
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Deep Reinforcement Learning for General Game Playing

Adrian Goldwaser, Michael Thielscher
Department of Computer Science, University of New South Wales

adrian.goldwaser@gmail.com, mit@unsw.edu.au

Abstract

General Game Playing agents are required to play games they
have never seen before simply by looking at a formal descrip-
tion of the rules of the game at runtime. Previous success-
ful agents have been based on search with generic heuristics,
with almost no work done into using machine learning. Re-
cent advances in deep reinforcement learning have shown it
to be successful in some two-player zero-sum board games
such as Chess and Go. This work applies deep reinforcement
learning to General Game Playing, extending the AlphaZero
algorithm and finds that it can provide competitive results.

Introduction

Since the start of AI research, games have been used as a
testbed for progress as they can accurately capture many of
the ideas of thought, planning and reasoning in an easily
evaluable way (Shannon 1950). Recent advances have re-
sulted in AIs being able to beat humans in more and more
games (Hsu 2002; Silver et al. 2016). While each of these
showed incredible improvement in different areas, they all
required a tremendous amount of work and each is very spe-
cific so can only do the exact game it was programmed to
do.

To address this, the idea of General Game Playing (GGP)
looks at AI agents which are programmed without any ex-
plicit knowledge of a particular game; instead they must be
general enough to play any game given a formal specifi-
cation of the game at runtime (Genesereth and Björnsson
2013). This means that they cannot use specific knowledge
or heuristics that do not apply to other games (Genesereth
and Thielscher 2014).

The field of reinforcement learning (RL) looks at agents
which can learn to maximise some notion of reward by tak-
ing actions and noting their effect. Recently, AlphaZero (Sil-
ver et al. 2018) has shown promising limited generality in
the context of perfect information games, with the same al-
gorithm reaching state-of-the-art in Chess, Shogi and Go.
However, it was still limited to zero-sum, two-player, player-
symmetric games and had a handcrafted neural network ar-
chitecture for each. This agent learnt entirely from scratch

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

using self-play deep RL with almost no knowledge of the
game, giving it the potential to be extended and applied to
the more general setting of GGP.

There has previously been very little work applying RL
to the setting of GGP. A framework, RL-GGP (Benacloch-
Ayuso 2012), allowed testing of different RL algorithms, but
little was published evaluating the performance of each for
GGP. There has also been work into using TD learning to
improve playout policies (Finnsson and Björnsson 2010).
Finally there has been some initial work looking at applying
Q-learning to GGP which found that it does converge but
quite slowly (Wang, Emmerich, and Plaat 2018), and even
when extending the Q-learning with Monte Carlo Search did
not outperform UCT. However this showed that there is po-
tential for RL based GGP agents. Our work pushes this di-
rection forwards further, filling this gap by extending then
applying deep RL to GGP and outperforming UCT.

The remainder of this paper is organised as follows. The
next section covers previous approaches to GGP as well as
an overview of the limitations of AlphaZero. In the follow-
ing section, the design of the Generalised AlphaZero exten-
sion for GGP is explained. Finally, experimental results of
this agent are shown which clearly show that deep reinforce-
ment learning within a GGP environment can perform no-
ticeably better than a UCT benchmark agent in a number of
games.

Background

General Game Playing

The issue with using individual games as a testbed for AI is
that they encourage programs which perform very well only
in an extremely narrow domain. GGP addresses this by look-
ing at programs which are only given the rules of the game
at runtime. This means that they must be written without
any explicit knowledge of any particular game, encourag-
ing strategies which are applicable in different domains and
general algorithms that result in agents which can plan and
learn rather than simply using game-specific heuristics that
humans have worked out. The lack of handcrafted heuristics
means that performance should reflect the skill of the algo-
rithm at that game, not the skill of the programmer (Gene-
sereth and Thielscher 2014).

1701



In GGP, players are given a formal specification of a
game in a language such as Game Description Language
(GDL) (Love et al. 2008), which is a logic program explain-
ing the dynamics and reward system in the game, players
then need to play the game without any extra input from hu-
mans. The GDL description of a game can be converted into
a propositional network (Schkufza, Love, and Genesereth
2008; Cox et al. 2009), which has a number of nodes which
perform the logical operations as well as input, output and
transition nodes to model the dynamics.

Approaches

The main evaluation of GGP players occurs in the In-
ternational General Game Playing Competition (IGGPC)
and is a good way to compare different approaches in
GGP (Genesereth 2016). From 2005–2006, the winning
agents used generic heuristic extraction aided minimax and
included ClunePlayer (Clune 2007) and FluxPlayer (Schif-
fel and Thielscher 2007). This changed in 2007 when Cadi-
aPlayer (Finnsson and Björnsson 2008) and Ary (Méhat and
Cazenave 2011) entered using the upper confidence bound
on trees (UCT) algorithm. Since then all winners have used a
variation of UCT, with the exception of the most recent win-
ner, WoodStock, which used a method based on constraint
satisfaction programming (CSP) (Koriche et al. 2016).

Upper Confidence Bound on Trees

UCT starts with an, initially empty, game tree and runs a
number of simulations. Each one starts at the root of the
game tree and proceeds down the tree using a variant on
upper confidence bounds (Auer 2003) until a leaf node is
reached, as shown in Figure 1a. Here a new leaf node is ex-
panded and a single Monte Carlo Search simulation is per-
formed from that state to give an initial score to the new
node as shown in Figure 1b. This initial score is propagated
backwards to update all nodes above it in the tree with the
new result, as shown in Figure 1c. Running many of these
playouts gives progressively better approximations at each
node on the tree of how good that state is and hence who is
likely to win from there.

Each node stores a node count, N(s), a count of the num-
ber of times action a has been taken from node s, N(s, a),
and a value for how good the current state is, V (s). The
choice of action at a state is then given by:

argmaxa∈A(s)

(
V (δ(s, a)) + Cuct

√
ln(N(s))

N(s, a)

)

Where A(s) is the set of legal actions in state s, δ(s, a) is
the transition function — the next state after taking action a
from state s and Cuct is a constant.

AlphaZero

Recently, Silver et al. (2016) used a neural network-guided
Monte Carlo Search Tree (MCTS) agent, AlphaGo, to beat
18-time world champion Go player Lee Sidol. This was gen-
eralised to AlphaGo Zero, which beat the original and learnt
entirely from self-play reinforcement learning, as opposed

3�8

1�2 4�5

1�1 1�3 0�1

1�1 0�1

0�0

0�1

Monte Carlo
simulation

�a) �b)

�c)

3�8

1�2 4�5

1�1 1�3 0�1

1�1 0�1

0�1

3�9

1�2 5�6

1�1 1�4 0�1

2�2 0�1

Figure 1: One simulation of an MCTS: (a) the game tree
before the simulation (b) the Monte Carlo playout (c) the
updated game tree

to initially learning from expert games (Silver et al. 2017).
Finally, this was generalised to AlphaZero which was sep-
arately trained on Go, Chess and Shogi and achieved state-
of-the-art in each (Silver et al. 2018).

AlphaZero uses a single neural network which outputs
both a probability distribution over actions and an expec-
tation as to who will win. It plays through games with it-
self, at each state running a number of MCTS simulations
to produce a better probability distribution over actions and
sampling from that distribution. After a self-play game, the
winner is recorded and passed back to all states that were
played in that game. These triples of state, new action dis-
tribution and winner are then sampled in order to train the
neural network (Silver et al. 2018). This process is shown in
Figure 2.

The MCTS improvement operator works in a similar way
to the standard UCT algorithm. It has an initially empty tree
and each simulation expands a single leaf node. Each node
stores a number of values, N(s, a) is the visit count from
taking action a in state s, P (s, a) is the prior of taking action
a from state s using the neural network policy output and
Q(s, a) is the average of all final evaluations in the nodes be-
low δ(s, a) (Silver et al. 2017). Noise drawn from a Dirichlet
distribution is combined with the prior at the root node of the
MCTS in order to encourage exploration.

The tree is followed down again based on an upper
confidence bound Q(s, a) + U(s, a), where U(s, a) =

1702



s1

p1

�1
�

v1

z
�

s2

p2

�2
�

v2

z
�

s3

p3

�3
�

v3

z
�

s1 s2 s3 F inal

�1 �2 �3

z = winner

a) Self play

b) Training

MCTS MCTS MCTS

Figure 2: The self-play algorithm and training algorithm: (a)
the self-play process for a game (b) the new training data
generated for each state visited in the game, image based on
Silver et al. (2017)

Cpuct
P (s,a)

1+N(s,a) and Cpuct is a constant. Once a leaf node is
reached, an option is expanded and that node is evaluated
using the neural network. The evaluation result is then prop-
agated back up to all parent nodes in the tree.

Method

Learning Agent

There are a number of important limiting assumptions that
AlphaZero makes about games that it plays, namely it as-
sumes the following:
1. the game is zero-sum
2. the game is symmetric between players
3. the game is for two players
4. the game is turn based
5. the game has a board and a neural network architecture

handcrafted for the features of that board
6. the rules of the game are known

The assumption number 6 is also assumed in GGP, exten-
sions to cope with the first 5 are outlined below.

Cooperative games This is addressed by replacing the ex-
pected outcome output of the neural network (1 for a win, 0
for a draw, -1 for a loss) with an expected reward, or more
specifically only allowing rewards between 0 and 1 — the
rewards from GDL between 0 and 100 are rescaled by di-
viding by 100. After this change, each agent will simply try

to maximise their own reward with no care for the others, so
cooperative policies can be learned.

Asymmetric games To deal with asymmetry between
players, one method would be to keep a separate neural net-
work for each player which is trained separately, however,
it can be noted that these will all be trained to extract very
similar features from the game state, giving rise to the option
of combining the early layers of all the players’ neural net-
works, as shown in Figure 3. A similar unification of earlier
layers was implemented in AlphaGo Zero when the value
and policy networks were combined (Silver et al. 2017) and
in machine translation with each language having a separate
head (Gu et al. 2018) and provides a regularising effect on
the network.

Multi-player and simultaneous games This method of
having a head for each player has the added benefit of easily
generalising to multiple players and allowing simultaneous
play without having to make a pessimistic assumption of the
other players knowing your move — simply have all players
predict a move at once and use the combined move as the
move choice to get to the next state.

Move probabilities

Expected reward

GDL input

network
Shared neural network

Move probabilities

Expected reward

Player 1 output

Player N output

...

Propositional

feature extraction

Figure 3: The architecture of the neural network.

Non-board games The final restriction to deal with is the
reliance on a board and a handcrafted neural network for
each game. In order to remove this limitation, we used the
propositional network as the input to the neural network. The
propositional network consists of a number of nodes repre-
senting the logic program described by the GDL encoding
of the rules. This consists of a set of boolean nodes and in-
cludes nodes to input player moves, output move legality and
model both turn-based dynamics and general logical opera-
tions. Together these nodes form a graph which represents
the rules and dynamics of the game – given a set of input
moves and the current state it will show the next state and
next legal moves. The structure of this graph is constant and
thus is useful as input into a neural network, in order to do
so, we take all nodes from the propositional network and
convert them to integers before feeding them into the net-
work. We use all nodes rather than only the minimal set to
represent the state as the rest of them contain calculations

1703



Algorithm 1: Network initialisation
Algorithm: init network(n inputs, n outputs,

min size=50)
size = num inputs
while size ≥ min size do

Add ReLU fully connected layer with size nodes
size = size / 2

Add ReLU fully connected layer with min size nodes
Store current layer as state
for each role do

Initialise current layer to build on to state
head size = min size
while head size ≤ n outputs[role] do

Add ReLU fully connected layer with head size
nodes

head size = head size × 2
Store current layer as head
Add softmax fully connected layer with
n outputs[role] nodes for policy head

Add sigmoid fully connected layer to head with 1
node for value head

from the rules that reduce the amount of computation that
has to be done by the neural network which was important
due to the small size of the neural networks used. The in-
crease in number of inputs was not significant enough to
cause problems and all propositional networks of the games
tested had between 1000 and 5000 nodes.

This input was then passed through a number of automat-
ically generated fully connected layers, which were gener-
ated as follows. Initially all inputs passed through to a se-
ries of fully connected hidden layers, with each one half
the size of the previous, finishing with a layer of size 50.
Then each player’s head comes off that layer as a com-
mon start, doubling the size of the layer with more fully
connected layers until it reaches the number of legal ac-
tions. At this point there is also a fully connected layer
which goes to a single output for expected return predic-
tion. All hidden layers use ReLU activation, the expected
reward uses sigmoid and policy output uses softmax.
This construction is shown in Algorithm 1. This diverges
significantly from the convolutional residual blocks used in
AlphaGo Zero (Silver et al. 2017) and AlphaZero (Silver et
al. 2018). It has far smaller value and policy heads and con-
tains different heads for each player. These changes were
made for two main reasons. Most importantly was the fact
that convolutional layers require knowledge about ordering
which is not given in GDL. Though there is some work with
extracting this information (Schiffel and Thielscher 2007;
Kuhlmann, Dresner, and Stone 2006), these automatic meth-
ods may fail to detect an ordering and do not apply to, for
example, non-board games which do not have a geomet-
ric structure. Additionally the large networks used for Go,
Chess and Shogi all require large amounts of computational
resources and a long time to train, making them difficult to
use for GGP when training time is so limited.

While this generalised version would work with the orig-

Algorithm 2: High-level training loop
Algorithm: train(agent, model)
while Time left to train do

Re-initialise game state
while Game not finished do

Perform MCTS with agent
Record new action probabilities, π, and new

expected value, q, for each player
Sample moves from new action probabilities

Record final result z for each player
Add triples (state, π, rz + (1− r)q) to replay buffer
Train model on 10 mini-batches from replay buffer

inal training setup from Silver et al. (2018), A single thread
version is proposed in Algorithm 2 which simply runs a sam-
ple game, adds recorded data to the replay buffer, then trains
on 10 mini-batches from the replay buffer and repeats. This
method better fit the hardware being used for testing. The
choice of training on 10 mini-batches (of size 128) was made
to make it so that it will train on around 5% of the data in the
replay buffer (of max size 20,000) at each stage, this means
that each state will be used for training around 20 times be-
fore it leaves the replay buffer. This strikes a good balance
between not training on each sample enough, which would
end up requiring significantly more training data as it would
forget information, and training on each sample too much
causing it to overfit.

Another generalisation which was added was in what
value the expected reward was trained to approximate.
AlphaZero simply used the final result of the self-play game
(referred to as z) as after many games it should average to
a good estimate. Following Prasad (2018), information from
the new expected reward at the root node after finishing the
MCTS simulations was also considered — this is referred to
as q below. These were combined using parameter r with the
reward being trained to approximate r × z + (1 − r) × q.
This parameter was varied in the range r ∈ {0, 0.5, 1} for
Connect-4 and the best value (0.5) was used for all further
tests.

Finally, where AlphaZero used a single value α as a pa-
rameter for the Dirichlet noise added to the root of the
MCTS search and scaled inversely with the average number
of legal moves (Silver et al. 2018), the GGP generalisation
explicitly scaled the noise inversely with the number of le-
gal moves at that state. This is both more tailored to the state
causing improved exploration and also simplifies the imple-
mentation as there is no need for initial randomised playouts
to calculate the average number of legal moves.

Memory optimisations

One issue that appeared on large games was memory usage.
Storing the entire state at each node in an MCTS proved to
be too memory intensive for larger games, which inspired
the following approach. The main observation is that typi-
cally a constant amount of the state changes at each step,
this amount is very small compared to the size of the state

1704



so a way is needed of storing only the changes. This was ac-
complished using a persistent array to store the state which
allowed using O(log n) extra memory per change.

5 2 	 8 6 2 3 9 7

Set A[4]=7

A�

Original array Copy of array

Figure 4: A persistent array with a single modification

The persistent array can be implemented in the standard
way by building a binary tree on top of the state array after
which updates can be accomplished through simply creat-
ing a new root node and new nodes down the path to the
element that changed, but pointing to original nodes for sub-
trees which have not changed. This procedure is shown in
Figure 4.

Experimental Evaluation

Evaluation Methodology

The following method was used to evaluate the agents. A
set of 50 games were simulated of Generalised AlphaZero
against a UCT agent with uniform rollouts. Both agents had
a time limit of 2 seconds per move and each had their first
2 moves randomised. Additionally tests for Breakthrough
were also run with a constant simulations limit.

UCT was chosen as a comparison as it forms a good
benchmark due to variants of it being state-of-the-art for
many years (Finnsson and Björnsson 2008; Genesereth and
Björnsson 2013). However, both Generalised AlphaZero and
UCT are mostly deterministic and fairly stable where they
are not, with non-determinism only when two actions have
the exact same count and during rollouts for UCT. This
makes it difficult to run multiple tests to compare the two as
all tests will result in the same game playouts. By randomis-
ing the first 2 moves, this allowed a number of independent
tests to be run to give better results.

One important artefact of this randomisation method is
due to it testing a wide variety of states and initial moves.
This shows the breadth of the state space which the neural
network has learnt but also means that it could win most
games against a UCT agent but still lose when removing all
randomisation and running a full game from the initial state.

All hyperparameters were tuned on Connect-4 with a 6×8
board, then evaluated on the following games from past GGP
competitions (Genesereth and Björnsson 2013):
• Connect-4 (6×7 board) — 2 player, zero-sum, player-

symmetric, turn based
• Breakthrough (6×6 board) — 2 player, zero-sum, player-

symmetric, turn based
• Babel — 3 player, cooperative, player-symmetric, simul-

taneous

0 1000 2000 3000 4000 5000
Number of games trained on

10

20

30

G
am

es
w

on
ag

ai
ns

t
U

C
T

(o
ut

of
50

)

r = 0

r = 1

r = 0.5

Figure 5: Three runs of training on Connect-4 (6×7 board),
comparing r ∈ {0, 0.5, 1}, a moving average of kernel size
9 has been applied

• Pacman 3p (6×6 board) — 3 player, cooperative/zero-
sum, player-asymmetric, mixed turn-based/simultaneous

Results and Discussion

As can be seen from Figure 5, a choice of r = 0.5 is the
best option of the three considered. This makes sense intu-
itively as when using r = 1, it relies only on the final result
meaning even if it is in a good state, a single bad action
might cause a low final reward. On the other extreme with
r = 0 it doesn’t care enough about the long term so even
though it becomes a good player quicker, the lack of ground-
ing in final results causes more forgetting during training as
seen in Figure 5. The simple but effective balance between
long-term and short-term rewards obtained with r = 0.5 re-
flects the results of Prasad (2018) who additionally found
even better performance with a linear dropoff between the
two, however, this is less applicable to GGP as it requires
knowledge of how long it will take to train and hence how
quickly it should vary from 0 to 1. Moving average smooth-
ing has been applied to Figure 5 in order to more clearly see
the trends. Due to this averaging, error bars have been omit-
ted, both for clarity and as they are less meaningful after
smoothing.

Figure 6 shows Generalised AlphaZero’s performance
against UCT for Breakthrough for both a time and sim-
ulation limit. Interestingly, with a constant time limit, it
quickly reaches winning 49–50 games out of 50 after just
400 games of self-play (just over 10 hours real time). This
is significantly better performance than was experienced for
Connect-4, which is the type of game that the parameters
were tuned on. While this is good evidence of the generalis-
ability of the methods given, it is also affected by the game
in this instance. Breakthrough has a much higher branch-
ing factor of typically around 16 as opposed to just under 7
for Connect-4. UCT struggles with higher branching factors,
but Generalised AlphaZero was originally designed for the
massive branching factor of Go so is able to cope with it. An-
other advantage in Breakthrough is that the games can take a
while if played out randomly, so the Monte Carlo rollouts in
UCT take much longer than a single pass of a neural network

1705



0 200 400 600 800 1000
Number of games trained on

10

20

30

40

50
G

am
es

w
on

ag
ai

ns
t

U
C

T
(o

ut
of

50
)

Constant 2s time limit
Constant 200 simulations limit

Figure 6: A training run of Breakthrough vs a UCT agent,
error bars show the 80% confidence intervals.

so the UCT agent does far fewer simulations, to determine
how much of an effect this was having, an evaluation with
a constant number of simulations per move was run. As can
be seen from the graph this had only a minor effect on the
final results, considering it gives the UCT agent 3-8x more
time this is a very strong result.

The training of Breakthrough is easier than Connect-4 to
fit into the 10-minute limit in GGP competitions as it beats
UCT comfortably in only an hour of training, hence with
simple optimisations it could outperform UCT after 10 min-
utes and with some parallelisation could be winning earlier.

Multi-player, asymmetrical games Pacman 3 player is a
game where one player controls Pacman and two players
work together against the first, each controlling a ghost. For
the evaluation, it was played both with Pacman being a UCT
agent and both ghosts being Generalised AlphaZero agents
and the reverse. On all runs, the ghosts caught Pacman so
reward as ghosts has been omitted from the graph shown in
Figure 7. The ‘points against’ series shows how well Pac-
man as a UCT agent scored against Generalised AlphaZero
— the learning of the network as the ghosts, while ‘points
for’ shows how well Generalised AlphaZero performed as
Pacman against UCT — the learning of the network as Pac-
man. It is quite clear from the graph that it learnt very well
as the ghosts but far less convincingly as Pacman. There
are a few explanations for this, the first is that there is a
far simpler strategy for ghosts (namely to simply move to-
wards Pacman) than there is for Pacman who has to strate-
gise to evade the ghosts. This simpler strategy can be more
easily learnt by the neural network but also good strategies
for Pacman may simply be too complex for the very small
network architecture used to be able to encode or need a far
larger set of games to train on in order to be able to learn.
The final point that may have had a large impact is that it
typically has a branching factor of around 2–3 (maximum
4) as Pacman which is the type of game where Generalised
AlphaZero doesn’t have as much of an advantage over UCT.

Despite all this, Generalised AlphaZero performed com-
fortably better than UCT, even quite early in training. This
shows that even for games outside of its ideal area, using

0 1000 2000 3000 4000 5000
Number of games trained on

3.5

4.0

4.5

5.0

5.5

6.0

To
ta

lr
ew

ar
d

ov
er

25
ga

m
es Generalised A0 playing as Pacman (points for)

Generalised A0 playing as ghosts (points against)

Figure 7: Points won by Generalised AlphaZero while play-
ing as Pacman vs points won against Generalised AlphaZero
while playing as the ghosts, a moving average of kernel size
9 has been applied

0 200 400 600 800 1000
Number of games trained on

0

5

10

15

20

Av
er

ag
e

re
w

ar
d

pe
r

pl
ay

er
(o

ut
of

25
)

AlphaZero
UCT

Figure 8: Three instances of Generalised AlphaZero playing
Babel vs three instances of UCT playing Babel, error bars
show 80% confidence interview

combined cooperative, zero-sum, simultaneous, turn-based
and player asymmetric games, Generalised AlphaZero is
still able to beat UCT after training. Note that error bars have
again been omitted due to smoothing.

Cooperative games Babel is a game where players work
together to build a tower. The results of Generalised
AlphaZero are shown in Figure 8 alongside the results of
a UCT agent, each run consists of either three Generalised
AlphaZero agents or three UCT agents — mixed teams
were also tested but fell monotonically in between as ex-
pected so are omitted for clarity. In this instance, Gener-
alised AlphaZero never outperformed a basic UCT algo-
rithm. The consistency between the three players due to the
setup of the UCT agent caused a large advantage here be-
cause players tended to perform correlated actions which
worked well as a strategy. Despite this, it is clear that Gener-
alised AlphaZero was able to learn and improve still and it is
likely that with some extra complexity in the neural network
architecture and more training time it would be able to learn
a more sophisticated approach.

1706



0 1000 2000 3000 4000 5000
Number of games trained on

0

10

20

30

40

50
T

im
e

ta
ke

n
(h

ou
rs

)
Babel
Breakthrough
Pacman 3p
Connect-4

Figure 9: Time taken to train on different numbers of self-
play games, for all tested games

For Pacman, it took 30 hours for the entire run, but only 7
hours before learning stabilised. The timings for Babel were
similar with again 30 hours for the entire training run and
5 hours until learning stabilised. Again this is on the upper
edge, but with optimisation and faster or more parallelised
computing, this could fit in the 10-minute startclock of GGP
competitions. As can be seen in Figure 9, all games except
for Connect-4 were run for around 30 hours, Connect-4 was
run for longer in order to make sure the results for varying r
were meaningful. Tests were run on an Intel Core i5 running
at 2.9GHz and used a GeForce GTX 780Ti graphics card for
neural network operations. The speed of training appears to
have been mostly dependant on the branching factor and the
typical number of moves in a game. The branching factor
changes how big a tree it has to look through, hence how
quickly it can converge to a good path, with Pacman having
by far the lowest branching factor and hence fastest training
time. Breakthrough has the highest branching factor, how-
ever both Connect-4 and Babel have similar branching fac-
tors so the main difference in training speed there was due
instead to Connect-4 having a strict 42 move limit whereas
games of Babel can go for much longer, causing it to be on
par with Breakthrough with respect to training time.

Conclusion and Future Work

We have developed an extension to the AlphaZero algo-
rithm (Silver et al. 2018) for a truly general game-playing
system that removes limitations based on assumptions that
the games being played are:
• zero-sum
• turn-based
• two-player
• player-symmetric
• have a handcrafted neural network.
Our work extends the policy-value network to remove these
restrictions and presents a way of automatically scaling it
based on the size of the state of the game, allowing it to play
any perfect information game.

Our results clearly show that using deep reinforcement
learning within a GGP environment performs noticeably
better than the UCT benchmark agent in a number of games.

This approach also has the potential to improve dramatically
with larger networks, more training time and further tuning.

The training times needed for the experiments have been
well outside the typical 10 minute startclock of GGP com-
petitions, however with speedups through simple optimisa-
tions, parallelisation and faster hardware a large amount of
training could be squeezed in to at least perform better than
a basic UCT agent in a competition format. Moreover, and
in our view more importantly, the general notion of a GGP
system should not be artificially restricted by the limitations
of a specific competition format, and there is great value in
a general AI system that improves further as it is given more
time to learn new games.

Interesting future work includes rerunning at a larger scale
with larger networks and games and more compute power.
This would allow learning of more complex strategies and
give more reliable results about the applicability of this ex-
tension in general. Additionally, the properties of the game,
in particular branching factor, complexity and size of the
propositional network, could be used to vary, for exam-
ple, the replay buffer size, the number of simulations in
the MCTS during both training and evaluation, the mini-
mum layer size, as well as the parameters r and Cpuct for
the tradeoff between long/short term reward and amount of
exploration/exploitation respectively. As well as these, the
network structure could include known facts about the game
such as player symmetries and convolutions over extracted
ordinals in the game description to improve regularisation.

References

Auer, P. 2003. Using Confidence and Bounds for
Exploitation-Exploration Trade-offs. The Journal of Ma-
chine Learning Research 3:397–422.
Benacloch-Ayuso, J. L. 2012. RL-GGP. http://users.dsic.
upv.es/∼flip/RLGGP/. Accessed: 14/04/2018.
Clune, J. 2007. Heuristic Evaluation Functions for General
Game Playing. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, 1134–1139. AAAI
Press.
Cox, E.; Schkufza, E.; Madsen, R.; and Genesereth, M. R.
2009. Factoring General Games using Propositional Au-
tomata. In Proceedings of the IJCAI Workshop on General
Intelligence in Game-Playing Agents (GIGA), 13–20.
Finnsson, H., and Björnsson, Y. 2008. Simulation-Based
Approach to General Game Playing. In Proceedings of
the 23rd National Conference on Artificial Intelligence, vol-
ume 1, 259–264. AAAI Press.
Finnsson, H., and Björnsson, Y. 2010. Learning Simulation
Control in General Game-Playing Agents. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, volume 1, 954–959. AAAI Press.
Genesereth, M., and Björnsson, Y. 2013. The international
general game playing competition. AI Magazine 34(2):107–
111.
Genesereth, M., and Thielscher, M. 2014. General Game
Playing. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool.

1707



Genesereth, M. 2016. International general game playing
competition - past winners. http://ggp.stanford.edu/iggpc/
winners.php. Accessed: 10/04/2018.
Gu, J.; Hassan, H.; Devlin, J.; and Li, V. O. K. 2018. Uni-
versal Neural Machine Translation for Extremely Low Re-
source Languages. In Proceedings of the Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, vol-
ume 1, 344–354.
Hsu, F.-H. 2002. Behind Deep Blue: Building the Com-
puter that Defeated the World Chess Champion. Princeton
University Press.
Koriche, F.; Lagrue, S.; Piette, E.; and Tabary, S. 2016. Gen-
eral game playing with stochastic CSP. In Constraints, vol-
ume 21, 95–114.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Automatic
Heuristic Construction in a Complete General Game Player.
In Proceedings of the Twenty-First National Conference on
Artificial Intelligence, 1457–1462. AAAI Press.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General Game Playing: Game Description
Language Specification. Technical report, Stanford Univer-
sity.
Méhat, J., and Cazenave, T. 2011. A Parallel General Game
Player. Künstliche Intelligenz 25(1):43–47.
Prasad, A. 2018. AZFour: Connect Four Powered by
the AlphaZero Algorithm. https://medium.com/oracledevs/
lessons-from-implementing-alphazero-7e36e9054191. Ac-
cessed: 15/09/2018.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A Suc-
cessful General Game Player. In Proceedings of the AAAI
National Conference on Artificial Intelligence, 1191–1196.
AAAI Press.
Schkufza, E.; Love, N.; and Genesereth, M. 2008. Proposi-
tional automata and cell automata: Representational frame-
works for discrete dynamic systems. In AI 2008: Advances
in Artificial Intelligence, 56–66. Springer Berlin Heidelberg.
Shannon, C. 1950. Programming a computer for playing
chess. Philosophical Magazine 7 41(314):256–275.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture 529:484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017. Mastering the
game of Go without human knowledge. Nature 550:354–
359.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science 362(6419):1140–
1144.
Wang, H.; Emmerich, M.; and Plaat, A. 2018. Monte
Carlo Q-learning for General Game Playing. ArXiv e-prints
ArXiv:1802.05944.

1708


