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Abstract

We study a recently introduced class of strategic games that
is motivated by and generalizes Schelling’s well-known resi-
dential segregation model. These games are played on undi-
rected graphs, with the set of agents partitioned into multi-
ple types; each agent either occupies a node of the graph and
never moves away or aims to maximize the fraction of her
neighbors who are of her own type. We consider a variant of
this model that we call swap Schelling games, where the num-
ber of agents is equal to the number of nodes of the graph, and
agents may swap positions with other agents to increase their
utility. We study the existence, computational complexity and
quality of equilibrium assignments in these games, both from
a social welfare perspective and from a diversity perspective.

1 Introduction

Segregation is observed in many communities; people tend
to group together on the basis of politics, religion, or so-
cioeconomic status. This phenomenon has been extensively
documented in residential metropolitan areas, where people
may select where to live based on the racial composition
of the neighborhoods. To formalize and study how the mo-
tives of individuals lead to residential segregation, Thomas
Schelling (1969; 1971) proposed the following simple, yet
elegant model. There are two types of agents who are to be
placed on a line or a grid. An agent is happy with her location
if at least a fraction τ ∈ (0, 1] of the agents within a certain
radius are of the same type as her. Happy agents do not want
to move, but unhappy agents are willing to do so in hopes
of improving their current situation. Schelling described a
dynamic process where at each step unhappy agents jump
to random open positions or swap positions with other ran-
domly selected agents, and showed that it can lead to a com-
pletely segregated placement, even if the agents themselves
are tolerant of mixed neighborhoods (τ < 1/2).

Over the years, Schelling’s work became very popular
among researchers in Sociology and Economics, who pro-
posed and studied numerous variants of his model, mainly
via agent-based simulations; see the paper of Clark and Fos-
sett (2008) and references therein for examples of this ap-
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proach. Variants of the model have also been rigorously an-
alyzed in a series of papers (Young 2001; Zhang 2004a;
Brandt et al. 2012; Barmpalias, Elwes, and Lewis-Pye 2014;
Bhakta, Miracle, and Randall 2014; Barmpalias, Elwes, and
Lewis-Pye 2015; Immorlica et al. 2017), which showed that
the random behavior of the agents leads with high probabil-
ity to the formation of large monochromatic regions.

While all these papers focused on settings where the
agents’ behavior is random, it is more realistic to assume in-
stead that the agents are strategic and move only when they
have an opportunity to improve their situation. So far, only
a few papers have followed such a game-theoretic approach.
In particular, Zhang (2004b) considered a game where the
agents optimize a single-peaked utility function, and very
recently, Chauhan, Lenzner, and Molitor (2018), Elkind et
al. (2019) and Echzell et al. (2019) studied strategic settings
that are closer to the original model of Schelling, but capture
more than two agent types and richer graph topologies.

In particular, Chauhan, Lenzner, and Molitor (2018) study
a setting with two types of agents, who have preferred lo-
cations, and can either swap with other agents or jump to
empty positions. For a given tolerance threshold τ ∈ (0, 1],
each agent’s primary goal is to maximize the fraction of her
neighbors that are of her own type as long as this fraction is
below τ (with all fractions above τ being equally good); her
secondary goal is to be as close as possible to her preferred
location. For both types of games (swap and jump), Chauhan
et al. identify values of τ for which the best response dynam-
ics of the agents leads to an equilibrium when the topology
is a ring or a regular graph. Echzell et al. (2019) strengthen
these results and extend them to more than two agent types,
as well as study the complexity of computing assignments
that maximize the number of happy agents.

Elkind et al. (2019) consider a similar model with k types;
however, they treat agents’ location preferences differently
from Chauhan et al. Namely, in their model each agent is
either stubborn (i.e., has a preferred location and is unwill-
ing to move) or strategic (i.e., aims to maximize the fraction
of her neighbors that are of her own type; this corresponds
to setting τ = 1 in the model of Chauhan et. al.). They fo-
cus on jump games, i.e., games where agents may jump to
empty positions, and analyze the existence and complexity
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of computing Nash equilibria, as well as prove bounds on
the price of anarchy (Koutsoupias and Papadimitriou 1999)
and the price of stability (Anshelevich et al. 2008).

Our Contribution

We combine the two approaches by considering swap games
in the model of Elkind et al. (2019). That is, we assume
that the number of agents is equal to the number of nodes
in the topology, and two agents can swap locations if each
of them prefers the other agent’s location to her own. We
begin by studying the existence of equilibrium assignments.
While such assignments exist for highly structured topolo-
gies, we show that they may fail to exist in general, even
for simple topologies such as trees. Moreover, we show that
deciding whether an equilibrium exists is NP-complete. We
also study the quality of assignments in terms of their social
welfare: we prove bounds on the price of anarchy and the
price of stability for many interesting cases, and show that
computing an assignment with high social welfare is NP-
complete; the latter result complements the result of Elkind
et al. in that it applies to the case where the number of agents
equals the number of nodes in the topology.

Given that the goal of Schelling’s work was to study in-
tegration, it is natural to ask what level of integration can
be achieved at equilibrium. There is a number of integration
indices that have been proposed for this purpose (see, e.g.,
the survey of Massey and Denton (1988)). However, many
of the indices defined in the literature are formulated for set-
tings where the topology is highly regular and there are only
two agent types, and it is not immediately clear how to adapt
them to our model. We therefore focus on a simple index,
which we call the degree of integration, that is inspired by
the work of Lieberson and Carter (1982) and admits a natu-
ral interpretation in our context. This index counts the num-
ber of agents who are exposed to agents of other types, i.e.,
have at least one neighbor of a different type. We then study
the price of anarchy and the price of stability with respect
to this index: that is, we compare the value of our index in
the best and worst equilibrium of our game to the optimal
value of this index that can be achieved for a given instance.
We note that, to the best of our knowledge, this is the first
result of this type in the context of Schelling games: the pre-
vious work on integration in the Schelling model typically
focused on evaluating a given integration index after some
number of steps of the underlying dynamical process, and
did not ask what level of integration can be achieved if the
agents were non-strategic. We obtain strong negative results:
it turns out that even the best equilibria are often much less
diverse than the maximally diverse assignments. however,
when the topology is a line, the price of stability with respect
to our index can be bounded by a small constant. We also
show that maximizing diversity is computationally hard.

Further Related Work

As mentioned above, Schelling’s model has been studied
extensively both empirically and theoretically. For an in-
troduction to the model and a survey of its many variants,
we refer the reader to the book of Easley and Kleinberg

(2010), and the papers by Brandt et al. (2012) and Im-
morlica et al. (2017). Besides the closely related papers by
Chauhan, Lenzner, and Molitor (2018), Elkind et al. (2019)
and Echzell et al. (2019), another work that is similar in
spirit is a recent paper by Massand and Simon (2019), who
study swap stability in games where a set of items is to
be allocated among agents who are connected via a social
network, so that each agent gets one item, and her util-
ity depends on the items she and her neighbors in the net-
work get; however, their results are not directly applicable
to our setting. Also, Schelling games share a number of
properties with hedonic games (Drèze and Greenberg 1980;
Bogomolnaia and Jackson 2002), and in particular, with
fractional hedonic games (Aziz et al. 2019) and hedonic di-
versity games (Bredereck, Elkind, and Igarashi 2019). How-
ever, a fundamental difference between hedonic games and
Schelling games is that in the former agents form pairwise
disjoint coalitions, while in the latter the neighborhoods of
different nodes of the topology may overlap.

2 Preliminaries

A k-swap game is given by a set N of n ≥ 2 agents parti-
tioned into k ≥ 2 pairwise disjoint types T1, . . . , Tk, and
an undirected simple connected graph G = (V,E) with
|V | = n, called the topology. We often identify types with
colors: e.g., in a 2-swap game each agent is either red (T1) or
blue (T2). The agents are also classified as either strategic or
stubborn. We denote by R the set of strategic agents and by
S the set of stubborn agents, so that R ∪ S = N . Stubborn
agents never move away from the nodes they occupy, while
a strategic agent aims to maximize her personal utility, and
is willing to swap positions with other agents to achieve this.

Given an agent i ∈ T�, we refer to all other agents in
T� as friends of i and denote the set of i’s friends by Fi =
T� \ {i}. Each agent i occupies some node vi ∈ V of the
topology G so that vi �= vj for every pair of agents i �= j.
The vector v = (v1, . . . , vn) that lists the locations of all
agents is called an assignment. Given an assignment v, we
denote by πv(v) the agent that occupies node v ∈ V , that is,
πvi(v) = i.

Given an assignment v, let Ni(v) = {j �= i : {vi, vj} ∈
E} be the set of neighbors of agent i. The utility ui of a stub-
born agent i ∈ S is independent of the assignment; e.g., we
can set ui(v) = 0 for each i ∈ S. The utility of a strategic
agent i ∈ R for assignment v is

ui(v) =
|Ni(v) ∩ Fi|

|Ni(v)| .

Observe that, since |V | = n, every node is occupied by some
agent. As G is a connected graph, this implies that Ni(v) �=
∅ for every i ∈ N .

For every assignment v, let vi↔j be the assignment that
is obtained from v by swapping the positions of agents i and
j: vi↔j

� = v� for every � ∈ N \ {i, j}, vi↔j
i = vj and

vi↔j
j = vi. Agents i and j swap positions if and only if they

both strictly increase their utility: ui(vi↔j) > ui(v) and
uj(v

i↔j) > uj(v). Clearly, agents of the same type cannot
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both increase their utilities by swapping, so swaps always in-
volve agents of different types. An assignment v is an equi-
librium if no pair of agents i, j want to swap positions. That
is, v is an equilibrium if and only if for every i, j ∈ R we
have ui(v) ≥ ui(v

i↔j) or uj(v) ≥ uj(v
i↔j). We denote

the set of all equilibrium assignments of the k-swap game G
by EQ(G).

For every assignment v, we define two measures that aim
to capture, respectively, the agents’ happiness and the soci-
etal diversity. The first one is the well-known social welfare,
defined as the total utility of all strategic agents:

SW(v) =
∑

i∈R

ui(v).

Our second measure is the degree of integration: we say that
an agent is exposed if she has at least one neighbor of a dif-
ferent type, and count the number of exposed agents:

DI(v) = |{i ∈ R : Ni(v) \ Fi �= ∅}|.
Note that we ignore the stubborn agents in the definitions
of our measures, as their utility is always the same and they
never want to move somewhere else.

For f ∈ {SW,DI}, let v∗
f (G) be the optimal assignment

in terms of the measure f for a given game G. The price
of anarchy (PoA) in terms of the measure f is the worst-
case ratio (over all k-swap games G such that EQ(G) �= ∅)
between the optimal performance (among all assignments)
and the performance of the worst equilibrium assignment.
Similarly, the price of stability (PoS) in terms of f is the
worst-case ratio between the optimal performance and the
performance of the best equilibrium:

PoAf = sup
G:EQ(G) �=∅

sup
v∈EQ(G)

f(v∗
f (G))
f(v)

,

PoSf = sup
G:EQ(G) �=∅

inf
v∈EQ(G)

f(v∗
f (G))
f(v)

.

For readability, we refer to the quantity PoASW as the social
price of anarchy and to PoADI as the integration price of
anarchy, and use similar language for the price of stability.

Due to space constraints, some proofs have been omitted,
and can be found in the full version (Agarwal et al. 2019).

3 Existence of Equilibria

We begin by discussing the existence of equilibria in swap
games. The work of Echzell et al. (2019) implies that when
the topology is a regular graph, at least one equilibrium as-
signment is guaranteed to exist. Furthermore, using a po-
tential function similar to the one proposed by Elkind et al.
(2019) for jump games, we can show that equilibria always
exist when the topology is a graph of maximum degree 2;
we omit the details due to space constraints.

Our first result is a proof of non-existence of equilibria for
every k ≥ 2 for general topologies.

Theorem 1. For every k ≥ 2, there exists a k-swap game
that does not admit an equilibrium assignment, even when
all agents are strategic and the topology is a tree.

Figure 1: The topology of the 2-swap game considered in
the proof of Theorem 1, and an assignment that corresponds
to the last case in the analysis; it is not an equilibrium since
the red agent at node α and the blue agent at node γ2 would
like to swap.

Proof. We prove the theorem only for the case k = 2; the
proof for k ≥ 3 can be found in full version. Consider a 2-
swap game with 10 strategic agents: 5 red agents and 5 blue
agents. The topology is a tree with a root node α, which has
three children nodes (set B), each of which has two chil-
dren of its own (set Γ); see Figure 1. Suppose for the sake of
contradiction that this game admits an equilibrium assign-
ment v.

Since |B| = 3 and there are only two types of agents, at
least two nodes in B, say β1 and β2, must be occupied by
agents of the same type, say red. Now assume that nodes
γ1 (a child of β1) and γ2 (a child of β2) are occupied by
blue agents. Then the red agent πβ1(v) and the blue agent
πγ2

(v) can swap positions to increase their utility from
strictly smaller than 1 and 0 to 1 and positive, respectively.
Therefore, for at least one of these nodes (say, β1) it must be
the case that both of its children are occupied by red agents;
as there are only five red agents, it follows that at least one
of the children of β2, say γ2, is occupied by a blue agent.

If node α is occupied by a blue agent, then the red agent
πβ1

(v) and the blue agent πγ2
(v) can both increase their

utility by swapping. Hence, node α must be occupied by a
red agent (see Figure 1). However, this assignment is not an
equilibrium either, since the red agent πα(v) and the blue
agent πγ2(v) have an incentive to swap.

The topology used in the proof of Theorem 1 is utilized
as a subgraph in the proof of the following theorem, to show
that the problem of deciding whether an equilibrium exists
is computationally hard.

Theorem 2. For every k ≥ 2, it is NP-complete to decide
whether a given k-swap game admits an equilibrium.

Proof. Membership in NP is immediate: we can verify
whether a given assignment is an equilibrium by simply
checking if there exists a pair of agents that would like to
swap positions. To prove NP-hardness, we give a reduc-
tion from the CLIQUE problem, which in known to be NP-
complete. An instance of CLIQUE consists of an undirected
connected graph H = (X,Y ) and an integer λ; it is a yes-
instance if H contains a complete subgraph of size λ. With-
out loss of generality, we assume that λ > 5.
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Given an instance 〈H,λ〉 of CLIQUE with H = (X,Y ),
we will construct a 2-swap game as follows (the reduction
can be extended to any k > 2 by adding stubborn agents of
different types). Let dv denote the degree of node v in H ,
and set dH = maxv∈X dv .

• There are λ strategic red agents and t = |X| + 5 strate-
gic blue agents; all other agents are stubborn, and will be
defined in conjunction with the topology.

• The topology G = (V,E) consists of three components
G1, G2 and G3. These are connected to each other via
stubborn agents, and are defined as follows:
– To defineG1 = (V1, E1), letWv be a set of 2dH−dv+
2λ−3 nodes for each v ∈ X . Then, V1 = X

⋃
v∈V Wv

and E1 = Y ∪ {{v, w} : v ∈ X,w ∈ Wv}. For every
v ∈ X , dH nodes of Wv are occupied by stubborn red
agents, while the remaining dH−dv+2λ−3 nodes are
occupied by stubborn blue agents. Observe that every
node ofG1 not occupied by a stubborn agent has degree
d1 = 2dH + 2λ− 3.

– The subgraphG2 = (A∪B,E2) is a complete bipartite
graph with |A| = λ− 5 and |B| = 4d1. Out of the 4d1
nodes ofB, 2d1+1 nodes are occupied by stubborn red
agents, while the remaining 2d1−1 nodes are occupied
by stubborn blue agents.
Hence, a strategic red agent occupying a node of A has
utility χr = 2d1+1

4d1
= 1

2 + 1
4d1

. Similarly, a strategic
blue agent has utility χb =

2d1−1
4d1

= 1
2 − 1

4d1
.

– To define G3 = (V3, E3), let (V ′
3 , E

′
3) be the graph

used in the proof of Theorem 1, for which there is no
equilibrium assignment; see Figure 1. For every node
v ∈ V ′

3 of degree 3, let Zv be a set of 100d1 nodes
such that 50d1 of these nodes are occupied by stub-
born red agents, while the remaining 50d1 nodes are
occupied by stubborn blue agents. For every v ∈ V ′

3 of
degree 1, let Zv be a set of 10d1 nodes such that 5d1
of these nodes are occupied by stubborn red agents,
while the remaining 5d1 nodes are occupied by stub-
born blue agents. Then, V3 = V ′

3

⋃
v∈V ′

3
Zv and E3 =

E′
3 ∪ {{v, w} : v ∈ V ′

3 , w ∈ Zv}.
One can easily verify that the utility of a strategic agent
(red or blue) occupying a node of G3 is at least ψ0 =
5d1−1
10d1+1 >

1
2− 1

4d1
and at most ψ1 = 5d1+1

10d1+1 <
1
2+

1
4d1

.

Now, assume that H has a clique of size λ, and let v be
the assignment in which the strategic red agents occupy the
nodes of the clique, and the strategic blue agents occupy the
remaining nodes. Each strategic red agent is connected to
λ− 1 + dH other red agents (strategic and stubborn) in G1,
and thus has utility

u =
λ− 1 + dH

d1
=
dH + λ− 1.5 + 0.5

2dH + 2λ− 3
≥ 1

2
+

1

2d1
.

Clearly, since u > χr and u > ψ1, no strategic red agent
would be willing to swap positions with another strategic
agent in G2 or G3. By swapping positions with a blue agent
within G1, a strategic red agent would still have at most λ−
1 + dH friends, and since every node in G1 has the same

degree, her utility cannot be improved. Hence, no strategic
red agent has a profitable deviation, and v is an equilibrium.

Conversely, assume that H does not contain a clique of
size λ, and for the sake of contradiction also assume that
there is an equilibrium assignment v.

Suppose that some strategic red agents are located in G1.
It cannot be the case that each of them is adjacent to λ − 1
other strategic red agents, as this would mean that the nodes
they occupy form a clique of size λ. Hence, at least one of
these agents, say agent i, is adjacent to at most λ−2 strategic
red agents. Since every node of G1 has degree d1 and every
node is adjacent to dH stubborn red agents, the utility of i is

ui ≤ dH + λ− 2

d1
=
dH + λ− 1.5− 0.5

2dH + 2λ− 3
=

1

2
− 1

2d1
.

We have ui < χr and ui < ψ0, and hence agent i has an
incentive to move to G2 or G3. On the other hand, the utility
that a strategic blue agent j that is currently located in G2 or
G3 can obtain by swapping positions with i is

uj = 1− ui ≥ 1

2
+

1

2d1
.

Since uj > χb and uj > ψ1, agent j also has an incentive
to swap positions with agent i, and hence v cannot be an
equilibrium assignment. Therefore, no strategic red agent is
located in G1.

Similarly, observe that χr > ψ1 and χb < ψ0, which
implies that strategic red agents would prefer to be in G2,
while strategic blue agents would prefer to be in G3. Thus,
for v to be an equilibrium assignment, it must be the case
that if a node of G2 is not occupied by a stubborn agent,
it is occupied by a strategic red agent. Consequently, there
are 5 strategic red agents and 5 strategic blue agents in G3.
However, similarly to the proof of Theorem 1, we can argue
that there is no equilibrium assignment for these agents in
G3; we omit the details here. Since we have exhausted all
possibilities, it follows that if H does not have a clique of
size λ, then there is no equilibrium assignment.

4 Social Welfare

We will now consider the efficiency of equilibrium assign-
ments in terms of social welfare, and bound the social price
of anarchy and stability for many interesting cases. We re-
strict our attention to games with strategic agents only and
with at least two agents per type. Swap games with stubborn
agents or types that consist of a single strategic agent can be
easily seen to have unbounded social price of anarchy.1

We start with the social price of anarchy of 2-swap games,
and consider the general case (given the above restrictions)
and the case where each type consists of the same number
of agents.

1For any k ≥ 2, consider a k-swap game with star topology
and k types of agents such that there is a unique red agent r, who is
strategic, while all other types contain at least two strategic agents
as well as some stubborn agents located at peripheral nodes. The
assignment where r occupies the center node is an equilibrium with
0 social welfare, while every assignment where r is not in the center
has positive social welfare.
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Figure 2: The topology and the equilibrium assignment of
the lower bound instance in the proof of part (i) of Theo-
rem 3. The big red square represents a clique whose nodes
are occupied by red agents only.

Theorem 3. The social price of anarchy of 2-swap games
with strategic agents only is

• Θ(n) if there are at least two agents of each type, and
• between 921/448 ≈ 2.05864 and 4 if each type consists

of the same number of agents.

Proof. Due to space constraints, we only prove the second
claim. For the lower bound, consider a 2-swap game with the
following topology: there is a node α of degree x+ 1 that is
connected to x leaf nodes and to one node in a clique C of
size x − 1. There is an equilibrium v where α is occupied
by a red agent r, all leaf nodes are occupied by blue agents,
and all nodes of C are occupied by red agents; see Figure 2.
Hence, SW(v) = x − 1 + 1

x+1 = x2

x+1 . On the other hand,
for the assignment v∗ obtained from v by swapping r with
one of the blue agents we have SW(v∗) = 2x− 3 + x−2

x−1 +
x−1
x+1 . Hence, the price of anarchy is at least 2x3−x2−5x+2

x2(x−1) , an
expression that takes it maximum value 667/324 ≈ 2.05864
at x = 9.

For the upper bound, consider a 2-swap game with n =
2x agents such that there are x ≥ 2 red and x blue agents.
First, assume that some agents get zero utility in the equilib-
rium assignment v. Observe that it cannot be the case that
there exist agents of both types who have zero utility in v.
Indeed, if this was true for a non-adjacent red-blue pair, then
these agents would have an incentive to swap and increase
their utility from zero to 1. On the other hand, suppose this
is true for an adjacent red-blue pair (r, b). If both of r and
b have other neighbors (besides r and b), then by swapping
they can increase their utility from 0 to positive. Hence, sup-
pose that r occupies a leaf node and is connected only to b.
In this case, since the graph is connected, there exists a blue
agent b′ �= b whose utility is strictly less than 1; then r and
b′ have an incentive to swap, as r’s utility would become
positive and b′’s utility would become 1.

Thus, assume that at least one blue agent has zero util-
ity and all red agents have positive utility. We denote by B0

the set of blue agents with zero utility, by R1 the set of red
agents with utility 1, and by R< the set of red agents whose
utility is strictly less than 1. We have |R1|+ |R<| = x, and
each agent in B0 is connected to all agents in R<; otherwise

a non-adjacent pair of agents i ∈ R<, j ∈ B0 have an in-
centive to swap. Since the optimal social welfare is at most
n = 2x, to show that the price of anarchy is at most 4, it
suffices to establish that the sum of red agents’ utilities is at
least x/2. We consider the following subcases.

|R<| = 1. In this case SW(v) ≥ |R1| = x − 1; since
x ≥ 2, we have x− 1 ≥ x/2.

|R<| ≥ 2, |B0| ≥ 2. In this case any agent in B0 would
like to swap with any agent in R< to get positive utility
(since each agent in R< is connected to all agents in B0).
Thus, in v no agent i ∈ R< wants to swap with any agent
inB0. Since each agent inB0 is connected to all agents in
R< and no other agent, the utility that agent i would get
by agreeing to swap is ui(v) = (|R<| − 1)/|R<| ≥ 1/2,
yielding SW(v) ≥ |R1|+ |R>|/2 ≥ x/2.

|R<| ≥ 2, |B0| = 1. Again, we will show that ui(v) ≥
1/2 for each i ∈ R<. Indeed, if i is connected to a blue
agent not in B0, then the blue agent in B0 would like to
swap with i; as i does not want to swap, it follows that her
utility is at least 1/2. Otherwise, i is only connected to red
agents and the unique agent in B0, so again ui(v) ≥ 1/2.

Next, we assume that all agents have positive utility. Since
v is an equilibrium, for every red-blue pair of agents it holds
that at least one of them has no incentive to swap. Let (i, j)
be a red-blue pair of agents, and assume that i does not want
to swap. If i and j are not neighbors in v, then it must be
that ui(v) ≥ 1 − uj(v) and hence ui(v) + uj(v) ≥ 1.
Otherwise, i and j are neighbors in v. If ui(v)+uj(v) < 1,
we have ui(v) ∈ (0, 1), uj(v) ∈ (0, 1). Assume that the
blue agent j has xr ≥ 0 red neighbors besides i, and xb ≥ 1
blue neighbors. Then, uj(v) = xb

xr+xb+1 , and

ui(v) ≥ xr
xr + xb + 1

= 1− uj(v)− 1

xr + xb + 1

≥ 1

2
− uj(v) (1)

and hence ui(v) + uj(v) ≥ 1
2 , where inequality (1) follows

since xb ≥ 1. Therefore, we have ui(v) + uj(v) ≥ 1
2 for

every red-blue pair of agents i and j. Since there are x2 dis-
tinct red-blue pairs, and each agent participates in exactly x
such pairs, by summing over all these inequalities, we obtain
x · SW(v) ≥ 1

2x
2 and therefore SW(v) ≥ 1

2x. The bound
then follows since the maximum possible social welfare is
n = 2x.

We remark that even though the upper bound of 4 for the
case where each type contains the same number of agents is
probably not tight, one cannot expect to improve it using the
same technique, as (1) can be seen to be tight.

Next, we show that, surprisingly, if there are at least three
types, the social price of anarchy can be unbounded, even
for the special case of equal number of agents per type.

Theorem 4. For every k ≥ 3, the social price of anarchy
of k-swap games can be unbounded, even when there is an
equal number of strategic agents per type.
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Figure 3: The topology and the equilibrium assignment of
the k-swap game considered in the proof of Theorem 4 for
k = 3. Here, T1 = red, T2 = blue and T3 = green.

Proof. Consider a k-swap game with n = 2k agents such
that there are exactly two agents of each of the k ≥ 3 types
T1, . . . , Tk. The topologyG consists of k nodes {α1, ..., αk}
that form a cycle, and each node α�, � ∈ [k], is also con-
nected to an auxiliary node β�; see Figure 3 for the topology
and the equilibrium discussed in the following for k = 3.

Let v be the assignment in which node α� is occupied by
an agent of type T�, while node β� is occupied by an agent
of type T�+1, where the subscripts are specified modulo �.
This assignment is clearly an equilibrium since there exists
no pair of agents that would like to swap positions, and ev-
ery agent has zero utility. On the other hand, consider the
assignment v∗ in which nodes α� and β� are occupied by
the two agents of type T�, for every � ∈ [k]. Since every
agent now has positive utility, we have SW(v∗) > 0, and
hence the social price of anarchy is unbounded.

Next, we turn our attention to the social price of stability
and show a constant lower bound for 2-swap games.

Theorem 5. The social price of stability in 2-swap games is
at least 4/3.

For k-swap games with topology that is a δ-regular graph
(in which all nodes have degree δ), we show an upper bound
of 1 on the social price of stability. To this end we em-
ploy a potential function that is similar to the one defined
by Chauhan, Lenzner, and Molitor (2018) and Echzell et al.
(2019) to show the existence of equilibria in such games.

Theorem 6. The social price of stability in k-swap games
with topology that is a δ-regular graph is 1.

Proof. Echzell et al. (2019) showed that for k-swap games
with a δ-regular topology, Φ(v) =

∑
i∈R |Ni(v) \ Fi| is

a potential minimization function. Using similar arguments,
we can show that the complement, Φ(v) =

∑
i∈R |Ni(v) ∩

Fi|, is a potential maximization function. Now, observe that
by the definition of the utility of each strategic agent and the
fact that the topology is δ-regular, for every assignment v
we have

SW(v) =
∑

i∈R

ui(v) =
∑

i∈R

|Ni(v) ∩ Fi|
|Ni(v)| =

1

δ
· Φ(v). (2)

Let v∗ be an optimal assignment. If v∗ is an equilibrium,
then the social price of stability is 1. Otherwise, we let the

.  .  . .  .  . 

Figure 4: The topology and the only possible equilibrium
assignment for the 2-swap game considered in the proofs
of Theorems 8 and 9. For k-swap games (Theorem 8) there
are k identical subtrees, and in the worst equilibrium each
subtree is filled by agents of a different type.

strategic agents swap positions until they reach an equilib-
rium v. Since Φ is a potential maximization function, we
have Φ(v) ≥ Φ(v∗). Thus, by (2) we obtain

SW(v) =
1

δ
· Φ(v) ≥ 1

δ
· Φ(v∗) = SW(v∗),

and the bound follows by rearranging terms.

Next, we focus on the problem of computing assignments
with high social welfare. Observe that the complexity of this
problem does not depend of the set of deviations available
to the agents, i.e., on whether we consider swap games or
jump games, with one exception: in swap games, we assume
that no node is empty, and in jump games we assume that at
least one node is empty. Thus, the hardness result for social
welfare maximization in jump Schelling games established
by Elkind et al. (2019) does not cover our case. The proof of
our next theorem is very different from that of Elkind et al.
(2019), and only covers the case k ≥ 3; for k = 2, we were
unable to prove the hardness of the problem.

Theorem 7. For every k ≥ 3, given a rational number ξ, it
is NP-complete to decide whether there exists an allocation
that has social welfare at least ξ.

5 Degree of Integration

We now investigate whether equilibrium assignments can be
diverse, by bounding the price of anarchy and stability in
terms of the degree of integration; recall that this measure
counts the number of agents who are exposed, i.e., have at
least one neighbor of a different type. As in the previous
section, we again focus on games with strategic agents only.

We start by showing that the integration price of anarchy
of k-swap games is n/k, i.e., it scales linearly with the num-
ber of agents. This indicates that in the worst case agents
of different types are highly segregated, but, as the number
of types increases, equilibria become more diverse and the
price of anarchy decreases.

Theorem 8. For any k ≥ 2, the integration price of anarchy
of k-swap games with strategic agents only is at most n/k,
and this bound is tight.
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Proof. For the upper bound, consider a k-swap game with
n agents. By definition, the optimal degree of integration is
at most n. Since the topology is a connected graph, in any
assignment v at least one agent per type must be exposed.
Hence, DI(v) ≥ k, and the integration price of anarchy is at
most n/k.

For the lower bound, consider a k-swap game with n =
kx+1 agents such that there are x+1 agents of type T1 and
x agents of type T� for every � ∈ [k] \ {1}. The topology is
a tree with root node α that has k children nodes β1, . . . , βk,
each of which has x − 1 children leaf nodes of its own; see
Figure 4 for an example of this topology for k = 2.

One can assign the agents to the nodes of the topology
so that each agent is exposed; thus the maximum possible
degree of integration is n. However, there is an equilibrium
assignment v in which α is occupied by an agent of type T1
and for each � ∈ [k] all nodes of the β�-subtree are occupied
by agents of type T�. In v only the agent in α and the agents
in nodes β�, � ∈ [k] \ {1}, are exposed, yielding degree of
integration DI(v) = k, and the bound follows.

Next, we consider the integration price of stability. Using
the same instance as in the proof of Theorem 8, we show a
lower bound that depends linearly on the number of agents
for the fundamental case of two agent types. This bound is
tight by the previous theorem, and indicates that we cannot
avoid ending up with equilibrium assignments in which the
types are highly segregated, even in the best case.

Theorem 9. The integration price of stability of 2-swap
games with strategic agents only is at least n/2.

To develop better intuition for the integration price of an-
archy and stability, we also consider the special case where
the topology is a line. In this case, while the integration price
of anarchy remains linear in n/k, the integration price of sta-
bility can be bounded by a small constant.

Theorem 10. Consider a k-swap game with strategic agents
only, at least two agents per type, and a line topology. The
integration price of anarchy is at most n

2k−2 , while the inte-
gration price of stability is at most 9

4 . Moreover, if the num-
ber of agents of each type grows with n, the integration price
of stability is at most 3

2 + o(1). All these bounds are tight.

Proof. We prove the upper bound for the price of stabil-
ity here; see the full version of the paper for the remaining
proofs. Let the topology be a line, with nodes 1, . . . , n con-
nected in this order. We partition the agents of each type into
blocks of size 2 and 3, with at most one block of size 3 per
type (this block is created if the number of agents of that
type is odd). Observe that any assignment where the agents
of each block are placed contiguously on the line is an equi-
librium. Indeed, under any such assignment each agent has
at least one neighbor of the same type, and no agent can
move to a position where she would have two neighbors of
her type; also, the agents at nodes 1 or n are unwilling to
swap (as they get utility 1).

It remains to explain how to place these blocks on the line
to maximize integration. We do this greedily, from left to
right. That is, we first pick some i ∈ [k] such that |Ti| ≥

|Tj | for all j ∈ [k], and place some block B ⊆ Ti first.
Now, suppose that � blocks have been placed, so that the last
occupied node is node r, and the agent there is of type Tx.
For each j ∈ [k], let tj be the number of agents of type Tj
who have not yet been placed. If tj = 0 for all j ∈ [k] \
{x}, we complete the assignment by simply placing all the
remaining agents of type Tx on the line. Otherwise, we pick
an i ∈ [k] \ {x} such that ti ≥ tj for all j ∈ [k] \ {x}, and
place some block B ⊆ Ti in positions r + 1, . . . , r + |B|.

Let us say that a type Ti is dominant if |Ti| > n/2. An
easy inductive argument shows that if no type is dominant,
then under this assignment we never place two blocks of the
same type next to each other; the key observation is that if
no type is dominant after � blocks have been placed, this
remains to be the case after � + 2 blocks have been placed,
and hence if we still have at least two blocks to place, we
have at least two types to choose from. In this case, the only
agents who are not exposed are agents at nodes 1 and n as
well as agents located at the middle of a block of size 3, i.e.,
at most k + 2 agents. Thus, the integration price of stability
is at most n

n−k−2 in this case. Now, suppose that some type
(say, type T1) is dominant. If there are λ blocks of types
T2, . . . , Tk, then under our procedure we will first alternate
between blocks of type T1 and blocks of other types, and
then place the remaining blocks of type T1 (if any). Then at
least 4λ agents will be exposed. On the other hand, at most
k − 1 of these λ blocks are of size 3, so we have at most
2λ + k − 1 agents of types T2, . . . , Tk, and hence in any
assignment at most 2(2λ + k − 1) agents of type T1 can be
exposed. Thus, the integration price of stability in this case
is at most 3(2λ+k−1)

4λ = 3
2 + 3k−3

4λ . Since λ ≥ k − 1, this
quantity is at most 9

4 . Further, if we assume that the number
of agents of each type grows with n, we have 3k−3

4λ = o(1),
and the bound becomes 3

2 + o(1).

Hence, for games with simple line topologies, integration
can be achieved in equilibrium. However, when left alone,
the agents may end up in a very segregated configuration.

We conclude by studying the complexity of computing
assignments (not necessarily equilibria) with high degree of
integration. Unfortunately, it turns out that even this task is
computationally intractable.
Theorem 11. Given a k-swap game, computing an assign-
ment in which every agent is exposed is NP-complete, even
if k = 2 and all agents are strategic.

6 Conclusions and Open Problems

We have studied Schelling games on graphs in which pairs
of agents can deviate by swapping their locations. We con-
sidered questions related to the existence and the efficiency
of equilibrium assignments, both from a social welfare per-
spective and from a diversity perspective.

While equilibria are known to exist in instances where
the topology is highly structured, we showed that their ex-
istence is not guaranteed in general, and deciding whether
a given swap game admits an equilibrium assignment is
NP-complete. Even though we have implicitly assumed that
the tolerance threshold of every agent is 1, and thus she is
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never truly happy unless she is connected to friends only,
our proofs extend to other threshold values as well. For in-
stance, one can verify that Theorem 1 for k = 2 holds for
any τ ∈ (2/3, 1). A challenging open question is to com-
pletely characterize the topologies and the threshold values
for which equilibria are guaranteed to exist, and also design
efficient algorithms to compute equilibria when they exist.

We have introduced a new index for measuring the diver-
sity of a given assignment, which we called the degree of
integration. It would be interesting to explore the tradeoffs
between diversity and social welfare: can we compute (equi-
librium) assignments with a given degree of integration that
maximize the social welfare? While our results indicate that
this problem is hard for general topologies, one could hope
to obtain approximate or parameterized algorithms, or focus
on simple topologies. One can also investigate more ambi-
tious diversity indices, e.g., by considering, for each agent,
the number of other types she is exposed to.
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Wexler, T.; and Roughgarden, T. 2008. The price of stability
for network design with fair cost allocation. SIAM Journal
on Computing 38(4):1602–1623.
Aziz, H.; Brandl, F.; Brandt, F.; Harrenstein, P.; Olsen, M.;
and Peters, D. 2019. Fractional hedonic games. ACM Trans-
actions on Economics and Computation 7(2):6:1–6:29.
Barmpalias, G.; Elwes, R.; and Lewis-Pye, A. 2014. Digital
morphogenesis via Schelling segregation. In Proceedings of
the 55th IEEE Annual Symposium on Foundations of Com-
puter Science (FOCS), 156–165.
Barmpalias, G.; Elwes, R.; and Lewis-Pye, A. 2015. From
randomness to order: unperturbed Schelling segregation in
two or three dimensions. CoRR abs/1504.03809.
Bhakta, P.; Miracle, S.; and Randall, D. 2014. Clustering
and mixing times for segregation models on Z

2. In Proceed-
ings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 327–340.
Bogomolnaia, A., and Jackson, M. O. 2002. The stability of
hedonic coalition structures. Games and Economic Behavior
38(2):201–230.
Brandt, C.; Immorlica, N.; Kamath, G.; and Kleinberg, R.
2012. An analysis of one-dimensional Schelling segrega-
tion. In Proceedings of the 44th Symposium on Theory of
Computing Conference (STOC), 789–804.
Bredereck, R.; Elkind, E.; and Igarashi, A. 2019. Hedonic
diversity games. In Proceedings of the 18th International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 565–573.

Chauhan, A.; Lenzner, P.; and Molitor, L. 2018. Schelling
segregation with strategic agents. In Proceedings of the
11th International Symposium on Algorithmic Game Theory
(SAGT), 137–149.
Clark, W., and Fossett, M. 2008. Understanding the social
context of the Schelling segregation model. Proceedings of
the National Academy of Sciences 105(11):4109–4114.
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