
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Probabilistic Inference for Predicate Constraint Satisfaction

Yuki Satake,1 Hiroshi Unno,1,2 Hinata Yanagi1
1University of Tsukuba, 2RIKEN AIP

{satake, uhiro, hinata}@logic.cs.tsukuba.ac.jp

Abstract

In this paper, we present a novel constraint solving method for
a class of predicate Constraint Satisfaction Problems (pCSP)
where each constraint is represented by an arbitrary clause
of first-order predicate logic over predicate variables. The
class of pCSP properly subsumes the well-studied class of
Constrained Horn Clauses (CHCs) where each constraint is
restricted to a Horn clause. The class of CHCs has been
widely applied to verification of linear-time safety proper-
ties of programs in different paradigms. In this paper, we
show that pCSP further widens the applicability to verifi-
cation of branching-time safety properties of programs that
exhibit finitely-branching non-determinism. Solving pCSP
(and CHCs) however is challenging because the search
space of solutions is often very large (or unbounded), high-
dimensional, and non-smooth. To address these challenges,
our method naturally combines techniques studied separately
in different literatures: counterexample guided inductive syn-
thesis (CEGIS) and probabilistic inference in graphical mod-
els. We have implemented the presented method and obtained
promising results on existing benchmarks as well as new ones
that are beyond the scope of existing CHC solvers.

1 Introduction

Constrained Horn Clauses (CHCs) (Grebenshchikov et al.
2012; Bjørner et al. 2015) is a class of constraint satisfac-
tion problems where each constraint is represented by a
Horn clause of first-order predicate logic with free predi-
cate variables over a background theory such as quantifier
free linear integer arithmetic (QFLIA). Thanks to its ex-
pressiveness, the class has been widely adopted as a ver-
ification intermediate language to encode various verifica-
tion problems of deciding whether the given linear-time
safety properties are satisfied by the given programs in dif-
ferent paradigms such as functional (Unno and Kobayashi
2009), multi-threaded (Popeea and Rybalchenko 2012), im-
perative (Gurfinkel et al. 2015), and object-oriented pro-
gramming (Kahsai et al. 2016). Accordingly, highly effi-
cient CHC solvers like SPACER (Komuravelli, Gurfinkel,
and Chaki 2014), ELDARICA (Hojjat and Rümmer 2018),
and HOICE (Champion et al. 2018) have been developed.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper studies a generalization of CHCs called pred-
icate Constraint Satisfaction Problems (pCSP) where each
constraint is represented by an arbitrary (i.e., possibly
non-Horn) clause. We show that this generalization further
widens the applicability to verification of branching-time
safety properties of programs that exhibit finitely branching
non-determinism. In other words, this paves the way to use
pCSP as a common intermediate language for verification
of branching-time safety properties in place of CHCs that
is limited to a strict subclass (i.e., linear-time safety proper-
ties).1 One of the notable instances of branching-time safety
verification is non-termination verification where the goal is
to check whether there is a non-terminating execution of the
given program (Gupta et al. 2008). For example, consider
the following program cnt :
while (x ≥ 0) do

if * then x := x - 1 else x := x + 1

The program repeatedly and non-deterministically (indi-
cated by *) decrements or increments the integer variable x
by 1 while the condition x ≥ 0 is satisfied. Suppose we
would like to verify that there is a non-terminating execu-
tion of the program under the precondition that the initial
value of x is non-negative. The property actually holds be-
cause we can always take the else branch to avoid termina-
tion. The non-termination verification problem is reduced to
the following pCSP Cnt :(

x ≥ 0 ⇒ I(x),
(I(x) ∧ x ≥ 0) ⇒ (I(x− 1) ∨ I(x+ 1)) ,
(I(x) ∧ x < 0) ⇒ ⊥

)
Here, the predicate variable I represents a kind of loop
invariant (called a recurrent set in (Gupta et al. 2008;
Chen et al. 2014)) of the while loop and ⊥ represents the
contradiction. The first clause requires that I is satisfied by
all the initial valuation conforming to the precondition. The

1The generalization however is still not sufficient for captur-
ing programs with infinitely branching non-determinism and the
full class of properties (in particular, liveness ones) expressible by
branching-time temporal logics such as CTL, CTL*, and modal-mu
calculus. This restriction can be easily overcome by further extend-
ing pCSP with well-foundedness constraints, though the extended
class is out of the scope of this paper for simplicity of exposition.

1644

second clause requires that I is preserved by either of the
non-deterministic branches. Note here that the use of non-
Horn clause is essential to capture the existential or disjunc-
tive nature of the non-termination property. The third clause
ensures that if I is satisfied, the execution never exits the
while loop. The problem has a solution (i.e., a satisfying as-
signment for the free predicate variable I) ρnt(I)(x) � x ≥
0 and consequently the program is proved to have a diverg-
ing execution for any non-negative initial value of x.

Solving pCSP (and CHCs), however, is undecidable in
general. Developing an incomplete but practical method is
still challenging because the search space of solutions is
often (1) very large (or unbounded), (2) high-dimensional,
and (3) non-smooth. To address these challenges, there have
been proposed data-driven approaches to solving subclasses
of CHCs based on counterexample guided inductive syn-
thesis (CEGIS) (Solar-Lezama et al. 2006) combined with
template-based synthesis via SMT solvers (Sharma et al.
2013a; Garg et al. 2014), greedy set covering with logic
minimization (Sharma et al. 2013b; Padhi, Sharma, and
Millstein 2016), decision tree learning (Garg et al. 2016;
Champion et al. 2018), randomized search (Sharma and
Aiken 2016), and reinforcement learning (Si et al. 2018).
Here, CEGIS is an iterative method that accumulates and
exploits example instances E of the original constraint set C
in order to address the challenge (1), and has been widely
applied to formal verification and synthesis. Each iteration
of CEGIS consists of a synthesis phase that attempts to
guess candidate solutions (represented as predicate assign-
ments ρ1, . . . , ρm) and a validation phase, where an SMT
solver is used to check whether C is satisfied by some can-
didate ρi. As soon as an iteration is reached where ρi sat-
isfies C, we can conclude that C is satisfiable. The above
existing methods vary mainly in the synthesis phase.

In this paper, we present a novel constraint solving
method for the full class of pCSP (and obviously CHCs) that
combines CEGIS with probabilistic inference in graphical
models, which has been studied in statistical machine learn-
ing and statistical physics literatures, for guessing candidate
solutions in the synthesis phase. In particular, we here adopt
survey propagation (SP) (Braunstein, Mézard, and Zecchina
2005; Kroc, Sabharwal, and Selman 2007; Maneva, Mossel,
and Wainwright 2007) in factor graphs (Kschischang, Frey,
and Loeliger 2001), which has been shown effective for
solving boolean Constraint Satisfaction Problems (bCSP)
where solutions (i.e., satisfying boolean assignments) are
scattered among small clusters in the search space of so-
lutions (Kroc, Sabharwal, and Selman 2007) (i.e., SP ad-
dresses the challenges (2) and (3) residing in bCSP as well).
To fill the gap between pCSP and bCSP, for each itera-
tion of CEGIS, we apply predicate abstraction to the exam-
ple instances E of the original constraint set C to obtain a
boolean abstraction B of E , which is a bCSP. We then enu-
merate solutions of B by SP, concretize them back to solu-
tions ρ1, . . . , ρm of E , and return them as candidate solutions
of C. Here, thanks to the use of SP, our method tends to ob-
tain simpler (per Occam’s razor) and different solutions (be-
longing to different clusters) for E , which tend to result in a
faster convergence of CEGIS in our method. We have imple-

mented the presented method and obtained promising results
on existing benchmark sets from SyGuS-Comp 2017 and
2018 (Invariant Synthesis Track), and CHC-COMP 2019
(LIA-nonlin Track) as well as a new benchmark set consist-
ing of pCSP that goes beyond the scope of existing CHC and
SyGuS solvers.

The rest of the paper is organized as follows. § 2 formal-
izes pCSP and § 3 discusses its application to branching-time
safety verification of programs with finitely branching non-
determinism. We then present our constraint solving method
for pCSP in § 4 and report on the implementation and exper-
imental evaluation in § 5. We discuss related work in § 6 and
conclude the paper in § 7.

2 Predicate Constraint Satisfaction Problems

This section defines the class of Predicate Constraint Satis-
faction Problems (pCSP). For simplicity, we fix the back-
ground first-order theory of our predicate logic to quantifier
free linear integer arithmetic (QFLIA). We use φ and ψ as
meta-variables ranging over formulas of the logic. We as-
sume that φ does not contain predicate variables, while ψ
may. We also use n as a meta-variable ranging over integer
constants. We write ftv(φ) for the set of free term variables
occurring in φ. A pCSP C is a finite set of clauses of the form

φ ∨
(

�∨
i=1

Pi(x̃i)

)
∨
(

m∨
i=�+1

¬Pi(x̃i)

)
.

Here, x and P are meta-variables ranging over term and
predicate variables, respectively. We write x̃ for a sequence
of term variables, |x̃| for its length, and ar(P) for the arity
of P . We write ftv(c) (resp. ftv(C)) for the set of free term
variables in the clause c (resp. in the pCSP C). We regard the
variables in ftv(c) as universally quantified implicitly. We
write fpv(C) for the set of free predicate variables occur-
ring in C and atms(C) for the set {Pi(x̃i) | i = 1, . . . ,m }
of predicate variable applications in C. A pCSP C is called
CHCs if � ≤ 1 for all clauses c ∈ C. A CHCs C is called
linear CHCs if m− � ≤ 1 for all c ∈ C. A predicate assign-
ment ρ is a finite map from predicate variables P to closed
predicates of the form λx1, . . . , xar(P).φ (i.e., a function that
takes integer arguments x1, . . . , xar(P) and returns whether
φ holds). We write ρ(C) for the application of ρ to C and
dom(ρ) for the domain of ρ. We call ρ a solution (i.e., a sat-
isfying predicate assignment) for C if fpv(C) ⊆ dom(ρ) and
all clauses in ρ(C) are valid (i.e., |= ∧

ρ(C)). For example,
the predicate assignment ρnt is a solution of the pCSP Cnt
in § 1. A boolean Constraint Satisfiability Problem (bCSP)
B is defined as a pCSP that satisfies ar(P) = 0 for all
P ∈ fpv(B). Note that a SAT solver can be used to decide
whether the given bCSP has a solution.

3 Application to Verification of

Branching-Time Safety Properties

In this section, we show that pCSP is expressible enough
to encode verification problems of branching-time safety
properties of looping programs with finitely branching non-

1645

determinism. The syntax of programs are defined as follows:

(programs) c ::= x := a | c1; c2 | if b then c1 else c2
| while b do c | assume b | assert b
| if ∗q then c1 else c2

(bool. exps.) b ::= � | ⊥ | a1 ≤ a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
(arith. exps.) a ::= n | x | −a | a1 + a2 | a1 × a2

The one-step reduction relation −→ over program config-
urations (c, σ) is defined as usual (Winskel 1993). Infor-
mally, assert b aborts if b evaluates to ⊥ and does nothing
otherwise. if ∗q then c1 else c2 non-deterministically
branches to c1 or c2, where q is either ∀ or ∃ indicat-
ing demonic or angelic non-determinism, respectively. A
branching-time safety verification problem of the given pro-
gram c is that of deciding whether safe(c, σ) holds for any
valuations σ of the variables in c where safe(c, σ) is co-
inductively defined by: safe(c, σ) implies the following
• c �= assert ⊥,
• if c = if ∗∃ then c1 else c2, then there exists (c′, σ′)

such that (c, σ) −→ (c′, σ′) and safe(c′, σ′) holds, and
• otherwise, for all (c′, σ′) such that (c, σ) −→ (c′, σ′),
safe(c′, σ′) holds.
We next explain how to encode the given branching-time

safety verification problem as a pCSP. To this end, we ex-
tend Dijkstra’s predicate transformer (Winskel 1993) to our
target programs as follows:

wp(x := a, ψ) � [a/x]ψ

wp(c1; c2, ψ) � wp(c1,wp(c2, ψ))

wp(if b then c1 else c2, ψ) � (b⇒ wp(c1, ψ)) ∧
(¬b⇒ wp(c2, ψ))

wp(while b do c, ψ) � I(x̃) ∧
[x̃1/x̃](I(x̃) ∧ b⇒ wp(c, I(x̃)))

∧ [x̃2/x̃](I(x̃) ∧ ¬b⇒ ψ)

wp(assume b, ψ) � b⇒ ψ

wp(assert b, ψ) � b ∧ ψ
wp(if∗∀then c1 else c2, ψ) � wp(c1, ψ)∧wp(c2, ψ)

wp(if∗∃then c1 else c2, ψ) � wp(c1, ψ)∨wp(c2, ψ)

Here, [a/x]ψ is the formula obtained from ψ by replacing
the free occurrences of x with a. I represents a fresh pred-
icate variable which is unique to the while loop, x̃ repre-
sents the sequence of the program variables (i.e., {x̃} =
ftv(b) ∪ ftv(c)), and x̃1 and x̃2 are fresh program variables
such that |x̃| = |x̃1| = |x̃2|.
Example 3.1. For the running example cnt in § 1, we get2

wp(cnt , ψ) = I(x) ∧
(I(x1) ∧ x1 ≥ 0) ⇒ (I(x1 − 1) ∨ I(x1 + 1))

∧ (I(x2) ∧ x2 < 0) ⇒ [x2/x]ψ)

Note that this can be regarded as a pCSP.
2We here assume that ∗ in cnt is appropriately annotated with ∃

(see § 3.1 for an explanation).

The branching-time safety verification problem of the
given program c is thus reduced to wp(c,�). Formally, we
can show the correctness of the reduction as follows.
Theorem 3.1. safe(c, σ) holds for all σ with ftv(c) ⊆
dom(σ) if the pCSP wp(c,�) has a solution.3

3.1 Non-Termination Verification

As explained in § 1, the goal of non-termination veri-
fication is to check whether there is a non-terminating
execution of the given program. Non-termination verifi-
cation can be considered as an instance of branching-
time safety verification. More specifically, given a pro-
gram c, we assume that q = ∃ for every occurrence
of if ∗q then c1 else c2 in c and assert b does
not occur in c. Then, the non-termination verification prob-
lem with the precondition φ can be reduced to the pCSP
wp(assume φ; c;assert⊥,�). Note that for the running
example cnt , wp(assume (x ≥ 0); cnt ;assert ⊥,�)
coincides with the pCSP Cnt in § 1 (modulo α-conversion).

3.2 Extension to Recursive Functions

We can extend our encoding to support recursive functions.
We informally describe the extension using the following ex-
ample recursive program cntrec (written in OCaml syntax):
let rec loop x =

if x >= 0 then
if ∗∃ then loop(x-1) else loop(x+1)

else x
let main x =

assume (x >= 0); loop x; assert ⊥
This program behaves similarly to cnt in § 1. The non-
termination verification problem of the recursive program is
reduced to the following pCSP Cntrec :⎛⎜⎝ (x < 0 ∧ x = y) ⇒ P (x, y),

(x ≥ 0 ∧ P (x− 1, y1) ∧ P (x+ 1, y2)) ⇒
(P (x, y1) ∨ P (x, y2)),

(x ≥ 0 ∧ P (x, y)) ⇒ ⊥

⎞⎟⎠
Here, the predicate variable P represents a postcondition of
the loop function relating the input x and the output y. The
first and the second clauses are respectively generated from
the else- and then-branches of the if-expression in the loop
function. The third clause is generated from the main func-
tion. The non-deterministic behavior of the program is en-
coded in the second (non-Horn) clause. The problem has
a solution ρntrec(P)(x, y) � x < 0 and consequently
the loop function is proved to have a diverging execution
for any non-negative argument x .

4 Our Constraint Solving Method for pCSP

This section describes our CEGIS-based method for finding
a solution of the given pCSP C. Our method iteratively ac-
cumulates example instances of C, from which we generate
a sequence of candidate solutions for C until a genuine solu-
tion is found. We write E(i) for the set of example instances

3The converse also holds if we adopt the set-theoretic notion of
solutions instead of the formula-definable ones.

1646

accumulated before the iteration i. Starting from E(1) = ∅,
for each iteration i ≥ 1, we perform the following:

1. Synthesis Phase: Find solutions ρ
(i)
1 , . . . , ρ

(i)
m (with

dom(ρ
(i)
1) = · · · = dom(ρ

(i)
m) = fpv(C)) for E(i), which

will be used as candidate solutions for C.

2. Validation Phase: Check whether ρ(i)j is a genuine so-
lution of C for some j by using an off-the-shelf SMT
solver. If so, we return ρ(i)j as a solution. Otherwise, for

each clause c ∈ C not satisfied by some ρ(i)j , we ob-
tain a counterexample, i.e., an integer assignment σc such
that dom(σc) = ftv(c) and �|= σc(ρ

(i)
j (c)). We then up-

date E(i+1) = E(i) ∪ {σc(c) | c ∈ C ∧ ∃j. �|= ρ
(i)
j (c) }

and check whether E(i+1) has no solution by using a SAT
solver.4 If it is the case, we report that C has no solution.
Otherwise, we proceed to the next iteration with E(i+1).

In the synthesis phase, we apply predicate abstraction
and survey inspired decimation for enumerating solutions
of E(i), which are respectively explained in § 4.1 and § 4.2.

The above CEGIS method is not guaranteed to terminate
due to the undecidability of pCSP but satisfies the so called
progress property: any counterexample σc found in an itera-
tion i is never generated again in the succeeding iterations.

Example 4.1. Recall the running example Cnt in § 1. For
the first iteration, our implementation reported in § 5 obtains
a candidate solution ρ(1)1 (I)(x) � � from the initial set of
example instances E(1) � ∅ in the synthesis phase. In the
validation phase, we obtain a counterexample {x �→ −1} for
the third clause, from which we obtain the updated example
instances E(2) � {¬I(−1)}. In the second iteration, we get
a candidate solution ρ(1)1 (I)(x) � x ≥ 0 from E(2), which
satisfies all the clauses of Cnt in the validation phase. We
thus return ρ(1)1 = ρnt as a solution of Cnt .

4.1 Predicate Abstraction of pCSP into bCSP

We now describe our predicate abstraction technique which
uses predicates for abstracting the example instances E(i)

into a bCSP B. For linear CHCs, predicate abstraction has
been studied in (Srivastava and Gulwani 2009). We here
present predicate abstraction for pCSP E that satisfies the
condition ftv(E) = ∅ (recall ftv(E(i)) = ∅ for any i ≥ 1),
which helps greatly reduce the computational cost.

We first prepare, for each P ∈ fpv(E), the following set
QP of predicates from the octahedron abstract domain:

{λx1, . . . , xar(P). Σ
ar(P)
i=1 ci · xi ≥ c0 |

c0 ∈ {0} ∪ {Σar(P)
i=1 ci · ni | P (ñ) ∈ atms(E)} ∧

c1, . . . , car(P) ∈ {−1, 0, 1}}.
4Note that ftv(E(i+1)) = ∅ holds since E(i+1) is obtained

from C by substituting all the term variables with concrete val-
ues. Thus, by regarding each P (ñ) ∈ atms(E(i+1)) as a distinct
boolean variable, E(i+1) can be considered as a bCSP.

We then abstract each clause c ∈ E of the form5

(

�∨
i=1

Pi(ñi)) ∨ (

m∨
i=�+1

¬Pi(ñi))

into the following boolean clause α(c):

(

�∨
i=1

α(Pi(ñi))) ∨ (

m∨
i=�+1

¬α(Pi(ñi)))

where

α(P (ñ)) �
nd∨
j=1

|QP |∧
k=1

ψj,k

ψj,k �
{� (|= pk(ñ))

¬bj,k (�|= pk(ñ)).

Here, pk represents the k-th predicate of QP , nd specifies
the maximum number of disjuncts allowed in disjunctive
normal form (DNF) solutions for P to be searched, and bj,k
is a boolean variable indicating whether the predicate pk is
used in the j-th disjunct of the DNF solutions for P . We thus
obtain the bCSP B as α(E) � {α(c) | c ∈ E }. We can show
the following correctness theorem of predicate abstraction.

Theorem 4.1. Let B � α(E) be the bCSP abstracted from
the given pCSP E with ftv(E) = ∅. Let σ be a satisfying
boolean assignment for B (i.e., |= σ(B)) and γ(σ) be the
concretization of σ defined as the predicate assignment:

γ(σ)(P) � λx1, . . . , xar(P).

nd∨
j=1

|QP |∧
k=1

φj,k

φj,k �
{
pk(x1, . . . , xar(P)) (|= σ(bj,k))

� (�|= σ(bj,k)).

Then, γ(σ) is a solution for E .
Thus, predicate abstraction reduces the problem of finding

a solution for example instances E to that of finding a solu-
tion for the bCSP B � α(E). In our implementation reported
in § 5, we iteratively increment nd starting from 1 until we
obtain a solution for B. The convergence of the iterations
follows from the facts that E has a solution and for any satis-
fying boolean assignment for atms(E), there is a satisfying
predicate assignment for fpv(E) expressible as disjunctions
of conjunctions of QP (in other words, QP is adequate in
the sense defined in Section 4.1 of (Sharma et al. 2013b)).
Example 4.2. Recall the running example Cnt in § 1. In the
second iteration of CEGIS, our implementation obtains the
following set QI of predicates for abstraction of I:

{λx.�, λx.x ≥ 0, λx.x ≥ −1} .
Predicate abstraction of E(2) = {¬I(−1)} by QI yields the
bCSP B = {b1,2}, which has a satisfying boolean assign-
ment σ � {b1,2 �→ �}, indicating that the second pred-
icate λx.x ≥ 0 of QI must be used. We thus obtain the
candidate solution ρ(1)1 = γ(σ) = {I �→ λx.x ≥ 0}.

5We here omit φ because it is equivalent to either � or ⊥.

1647

4.2 Survey Inspired Decimation for bCSP

Our motivation to use SP is to enumerate simpler and es-
sentially different solutions for E that accelerate and stabi-
lize the convergence of CEGIS in our method. To this end,
we enumerate solutions of the bCSP α(E) that (1) belong
to different clusters in the space of boolean assignments and
(2) assign as much variables as possible the boolean value ⊥
(indicating that the corresponding predicate is not used).

We achieve the requirement (1) by survey inspired dec-
imation (SID) (Braunstein, Mézard, and Zecchina 2005;
Kroc, Sabharwal, and Selman 2007; Maneva, Mossel, and
Wainwright 2007). SID iteratively assigns a boolean value
to a boolean variable with the highest bias towards the value,
which is computed from the result of SP as briefly reviewed
later in this section, in order not to kill too many clusters.
SID thus returns a partial assignment σ0 to some boolean
variables of α(E). We then use an ordinary SAT solver to
enumerate solutions of α(E) belonging to different clus-
ters by enumerating solutions of σ0(α(E)). We try to satisfy
the requirement (2) by heuristically detecting and assigning
don’t-care variables ⊥.

Factor Graphs Any bCSP can be modeled as a fac-
tor graph which is a bipartite graph representing the
factorization of a probability distribution function. For
example, the following is the factor graph of the
bCSP {b1 ∨ b2 ∨ ¬b3,¬b2 ∨ ¬b3 ∨ ¬b5, b3 ∨ b4 ∨ b5}:
b1 b3 b4

b2 b5

f1

f2

f3

Here, the square nodes labeled with f1, f2, and f3 represent
the clauses of the bCSP and the dashed (resp. solid) edges
connect each variable node bi to the square nodes that repre-
sent a clause containing ¬bi (resp. bi). The graph represents
the following probability density distribution over boolean
random variables b1, . . . , b5.

μ(b1, . . . , b5) =
1

Z
f1(b1, b2, b3)f2(b2, b3, b5)f3(b3, b4, b5)

f1(b1, b2, b3) = e−δ(b1∨b2∨¬b3)

f2(b2, b3, b5) = e−δ(¬b2∨¬b3∨¬b5)

f3(b3, b4, b5) = e−δ(b3∨b4∨b5).

Here, Z is the normalization constant and the function δ is
defined by δ(⊥) = 1, δ(�) = 0. Note that μ(b1, . . . , b5) has
the maximum value (i.e., 1/Z) if and only if the valuation
of b1, . . . , b5 is a satisfying assignment for the bCSP. We can
thus solve the bCSP by performing probabilistic inference in
the factor graph to compute arg max

b1,...,b5

μ(b1, . . . , b5).

Survey Propagation (SP) SID relies on SP to find a
boolean variable with the highest bias towards a boolean
value; The bias for each boolean variable bi is computed by

using SP to approximate the marginal probability μ(bi) =∑
b1,...,bi−1,bi+1,...,bm

μ(b1, . . . , bm) after extending the do-
main of variables bi to the three values �, ⊥ and ∗ respec-
tively meaning that the variable bi is forced to be � by a
clause, forced to be ⊥ by a clause, and not forced at all (see
(Braunstein, Mézard, and Zecchina 2005; Kroc, Sabharwal,
and Selman 2007; Maneva, Mossel, and Wainwright 2007)
for details of message passing algorithms for SP). If SP con-
verges, we obtain W�

i � μ(bi = �), W⊥
i � μ(bi = ⊥),

and W ∗
i � μ(bi = ∗) for each variable bi. Then the vari-

able bj with the highest bias |W�
j −W⊥

j | is assigned to �
if W�

j −W⊥
j > 0 and ⊥ if W⊥

j −W�
j > 0.

5 Implementation and Evaluation

We have implemented a constraint solver PCSAT for the full
class of pCSP based on the presented method. We adopted
MINISAT (Eén and Sörensson 2004) and Z3 (de Moura and
Bjørner 2008) as the backend SAT and SMT solvers, re-
spectively. We conducted three sets of experiments. In the
first experiment (§ 5.1), we used the benchmark set from
SyGuS-Comp 2018 (Invariant Synthesis Track) to evalu-
ate the effectiveness of our SID-based technique to enu-
merate multiple candidate solutions for a faster convergence
of CEGIS. In the second experiment (§ 5.2), we used the
benchmark sets from SyGuS-Comp 2017 and 2018 (Invari-
ant Synthesis Track)6, and CHC-COMP 2019 (LIA-nonlin
Track)7 to compare PCSAT with existing SyGuS and CHC
solvers for solving linear CHCs and (non-linear) CHCs that
are proper subclasses of pCSP. Finally (§ 5.3), we tested
PCSAT on a new pCSP benchmark set consisting of non-
Horn clauses that go beyond the scope of existing SyGuS
and CHC solvers. All the experiments were conducted on
3.1GHz Intel Xeon Platinum 8000 CPU and 32 GiB RAM.

5.1 Evaluation of Multiple Solution Enumeration

We evaluated the impact of our SID-based multiple solution
enumeration technique on the convergence speed of CEGIS
using the benchmark set consisting of 127 linear CHCs
from the InvTrack category of SyGuS-Comp 2018 with 300s
timeout. Figure 1 summarizes the results of running PC-
SAT with different configurations obtained by varying the
number “#cand” of candidate solutions generated in the syn-
thesis phase, and enabling or disabling SID, which are re-
spectively represented by “SAT(...)” and “SID(...)”. There,
“#SAT” and “#UNSAT” respectively represent the number
of solved SAT and UNSAT instances (out of 127). Note
that PCSAT obtained the best result with SID(#cand=8). The
number of solved instances however slowly got worse with
larger #cand. This is because the overhead of synthesizing
and checking candidate solutions becomes non-negligible
for larger #cand. We believe the overhead can be further re-
duced by tweaking the implementation and expect that better
results can be obtained with larger #cand.

We also observed that: (1) the average number of itera-
tions taken for the commonly solved instances by SID with

6http://sygus.org/comp/
7https://chc-comp.github.io/

1648

10-1

100

101

102

103

104

 0 20 40 60 80 100 120

Ti
m

e
in

 s
ec

on
ds

 (l
og

sc
al

e)

Benchmarks passed (of 127)

SAT(#cand=1)
SAT(#cand=8)
SID(#cand=1)
SID(#cand=8)

#SAT #UNSAT
SID(#cand=1) 91 8
SID(#cand=2) 92 8
SID(#cand=4) 96 8
SID(#cand=8) 100 8

SID(#cand=16) 96 8
SID(#cand=32) 95 7
SID(#cand=64) 94 6
SAT(#cand=1) 94 8
SAT(#cand=2) 92 8
SAT(#cand=4) 91 8
SAT(#cand=8) 89 7

Figure 1: Comparisons of cumulative runtime (left) and number of solved instances (right) among different configurations

#cand=1, 2, 4, 8 were 15.980, 12.684, 11.510, and 10.663,
respectively, and (2) the average elapsed time taken for the
commonly solved instances by SID with #cand=1, 2, 4,
8 were 6.246, 4.257, 5.558, and 6.201 (sec.), respectively.
These results show that SP accelerates and stabilizes the
convergence of CEGIS, though the improvement of average
time reached the ceiling at #cand=2. The rest of the experi-
ments was conducted using the configuration SID(#cand=8).

5.2 Comparison with CHC and SyGuS Solvers

To compare with state-of-the-art SyGuS solvers for invari-
ant synthesis, we tested PCSAT on the benchmark sets
from the InvTrack category of SyGuS-Comp 2017 and 2018
with 300s timeout. The benchmark sets consist of linear
CHCs. PCSAT solved 61 SAT and 7 UNSAT (out of 74),
and 100 SAT and 8 UNSAT (out of 127) instances respec-
tively from the SyGuS-Comp 2017 and 2018 benchmark
sets. The champion solver LOOPINVGEN (Padhi, Sharma,
and Millstein 2016) of SyGuS-Comp 2017 was reported
to have solved 65 SAT instances within 3600s.8 The top
three solvers LOOPINVGEN, CVC4, and DRYADSYNTH of
SyGuS-Comp 2018 were reported to have solved 115, 109,
and 103 SAT instances respectively within 3600s.9 The re-
sults show that PCSAT is comparable to the state of the
art invariant generation tools for the task of solving lin-
ear CHCs, despite the facts that PCSAT is designed for the
strictly larger class of constraints, not tuned for the class of
linear CHCs, and less mature than these tools.

We also tested PCSAT on the CHC benchmark set from
CHC-COMP 2019 (LIA-nonlin Track) with 300s timeout,
and compared with state-of-the-art CHC solvers. PCSAT
solved 58 SAT and 33 UNSAT instances out of 283 instances
from the CHC-COMP 2019 benchmark set. According to
the report of CHC-COMP 201910, the state-of-the-art CHC
solver SPACER (Komuravelli, Gurfinkel, and Chaki 2014)
has solved 153 SAT and 117 UNSAT instances, and one of
the best CHC solvers HOICE (Champion et al. 2018) has

8https://sygus.org/comp/2017/report.pdf
9https://sygus.org/comp/2018/report.pdf

10https://chc-comp.github.io/2019/chc-comp19.pdf

solved 110 SAT and 66 UNSAT instances. The results show
that we need engineering efforts of tuning PCSAT for CHC
solving to compete with the mature and highly tuned CHC
solvers. In particular, the current version of PCSAT cannot
exploit the restricted (i.e. Horn) constraint form when ap-
plied to CHC solving. In other words, the generality of PC-
SAT resulted in a negative impact on the speed. In particular,
the current implementation is not well-tuned for proving the
unsatisfiability of CHCs, though it is rather out of the scope
of this paper. We could exploit the Horn form of constraints
for finding a resolution derivation of the contradiction via
an efficient SLD-resolution. We could also implement con-
straint simplification and specialization for pre-processing,
which are supported by the other solvers, to obtain better
results on SAT instances.

5.3 Evaluation on the New pCSP Benchmark Set

The new benchmark set consists of pCSP benchmarks that
encode branching-time safety verification problems, which
cannot be handled by existing SyGuS and CHC solvers. Ta-
ble 1 summarizes the experiment results on the benchmark
set. The problems there are as follows:

• “nt-intro” is the pCSP Cnt generated from the non-
termination verification problem of cnt in § 1.

• “nt-rec” is the pCSP Cntrec generated from the non-
termination verification problem of cntrec in § 3.2.

• “nt-sum” is the pCSP(
(x > 0 ∧ y = 0) ⇒ I(x, y),
(I(x, y) ∧ x > 0) ⇒ (I(x, y) ∨ I(x− 1, y + x)),
(I(x, y) ∧ x ≤ 0) ⇒ ⊥

)
generated from the non-termination verification problem:

assume (x > 0 ∧ y = 0);
(while(x > 0) do

if ∗∃ then y := y + x; x := x - 1)
assert ⊥

• “nt-sum-mod” is the pCSP obtained from “nt-sum” by
modifying the precondition to x ≥ 0 ∧ y = 0, which
makes the pCSP unsatisfiable.

1649

Table 1: Results on the new pCSP benchmark set

problems results time (sec.) #iterations problems results time (sec.) #iterations
nt-intro SAT 0.425 1 eq SAT 1.332 5
nt-rec SAT 1.557 2 eq-mod UNSAT 1.261 5
nt-sum SAT 0.454 1 eq-rec SAT 0.932 2
nt-sum-mod UNSAT 0.313 0 eq-mod-rec UNSAT 1.142 3
nt-sum-rec SAT 0.686 2 nt-sum-mod-rec UNSAT 0.284 0

• “nt-sum-rec” is the pCSP⎛⎜⎝ (x > 0 ∧ P (x− 1, y1) ∧ P (x, y2)) ⇒
(P (x, x+ y1) ∨ P (x, y2)),

(x ≤ 0 ∧ y = 0) ⇒ P (x, y),
(x > 0 ∧ P (x, y)) ⇒ ⊥

⎞⎟⎠
generated from the recursive version of “nt-sum”:
let rec sum x =

if x > 0 then
if *∃ then x + sum(x-1) else sum x

else 0
let main x =

assume (x > 0); sum x; assert ⊥
• “nt-sum-mod-rec” is the pCSP generated from the recur-

sive version of “nt-sum-mod”.
• “eq” is the pCSP⎛⎜⎝ (x = x0 ∧ y = 0) ⇒ I(x0, x, y),

(I(x0, x, y) ∧ x �= 0) ⇒
(I(x0, x− 1, y + 1) ∨ I(x0, x− 1, y)),

(I(x0, x, y) ∧ x = 0) ⇒ y = x0

⎞⎟⎠
from the branching-time safety verification problem:
assume (x = x0 ∧ y = 0);
(while(x �= 0) do

x := x - 1; if *∃ then y := y + 1);
assert (y = x0)

• “eq-mod” is the pCSP obtained from “eq” by modifying
the conditional expression of the while loop to x > 0,
which makes the pCSP unsatisfiable.

• “eq-rec” is the pCSP⎛⎜⎝ (x �= 0 ∧ P (x− 1, y, z1) ∧ P (x− 1, y + 1, z2)) ⇒
(P (x, y, z1) ∨ P (x, y, z2)),

(x = 0 ∧ z = y) ⇒ P (x, y, z),
P (x, 0, z) ⇒ z = x

⎞⎟⎠
generated from the recursive version of “eq”:
let rec loop x y =

if x <> 0 then
if *∃ then loop (x - 1) y
else loop (x - 1) (y + 1)

else y
let main x =

let z = loop x 0 in assert (z = x)

• “eq-mod-rec” is the pCSP generated from the recursive
version of “eq-mod”.

Note that PCSAT successfully solved these benchmarks,
which are impossible by existing SyGuS and CHC solvers,
in a reasonable amount of time.

6 Related Work

To our knowledge, our method is the first to apply sur-
vey propagation in factor graphs to constraint solving for
verification. Except the data-driven approaches for solving
subclasses of CHCs mentioned in § 1, various methods for
solving CHCs have been proposed. To name a few: meth-
ods based on counterexample guided abstraction refinement
and Craig interpolation (Unno and Kobayashi 2009; Hojjat
and Rümmer 2018), generalized property directed reacha-
bility (Hoder and Bjørner 2012; Komuravelli, Gurfinkel, and
Chaki 2014), constraint specialization (Angelis et al. 2014;
Kafle, Gallagher, and Morales 2016), and inductive theo-
rem proving (Unno, Torii, and Sakamoto 2017). For linear
CHCs, a number of existing invariant synthesis techniques
can be applied straightforwardly. The most related to ours
among them is the method in (Gulwani and Jojic 2007),
which models constraints as factor graphs and performs a lo-
cal search based on Gibbs sampling to find a peak of the joint
probability distribution represented by the factor graph. In
contrast to the above methods, our constraint solving method
supports the full class of pCSP.

An extension of CHCs called existentially quantified
CHCs has been proposed in (Beyene, Popeea, and Ry-
balchenko 2013). We observe that any pCSP can be reduced
to a problem of solving existentially quantified CHCs. Their
constraint solving method relies on a dedicated technique for
Skolemization of existential quantifiers, while our method
supports non-Horn clauses without any additional twist.

7 Conclusion

We have presented a novel constraint solving method for the
full class of pCSP based on CEGIS and probabilistic infer-
ence in graphical models, in particular, SP in factor graphs.
We have experimentally confirmed that our technique to
enumerate multiple candidate solutions accelerates and sta-
bilizes the convergence of CEGIS. We expect our predicate
abstraction technique from pCSP to bCSP paves the way
to applying other techniques from the constraint satisfac-
tion literature. Another interesting research direction is to di-
rectly model pCSP as factor graphs representing joint prob-
ability distributions over random predicate variables and ap-
ply other probabilistic inference such as variational infer-
ence and approximate model counting.

Acknowledgments We would like to thank anonymous
referees for their useful comments. This work was partly
supported by JSPS KAKENHI Grant Numbers 15H05706,
16H05856, 17H01720, 17H01723, and 19H04084.

1650

References

Angelis, E. D.; Fioravanti, F.; Pettorossi, A.; and Proietti, M. 2014.
VeriMAP: A tool for verifying programs through transformations.
In TACAS ’14, 568–574. Springer.

Beyene, T. A.; Popeea, C.; and Rybalchenko, A. 2013. Solving
existentially quantified Horn clauses. In CAV ’13, 869–882.

Bjørner, N.; Gurfinkel, A.; McMillan, K. L.; and Rybalchenko, A.
2015. Horn clause solvers for program verification. In Fields of
Logic and Computation II, 24–51.

Braunstein, A.; Mézard, M.; and Zecchina, R. 2005. Survey prop-
agation: An algorithm for satisfiability. Random Structures & Al-
gorithms 27(2):201–226.

Champion, A.; Chiba, T.; Kobayashi, N.; and Sato, R. 2018. ICE-
based refinement type discovery for higher-order functional pro-
grams. In TACAS ’18, 365–384. Springer.

Chen, H. Y.; Cook, B.; Fuhs, C.; Nimkar, K.; and O’Hearn, P. W.
2014. Proving nontermination via safety. In TACAS ’14, volume
8413 of LNCS, 156–171. Springer.

de Moura, L., and Bjørner, N. 2008. Z3: An efficient SMT solver.
In TACAS ’08, 337–340. Springer.

Eén, N., and Sörensson, N. 2004. An extensible SAT-solver. In
SAT ’04, 502–518. Springer.

Garg, P.; Löding, C.; Madhusudan, P.; and Neider, D. 2014. ICE:
A robust framework for learning invariants. In CAV ’14, 69–87.
Springer.

Garg, P.; Neider, D.; Madhusudan, P.; and Roth, D. 2016. Learning
invariants using decision trees and implication counterexamples. In
POPL ’16, 499–512. ACM.

Grebenshchikov, S.; Lopes, N. P.; Popeea, C.; and Rybalchenko, A.
2012. Synthesizing software verifiers from proof rules. In PLDI
’12, 405–416. ACM.

Gulwani, S., and Jojic, N. 2007. Program verification as proba-
bilistic inference. In POPL ’07, 277–289. ACM.

Gupta, A.; Henzinger, T. A.; Majumdar, R.; Rybalchenko, A.; and
Xu, R.-G. 2008. Proving non-termination. In POPL ’08, 147–158.
ACM.

Gurfinkel, A.; Kahsai, T.; Komuravelli, A.; and Navas, J. A. 2015.
The SeaHorn verification framework. In CAV ’15, 343–361.
Springer.

Hoder, K., and Bjørner, N. 2012. Generalized property directed
reachability. In SAT ’12, 157–171. Springer.

Hojjat, H., and Rümmer, P. 2018. The Eldarica horn solver. In
FMCAD ’18. IEEE.

Kafle, B.; Gallagher, J. P.; and Morales, J. F. 2016. RAHFT: A tool
for verifying horn clauses using abstract interpretation and finite
tree automata. In CAV ’16, 261–268. Springer.

Kahsai, T.; Rümmer, P.; Sanchez, H.; and Schäf, M. 2016. Jay-
Horn: A framework for verifying Java programs. In CAV ’16, vol-
ume 9779, 352–358. Springer.

Komuravelli, A.; Gurfinkel, A.; and Chaki, S. 2014. SMT-based
model checking for recursive programs. In CAV ’14, volume 8559
of LNCS, 17–34. Springer.

Kroc, L.; Sabharwal, A.; and Selman, B. 2007. Survey propagation
revisited. In UAI ’07, 217–226. AUAI Press.

Kschischang, F. R.; Frey, B. J.; and Loeliger, H. . 2001. Factor
graphs and the sum-product algorithm. IEEE Transactions on In-
formation Theory 47(2):498–519.

Maneva, E.; Mossel, E.; and Wainwright, M. J. 2007. A new look
at survey propagation and its generalizations. Journal of the ACM
54(4).
Padhi, S.; Sharma, R.; and Millstein, T. D. 2016. Data-driven
precondition inference with learned features. In PLDI ’16, 42–56.
Popeea, C., and Rybalchenko, A. 2012. Compositional termination
proofs for multi-threaded programs. In TACAS ’12, volume 7214
of LNCS. Springer. 237–251.
Sharma, R., and Aiken, A. 2016. From invariant checking to in-
variant inference using randomized search. Form. Methods Syst.
Des. 48(3):235–256.
Sharma, R.; Gupta, S.; Hariharan, B.; Aiken, A.; Liang, P.; and
Nori, A. V. 2013a. A data driven approach for algebraic loop
invariants. In ESOP ’13, 574–592. Springer.
Sharma, R.; Gupta, S.; Hariharan, B.; Aiken, A.; and Nori, A. V.
2013b. Verification as learning geometric concepts. In SAS ’13,
388–411. Springer.
Si, X.; Dai, H.; Raghothaman, M.; Naik, M.; and Song, L. 2018.
Learning loop invariants for program verification. In NeurIPS ’18,
7762–7773. Curran Associates, Inc.
Solar-Lezama, A.; Tancau, L.; Bodik, R.; Seshia, S.; and Saraswat,
V. 2006. Combinatorial sketching for finite programs. In ASPLOS
XII, 404–415. ACM.
Srivastava, S., and Gulwani, S. 2009. Program verification using
templates over predicate abstraction. In PLDI ’09, 223–234. ACM.
Unno, H., and Kobayashi, N. 2009. Dependent type inference with
interpolants. In PPDP ’09, 277–288. ACM.
Unno, H.; Torii, S.; and Sakamoto, H. 2017. Automating induction
for solving horn clauses. In CAV ’17, 571–591. Springer.
Winskel, G. 1993. The Formal Semantics of Programming Lan-
guages: An Introduction. MIT Press.

1651

