2
≤2E[f(X01n

n)− f∗]
ηK

+

(
1 +

32C2L
2η2

nqD
+

192C2L
2η2

nS2D

)
2σ2

S1

+
3η2

K

(
4L2C1

D
+

24L2C1q

DS2

)
(σ2 + ζ20 + ‖∇f(0)‖2),

where

M := 1− Lη − 6qL2η2

S2

[
1 +

4C2L
2η2

D

(
1 +

6q

S2

)]
.

By appropriately specifying the batch size S1, S2, the step
size η, and the parameter q, we reach the following corollary.
In the online learning case, we let the input parameters be

S1 =
σ2

ε2
, S2 =

σ

ε
, q =

σ

ε
, (5)

η < min

(
−1 +√13

12L
,

1

4
√
3C2L

)
. (6)

Corollary 1 Set the parameters S1, S2, q, η as in (5) and
(6), and set K =
 l

ε2 � + 1. Then under the Assumption 1,
running Algorithm 1 for K iterations, we have

1

K

K−1∑
k=0

E

∥∥∥∥∇f (Xk1

n

)∥∥∥∥2
≤3ε2 + 448C2L

2η2ε3

nDσ
,

where

l :=
2E[f(0)− f∗]

η

+
84C1L

2η2

D
(σ2 + ζ20 + ‖∇f(0)‖2).

The gradient cost is bounded by 2lσε−3 + 2σ2ε−2.
Remark 3 Corollary 1 shows that measured by gradient
cost, D-SPIDER-SFO achieves the convergence rate of
O(ε−3), which is similar to its centralized counterparts. Due
to properties of decentralized optimization problems, the co-
efficient in Corollary 1 of the term ε−3 depends on the net-
work topology W and the data variance among workers ζ2
in addition, while compared with the centralized competitor
(Fang et al. 2018). Although the differences exist, we con-
duct experiments to show that D-SPIDER-SFO converges
with a similar speed to C-SPIDER-SFO.

1623

20 40 60 80
Oracle calls (*25600)

1.4

1.6

1.8

2.0

2.2

lo
ss

C-SPIDER-SFO
D-SPIDER-SFO

(a) SPIDER, LeNet5

20 40 60 80
Oracle calls (*25600)

1.4

1.6

1.8

2.0

2.2

lo
ss

C-SPIDER-SFO
D-SPIDER-SFO
D-PSGD
D2

(b) SPIDER and SGD, LeNet5

10 20 30 40 50 60 70
Oracle calls (*12800)

0.5

1.0

1.5

2.0

2.5

lo
ss

C-SPIDER-SFO
D-SPIDER-SFO

(c) SPIDER, ResNet-18

10 20 30 40 50 60 70
Oracle calls (*12800)

0.5

1.0

1.5

2.0

2.5

lo
ss

C-SPIDER-SFO
D-SPIDER-SFO
D-PSGD
D2

(d) SPIDER and SGD, ResNet-18

0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
1/Bandwidth (1/1 Mbps)

50

100

150

200

250

300

350

400

Se
co

nd
s/

Ep
oc

h

C-SPIDER-SFO
D-SPIDER-SFO

(e) Impact of Network Bandwidth

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Network Latency (ms)

50

100

150

200

250

300

350

Se
co

nd
s/

Ep
oc

h

C-SPIDER-SFO
D-SPIDER-SFO

(f) Impact of Network Latency

Figure 1: In the experiments, we train two convolutional neural network, LeNet5 and ResNet18. Fig. 1(a) and 1(c) are the
comparisons between D-SPIDER-SFO and C-SPIDER-SFO. Fig. 1(b) and 1(d) are the comparisons between D-SPIDER-SFO,
C-SPIDER-SFO, D-PSGD, and D2. Fig. 1(e) and 1(d) show the impact of the bandwidth and latency.

Experiments

In this section, we conduct extensive experiments to val-
idate our theory. We introduce our experiment settings in
the first subsection. Then in the second subsection, we con-
duct the experiments to demonstrate that D-SPIDER-SFO
can get a similar convergence rate to C-SPIDER-SFO and
converges faster than D-PSGD and D2. Moreover, we vali-
date that D-SPIDER-SFO outperforms its centralized coun-
terpart, C-SPIDER-SFO, on the networks with low band-
width or high latency. In the final, we show that D-SPIDER-
SFO is robust to the data variance among workers. The
code of D-SPIDER-SFO is available on GitHub at https:
//github.com/MIRALab-USTC/D-SPIDER-SFO.

Experiment setting

Datasets and models We conduct our experiments on the
image classification task. In our experiments, we train our
models on CIFAR-10 (Krizhevsky and Hinton 2009). The
CIFAR-10 dataset consists of 60,000 32x32 color images in
10 classes when the training set has 50,000 images. For im-
age classification, we train two convolution neural network
models on CIFAR-10. The first one is LeNet5 (Lecun et al.
1998), which consists of a 6-filter 5× 5 convolution layer, a
2× 2 max-pooling layer, a 16-filter 5× 5 convolution layer
and two fully connected layers with 120, 84 neurons respec-
tively. The second one is ResNet-18 (He et al. 2015).
Implementations and setups We implement our code on

framework PyTorch. All implementations are compiled with
PyTorch1.3 with gloo. We conduct experiments both on the
CPU server and GPU server. CPU cluster is a machine with
four CPUs, each of which is an Intel(R) Xeon(R) Gold 6154
CPU @ 3.00GHz with 18 cores. GPU server is a machine
with 8 GPUs, each of which is a Nvidia GeForce GTX
2080Ti. In the experiments, we use the ring network topol-
ogy, seeing each core or GPU as a node, with corresponding
symmetric doubly stochastic matrix W in the form of

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1/2 1/4 1/4
1/4 1/2 1/4

1/4 1/2
. . .

. 1/4
1/4 1/2 1/4

1/4 1/4 1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

n×n.

Experiments of D-SPIDER-SFO

To show that D-SPIDER-SFO can get a similar conver-
gence rate to its centralized version, we choose the com-
putational complexity as metrics instead of the wall clock
speed. In the experiments of training LeNet5, for D-PSGD
and D2, we use the constant learning rate η0√

K/n
and tune

η0 from {0.1, 0.05, 0.01, 0.005, 0.001} and set the batch
size 16 for each node, where K is the number of iter-
ates and n is the number of workers. For D-SPIDER-
SFO and C-SPIDER-SFO, we set S1 = 256, S2 =

1624

20 40 60 80 100
Oracle calls (*25600)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
lo

ss
C-PSGD
D-PSGD
D2

(a) D-PSGD vs C-PSGD

20 40 60 80
Oracle calls (*25600)

1.4

1.6

1.8

2.0

2.2

lo
ss

C-SPIDER-SFO
D-SPIDER-SFO
C-PSGD
D2

(b) D-SPIDER-SFO vs C-SPIDER-SFO

Figure 2: Fig. 2(a) is the comparison between D-PSGD and its centralized parallel version when the data is unshuffled. Fig.
2(b) is the comparison between D-SPIDER-SFO with its centralized counterpart when the data is unshuffled.

16, q = 16 for each node, and tune the learning rate from
{0.1, 0.05, 0.01, 0.005, 0.001}. When we conduct experi-
ments on ResNet-18, for D-PSGD and D2, we tune η0 from
{0.03, 0.01, 0.003, 0.001, 0.0003}, and also tune the learn-
ing rate of D-SPIDER-SFO and C-SPIDER-SFO from the
same set {0.03, 0.01, 0.003, 0.001, 0.0003}. We conduct ex-
periments on a computational network with eight nodes. Due
to the space limitation, we show the experiments of training
convolutional neural network models, LetNet5 and ResNet-
18, on 8 GPUs in this paper and list the experiments on the
CPU cluster in Supplement Material.

The gradient computation cost of both D-PSGD and D2 is
O(ε−4) for finding an ε approximated stationary point, while
D-SPIDER-SFO achievesO(ε−3). Figure 1(b) and 1(d) val-
idates our theoretical analysis and shows that D-SPIDER-
SFO converges faster than D-PSGD and D2. Moreover, fig-
ure 1(a) and 1(c) also shows that D-SPIDER-SFO achieves
a similar convergence rate to its centralized competitor.

As the decentralized network has more balanced com-
munication patterns, D-SPIDER-SFO should outperform its
centralized counterpart, when the communication becomes
the bottleneck of the computational network. To demonstrate
the above statement, we use the wall clock time as the met-
rics. In this experiment, we train LeNet5 on a cluster with
8 GPUs. We adopt the same parameters and experiment set-
tings as what we use to train LeNet5. We use the tc com-
mand to control the bandwidth and latency of the network.
Figure 1(e) and 1(f) shows the wall clock time to finish one
epoch on different network configurations. When the band-
width becomes smaller, or the latency becomes higher, D-
SPIDER-SFO can be even one order of magnitude faster
than its centralized counterpart. The experiments demon-
strate that the balanced communication pattern improves the
efficiency of D-SPIDER-SFO.

Tang et al. (2018) proposed D2 algorithm is less sensi-
tive to the data variance across workers. From the theoret-
ical analysis, D-SPIDER-SFO is also robust to that vari-

ance. The experiments demonstrate the statement and show
that D-SPIDER-SFO converges faster than D2 when the data
variance across workers is maximized.

We follow the method proposed in (Tang et al. 2018) to
create a data distribution with large data variance for the
comparison between D-SPIDER-SFO and D2. We conduct
the experiments on a server with 5 GPUs and choose the
computational complexity as metrics. Each worker only has
access to two classes of the whole dataset, called the unshuf-
fled case, and we tune the learning rate of D2 as before.

Figure 2(a) shows that D-PSGD does not converge in the
unshuffled case, which is consistent with the original work
(Tang et al. 2018). Figure 2(b) shows that D-SPIDER-SFO
converges faster than D2, and even it has a similar com-
puting complexity as its centralized implementation. The
experiments demonstrate the theoretical statement that D-
SPIDER-SFO is robust to the data variance across workers.

Conclusion

In this paper, we propose D-SPIDER-SFO as a decentralized
parallel variant of SPIDER-SFO for a faster convergence
rate for nonconvex problems. We theoretically analyze that
D-SPIDER-SFO achieves an ε-approximate stationary point
in the gradient cost ofO(ε−3). To the best of our knowledge,
D-SPIDER-SFO achieves the state-of-the-art performance
for solving nonconvex optimization problems on decentral-
ized networks. Experiments on different network configura-
tions demonstrate the efficiency of the proposed method.

Acknowledgements

We would like to thank the anonymous reviewers for their
constructive suggestions for the paper. This work was sup-
ported in part by NSFC (61822604, 61836006).

1625

References
Assran, M.; Loizou, N.; Ballas, N.; and Rabbat, M. 2019. Stochas-
tic gradient push for distributed deep learning. In Proceedings of
the 36th International Conference on Machine Learning - Volume
97, 344–353.
Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.;
aurelio Ranzato, M.; Senior, A.; Tucker, P.; Yang, K.; Le, Q. V.; and
Ng, A. Y. 2012. Large scale distributed deep networks. In Advances
in Neural Information Processing Systems 25, 1223–1231.
Defazio, A.; Bach, F.; and Lacoste-Julien, S. 2014. Saga: A fast
incremental gradient method with support for non-strongly convex
composite objectives. In Advances in Neural Information Process-
ing Systems 27, 1646–1654.
Dekel, O.; Gilad-Bachrach, R.; Shamir, O.; and Xiao, L. 2012.
Optimal distributed online prediction using mini-batches. Journal
of Machine Learning Research 165–202.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. Bert:
Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies.
Fang, C.; Li, C. J.; Lin, Z.; and Zhang, T. 2018. Spider: Near-
optimal non-convex optimization via stochastic path-integrated dif-
ferential estimator. In Advances in Neural Information Processing
Systems 31, 689–699.
Ghadimi, S., and Lan, G. 2013. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM Journal on
Optimization 2341–2368.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 770–778.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q.
2017. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition.
Jianmin, C.; Monga, R.; Bengio, S.; and Jozefowicz, R. 2016. Re-
visiting distributed synchronous sgd. In International Conference
on Learning Representations Workshop Track.
Johnson, R., and Zhang, T. 2013. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances in Neural
Information Processing Systems 26, 315–323.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple layers of
features from tiny images. In Technical Report.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-
based learning applied to document recognition. In Proceedings of
the IEEE, 2278–2324.
Lei, L.; Ju, C.; Chen, J.; and Jordan, M. I. 2017. Non-convex
finite-sum optimization via scsg methods. In Advances in Neural
Information Processing Systems 30, 2348–2358.
Li, M.; Andersen, D. G.; Park, J. W.; Smola, A. J.; Ahmed, A.;
Josifovski, V.; Long, J.; Shekita, E. J.; and Su, B.-Y. 2014. Scal-
ing distributed machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 14), 583–598.
Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.-J.; Zhang, W.; and Liu, J.
2017. Can decentralized algorithms outperform centralized algo-
rithms? a case study for decentralized parallel stochastic gradient
descent. In Advances in Neural Information Processing Systems
30, 5330–5340.

Mokhtari, A., and Ribeiro, A. 2016. Dsa: Decentralized dou-
ble stochastic averaging gradient algorithm. Journal of Machine
Learning Research 2165–2199.
Nedić, A., and Ozdaglar, A. 2009. Distributed subgradient meth-
ods for multi-agent optimization. IEEE Transactions on Automatic
Control 48–61.
Nguyen, L. M.; Liu, J.; Scheinberg, K.; and Takáč, M. 2017. Sarah:
A novel method for machine learning problems using stochastic re-
cursive gradient. In Proceedings of the 34th International Confer-
ence on Machine Learning, 2613–2621.
Nguyen, L. M.; Dijk, M. v.; Phan, D. T.; Nguyen, P. H.; Weng, T.-
W.; and Kalagnanam, J. R. 2019. Finite-sum smooth optimization
with sarah. In arXiv preprint arXiv: 1901.07648.
Reddi, S. J.; Hefny, A.; Sra, S.; Póczós, B.; and Smola, A. J. 2016.
Stochastic variance reduction for nonconvex optimization. In Pro-
ceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, 314–323.
Robbins, H., and Monro, S. 1951. A stochastic approximation
method. The Annals of Mathematical Statistics 400–407.
Roux, N. L.; Schmidt, M.; and Bach, F. R. 2012. A stochastic
gradient method with an exponential convergence rate for finite
training sets. In Advances in Neural Information Processing Sys-
tems 25, 2663–2671.
Scaman, K.; Bach, F.; Bubeck, S.; Massoulié, L.; and Lee, Y. T.
2018. Optimal algorithms for non-smooth distributed optimization
in networks. In Advances in Neural Information Processing Sys-
tems 31, 2740–2749.
Shi, W.; Ling, Q.; Yuan, K.; Wu, G.; and Yin, W. 2014. On the
linear convergence of the admm in decentralized consensus opti-
mization. IEEE Transactions on Signal Processing 1750–1761.
Tang, H.; Lian, X.; Yan, M.; Zhang, C.; and Liu, J. 2018. D2: De-
centralized training over decentralized data. In Proceedings of the
35th International Conference on Machine Learning, 4848–4856.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L. u.; and Polosukhin, I. 2017. Attention is
all you need. In Advances in Neural Information Processing Sys-
tems 30, 5998–6008.
Wei, S.; Qing, L.; Gang, W.; and Wotao, Y. 2015. Extra: An ex-
act first-order algorithm for decentralized consensus optimization.
SIAM Journal on Optimization 944–966.
Yuan, K.; Ling, Q.; and Yin, W. 2016. On the convergence of
decentralized gradient descent. SIAM Journal on Optimization
26(3):1835–1854.
Zhou, D.; Xu, P.; and Gu, Q. 2018. Stochastic nested variance
reduced gradient descent for nonconvex optimization. In Advances
in Neural Information Processing Systems 31, 3921–3932.
Zinkevich, M.; Weimer, M.; Li, L.; and Smola, A. J. 2010. Par-
allelized stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems 23, 2595–2603.

1626

