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Abstract

In this paper we introduce and study all-pay bidding games,
a class of two player, zero-sum games on graphs. The game
proceeds as follows. We place a token on some vertex in
the graph and assign budgets to the two players. Each turn,
each player submits a sealed legal bid (non-negative and be-
low their remaining budget), which is deducted from their
budget and the highest bidder moves the token onto an ad-
jacent vertex. The game ends once a sink is reached, and
Player 1 pays Player 2 the outcome that is associated with
the sink. The players attempt to maximize their expected out-
come. Our games model settings where effort (of no inherent
value) needs to be invested in an ongoing and stateful manner.
On the negative side, we show that even in simple games on
DAGs, optimal strategies may require a distribution over bids
with infinite support. A central quantity in bidding games is
the ratio of the players budgets. On the positive side, we show
a simple FPTAS for DAGs, that, for each budget ratio, out-
puts an approximation for the optimal strategy for that ratio.
We also implement it, show that it performs well, and sug-
gests interesting properties of these games. Then, given an
outcome c, we show an algorithm for finding the necessary
and sufficient initial ratio for guaranteeing outcome c with
probability 1 and a strategy ensuring such. Finally, while the
general case has not previously been studied, solving the spe-
cific game in which Player 1 wins iff he wins the first two
auctions, has been long stated as an open question, which we
solve.

1 Introduction

Two-player graph games naturally model settings in which
decision making is carried out dynamically. Vertices model
the possible configurations and edges model actions. The
game proceeds by placing a token on one of the vertices and
allowing the players to repeatedly move it. One player mod-
els the protagonist for which we are interested in finding an
optimal decision-making strategy, and the other player, the
antagonist, models, in an adversarial manner, the other ele-
ments of the systems on which we have no control.

We focus on quantitative reachability games (Everett
1955) in which the graph has a collection of sink vertices,
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which we call the leaves, each of which is associated with a
weight. The game is a zero-sum game; it ends once a leaf is
reached and the weight of the leaf is Player 1’s reward and
Player 2’s cost, thus Player 1 aims at maximizing the weight
while Player 2 aims at minimizing it. A special case is quali-
tative reachability games in which each Player i has a target
ti and Player i wins iff the game ends in ti.

A graph game is equipped with a mechanism that deter-
mines how the token is moved; e.g., in turn-based games
the players alternate turns in moving the token. Bidding is
a mode of moving in which in each turn, we hold an auc-
tion to determine which player moves the token. Bidding
qualitative-reachability games where studied in (Lazarus et
al. 1996; 1999) largely with variants of first-price auctions:
in each turn both players simultaneously submit bids, where
a bid is legal if it does not exceed the available budget, the
higher bidder moves the token, and pays his bid to the lower
bidder in Richman bidding (named after David Richman),
and to the bank in poorman bidding. The central quantity in
these games is the ratio between the players’ budgets. Each
vertex is shown to have a threshold ratio, which is a neces-
sary and sufficient initial ratio that guarantees winning the
game. Moreover, optimal strategies are deterministic.

We study, for the first time, quantitative-reachability all-
pay bidding games, which are similar to the bidding rules
above except that both players pay their bid to the bank.
Formally, for i ∈ {1, 2}, suppose that Player i’s budget is
Bi ∈ Q>0 and that his bid is bi ∈ [0, Bi], then the higher
bidder moves the token and Player i’s budget is updated to
Bi − bi. Note that in variants of first-price auctions, assum-
ing the winner bids b, the loser’s budget is the same for any
bid in [0, b). In an all-pay auction, however, the higher the
losing bid, the lower the loser’s available budget is in the
next round. Thus, intuitively, the loser would prefer to bid as
close as possible to 0.

Example 1.1. Consider the qualitative reachability game
that is depicted in Fig. 1, which we call win twice in a row
or WnR(2), for short. For convenience, fix Player 2’s initial
budget to be 1. The solution to the game using a first-price
auction is trivial: for example, with poorman bidding (in
which the winner pays the bank), Player 1 wins iff his bud-
get exceeds 2. Indeed, if his budget is 2 + ε, he bids 1 + ε/2
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Figure 1: On the left, the bidding game in which Player 1
wins iff he wins two biddings in a row. Assume initial bud-
gets of B1 = 1 + x, for x ∈ (0.5, 1), and B2 = 1. A
Player 1 strategy that guarantees value 0.5 uniformly bids
{x, 1} in the first bidding. Player 2 has two optimal counter
strategies, and the table on the right depicts the budget in the
second bidding in all cases.

in the first bidding, moves the token to v1, and, since in first-
price auctions, the loser does not pay his bid, the budgets
in the next round are 1 + ε/2 and 1, respectively. Player 1
again bids 1 + ε/2, wins the bidding, moves the token to t1,
and wins the game. On the other hand, if Player 1’s budget
is 2− ε, Player 2 can guarantee that the token reaches t2 by
bidding 1 in both rounds.

The solution to this game with all-pay bidding is much
more complicated and was posed as an open question in
(Lazarus et al. 1999), which we completely solve. Assum-
ing Player 2’s budget is 1, it is easy to show that when
Player 1’s initial budget is either greater than 2 or smaller
than 1, there exist a deterministic winning strategy for one
of the players. Also, for budgets in between, i.e, in (1, 2), it
is not hard to see that optimal strategies require probabilistic
choices, which is the source of the difficulty and an immedi-
ate difference from first-price bidding rules. We characterize
the value of the game, which is the optimal probability that
Player 1 can guarantee winning, as a function of Player 1’s
initial budget. In Theorem 5.1, we show that for n ∈ IN and
x ∈ (1/(n+1), 1/n], the value is 1/(n+1) when Player 1’s
initial budget is 1+x and Player 2’s initial budget is 1. Fig. 1
gives a flavor of the the solution in the simplest interesting
case of x ∈ (0.5, 1), where a Player 1 strategy that bids
x and 1 each with probability 0.5 guarantees winning with
probability 0.5.

Apart from the theoretical interest in all-pay bidding
games, we argue that they are useful in practice, and that
they address limitations of previously studied models. All-
pay auctions are one of the most well-studied auction mech-
anisms (Michael R. Baye and de Vries 1996). Even though
they are described in economic terms, they are often used
to model settings in which the agents’ bids represent the
amount of effort they invest in a task such as in rent seeking
(Tullock 1980), patent races, e.g., (Baye and Hoppe 2003),
or biological auctions (Chatterjee, Reiter, and Nowak 2012).
As argued in (Konrad and Kovenock 2009), however, many
decision-making settings, including the examples above, are
not one-shot in nature, rather they develop dynamically. Dy-
namic all-pay auctions have been used to analyze, for ex-
ample, political campaigning in the USA (Klumppa and

K.Polborn 2006), patent races (Harris and Vickers 1985),
and (Klumppa and K.Polborn 2006) argue that they appro-
priately model sport competitions between two teams such
as “best of 7” in the NBA playoffs. An inherent differ-
ence between all-pay repeated auctions and all-pay bidding
games is that our model assumes that the players’ effort has
no or negligible inherent value and that it is bounded. The
payoff is obtained only from the reward in the leaves. For
example, a “best of k” sport competition between two sport
teams can be modelled as an all-pay bidding game as fol-
lows. A team’s budget models the sum of players’ strengths.
A larger budget represents a fresher team with a deeper
bench. Each bidding represents a match between the teams,
and the team that bids higher wins the match. The teams
only care about winning the tournament and the players’
strengths have no value after the tournament is over.

The closest model in spirit is called Colonel Blotto games,
which dates back to (Borel 1921), and has been extensively
studied since. In these games, two colonels own armies and
compete in n battlefields. Colonel Blotto is a one-shot game:
on the day of the battle, the two colonels need to decide how
to distribute their armies between the n battlefields, where
each battlefield entails a reward to its winner, and in each
battlefield, the outnumbering army wins. To the best of our
knowledge, all-pay bidding games are the first to incorporate
a modelling of bounded resource with no value for the play-
ers, as in Colonel Blotto games, with a dynamic behavior, as
in ongoing auctions.

Graph games have been extensively used to model and
reason about systems (Clarke et al. 2018) and multi-agent
systems (Wooldridge et al. 2016). Bidding games naturally
model systems in which the scheduler accepts payment in
exchange for priority. Blockchain technology is one such
system, where the miners accept payment and have freedom
to decide the order of blocks they process based on the pro-
posed transaction fees. Transaction fees are not refundable,
thus all-pay bidding is the most appropriate modelling. Ma-
nipulating transaction fees is possible and can have dramatic
consequences: such a manipulation was used to win a popu-
lar game on Ethereum called FOMO3d1. There is thus ample
motivation for reasoning and verifying blockchain technol-
ogy (Chatterjee, Goharshady, and Velner 2018).

We show that all-pay bidding games exhibit an involved
and interesting mathematical structure. As discussed in Ex-
ample 1.1, while we show a complete characterization of
the value function for the game WnR(2), it is significantly
harder than the characterization with first-price bidding. The
situation becomes worse when we slightly complicate the
game and require that Player 1 wins three times in a row,
called WnR(3), for short. We show that there are initial bud-
gets for which an optimal strategy in WnR(3) requires infi-
nite support.

We turn to describe our positive results on general games.
First, we study surely-winning in all-pay bidding games,
i.e., winning with probability 1. We show a threshold be-
havior that is similar to first-price bidding games: each ver-
tex v in a qualitative all-pay bidding game has a surely-

1https://bit.ly/2wizwjj
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winning threshold ratio, denoted STHR(v), such that if
Player 1’s ratio exceeds STHR(v), he can guarantee win-
ning the game with probability 1, and if Player 1’s ra-
tio is less than STHR(v), Player 2 can guarantee win-
ning with positive probability. Moreover, we show that
surely-winning threshold ratios have the following struc-
ture: for every vertex v, we have STHR(v) = STHR(v−) +
(1 − STHR(v−)/STHR(v+)), where v− and v+ are the
neighbors of v that, respectively, minimize and maximize
STHR. This result has computation-complexity implica-
tions; namely, we show that in general, the decision-problem
counterpart of finding surely-winning threshold ratios is in
PSPACE using the existential theory of the reals (ETR, for
short) (Canny 1988), and it is in linear time for DAGs. In the
full version, we show that surely-winning threshold ratios
can be irrational.

Example 1.2. Tic-tac-toe is a canonical graph game that is
played on a DAG. First-price bidding Tic-tac-toe was dis-
cussed in a blog post2, where threshold budgets are shown
to be surprisingly low: with Richman bidding, Player 1
can guarantee winning when his ratio exceeds 133/123 ≈
1.0183 (Develin and Payne 2010) and with poorman-
bidding, when it exceeds roughly 1.0184.

We implement our algorithm and find surely-winning
threshold ratios in all-pay bidding tic-tac-toe: Player 1 surely
wins when his initial ratio is greater than 51/31 ≈ 1.65
(see Fig. 2). We point to several interesting phenomena. One
explanation for the significant gap between the thresholds
in all-pay and first-price bidding is that, unlike Richman
and poorman bidding, in the range (31/51, 51/31) neither
player surely wins. Second, the threshold ratio for the re-
laxed Player 1 goal of surely not-losing equals the surely-
winning threshold ratio. This is not always the case; e.g.,
from the configuration with a single O in the middle left
position, Player 1 requires a budget of 31/16 for surely win-
ning and 25/13 for surely not-losing. Third, we find it sur-
prising that when Player 2 wins the first bidding, it is prefer-
able to set an O in one of the corners (as in configuration c2)
rather than in the center.

wins

4/3
.
= 1.33 3/2 = 1.5 2

51/31
.
= 1.65 31/16

.
= 1.94 8/3

.
= 2.67

5/3
.
= 1.67 3

c4

c1 c2 c3

Figure 2: Surely-winning thresholds in tic-tac-toe. For ex-
ample, the surely-winning threshold budget in c4 is 3 since
in order to win the game, Player 1 must win three biddings
in a row.

2https://bit.ly/2KUong4

Finally, we devise an FPTAS for the problem of find-
ing values in DAGs; namely, given a bidding game G that
is played on a DAG, an initial vertex, and an ε > 0, we
find, in time polynomial in the size of G and 1/ε, an upper-
and lower-bound on the expected payoff that Player 1 can
guarantee with every initial ratio of the form ε · k. The idea
is to discretize the budgets and bids and, using a bottom-
up approach, repeatedly solve finite-action zero-sum games.
The algorithm gives theoretical bounds on the approxima-
tion. It is a simple algorithm that we have implemented and
experimented with. Our experiments show that the differ-
ence between upper- and lower-bounds is small, thus we
conclude that the algorithm supplies a good approximation
to the value function. The experiments verify our theoreti-
cal findings. In addition, they hint at interesting behavior of
all-pay bidding games, which we do not yet understand and
believe encourages a further study of this model.

Due to lack of space, most proofs appear in the full ver-
sion (Avni, Ibsen-Jensen, and Tkadlec 2020).

Related work

Colonel Blotto games (Borel 1921) have been extensively
studied; a handful of papers include (Bellman 1969; Black-
ett 1954; Hart 2008; Shubik and Weber 1981). They have
mostly been studied in the discrete case, i.e., the armies are
given as individual soldiers, but, closer to our model, also
in the continuous case (see (Roberson 2006) and references
therein). The most well-studied objective is maximizing the
expected payoff, though recently (Behnezhad et al. 2019)
study the objective of maximizing the probability of win-
ning at least k battlefields, which is closer to our model.

All-pay bidding games were mentioned briefly in
(Lazarus et al. 1999), where it was observed that optimal
strategies require probabilistic choices. To the best of our
knowledge, all-pay bidding games (Menz, Wang, and Xie
2015) were studied only with discrete-bidding, which sig-
nificantly simplifies the model, and in the Richman setting;
namely, both players pay their bids to the other player.

First-price bidding games have been well-studied and
exhibit interesting mathematical properties. Threshold ra-
tios in reachability Richman-bidding games, and only with
these bidding rules, equal values in random-turn based
games (Peres et al. 2009), which are stochastic games
in which in each round, the player who moves is cho-
sen according to a coin toss. This probabilistic connection
was extended and generalized to infinite-duration bidding
games with Richman- (Avni, Henzinger, and Chonev 2019),
poorman- (Avni, Henzinger, and Ibsen-Jensen 2018), and
even taxman-bidding (Avni, Henzinger, and Žikelić 2019),
which generalizes both bidding rules. Other orthogonal ex-
tensions of the basic model include non-zero-sum bidding
games (Meir, Kalai, and Tennenholtz 2018) and discrete-
bidding games that restrict the granularity of the bids (De-
velin and Payne 2010; Aghajohari, Avni, and Henzinger
2019).

There are a number of shallow similarities between all-
pay games and concurrent stochastic games (Shapley 1953).
A key difference between the models is that in all-pay bid-
ding games, the (upper and lower) value depends on the ini-

1800



tial ratio, whereas a stochastic game has one value. We list
examples of similarities. In both models players pick actions
simultaneously in each turn, and strategies require random-
ness and infinite memory though in Everett recursive games
(Everett 1955), which are closest to our model, only finite
memory is required and in more general stochastic games,
the infinite memory requirement comes from remembering
the history e.g. (Mertens and Neyman 1981) whereas in all-
pay bidding games infinite support is already required in
the game “win 3 times in a row” (which has histories of
length at most 3). Also, computing the value in stochastic
games is in PSPACE using ETR (Etessami et al. 2008), it
is in P for DAGs, and there are better results for solving
the guaranteed-winning case (Chatterjee and Ibsen-Jensen
2015).

2 Preliminaries

A reachability all-pay bidding game is 〈V,E, L,w〉, where
V is a finite set of vertices, E ⊆ V × V is a set of directed
edges, L ⊆ V is a set of leaves with no outgoing edges,
and w : L → Q assigns unique weights to leaves, i.e., for
l, l′ ∈ L, we have w(l) �= w(l′). We require that every vertex
in V \L has a path to at least two different leaves. A special
case is qualitative games, where there are exactly two leaves
with weights in {0, 1}. We say that a game is played on a
DAG when there are no cycles in the graph. For v ∈ V , we
denote the neighbors of v as N(v) = {u ∈ V : 〈v, u〉 ∈ E}.

A strategy is a recipe for how to play a game. It is a
function that, given a finite history of the game, prescribes
to a player which action to take, where we define these
two notions below. A history in a bidding game is π =
〈v1, b11, b21〉, . . . , 〈vk, b1k, b2k〉, vk+1 ∈ (V × IR × IR)∗ · V ,
where for 1 ≤ j ≤ k + 1, the token is placed on vertex
vj at round j and Player i’s bid is bij , for i ∈ {1, 2}. Let BI

i
be the initial budget of Player i. Player i’s budget following
π is Bi(π) = BI

i −∑
1≤j≤k b

i
j . A play π that ends in a leaf

l ∈ L is associated with the payoff w(l).
Consider a history π that ends in v ∈ V \ L. The set of

legal actions following π, denoted A(π), consists of pairs
〈b, u〉, where b ≤ Bi(π) is a bid that does not exceed the
available budget and u ∈ N(v) is a vertex to move to upon
winning. A mixed strategy is a function that takes π and as-
signs a probability distribution over A(π). The support of a
strategy f is supp(f, π) = {〈b, u〉 : f(π)(〈v, u〉) > 0}. We
assume WLog. that each bid is associated with one vertex to
proceed to upon winning, thus if 〈b, v〉, 〈b, v′〉 ∈ supp(f, π),
then v = v′. We say that f is pure if, intuitively, it does not
make probabilistic choices, thus for every history π, we have
|supp(f, π)| = 1.

Definition 2.1 (Budget Ratio). Let B1, B2 ∈ IR be initial
budgets for the two players. Player 1’s ratio is B1/B2.3

Let G be an all-pay bidding game. An initial vertex v0,
an initial ratio r ∈ IR, and two strategies f1 and f2 for the
two players give rise to a probability D(v0, r, f1, f2) over

3We find this definition more convenient than B1/(B1 + B2)
which is used in previous papers on bidding games.

plays, which is defined inductively as follows. The probabil-
ity of the play of length 0 is 1. Let π = π′ · 〈v, b1, b2〉, u,
where π′ ends in a vertex v. Then, we define Pr[π] =
Pr[π′] · f1(π)(b1) · f2(π)(b2). Moreover, for i ∈ {1, 2},
assuming Player i chooses the successor vertex vi, i.e.,
〈bi, vi〉 ∈ supp(fi, π

′), then u = v1 when b1 ≥ b2 and oth-
erwise u = v2. That is, we resolve ties by giving Player 1 the
advantage. This choice is arbitrary and does not affect most
of our results, and the only affect is discussed in Remark 5.1.
Definition 2.2 (Game Values). The lower value in an all-
pay game G w.r.t. an initial vertex v0, and an initial ratio r
is val↓(G, v0, r) = supf infg

∫
π∈D(v0,r,f,g)

Pr[π] · pay(π).
The upper value, denoted val↑(G, v0, r) is defined dually. It
is always the case that val↓(G, v0, r) ≤ val↑(G, v0, r), and
when val↑(G, v0, r) = val↓(G, v0, r), we say that the value
exists and we denote it by val(G, v0, r).

3 Surely-Winning Thresholds

In this section we study the existence and computation of a
necessary and sufficient initial budget for Player 1 that guar-
antees surely winning, namely winning with probability 1.
We focus on qualitative games in which each player has a
target leaf. Note that the corresponding question in quan-
titative games is the existence of a budget that suffices to
surely guarantee a payoff of some c ∈ IR, which reduces
to the the surely-winning question on qualitative games by
setting Player 1’s target to be the leaves with weight at least
c. We define surely-winning threshold budgets formally as
follows.
Definition 3.1 (Surely-Winning Thresholds). Consider a
qualitative game G and a vertex v in G. The surely-winning
threshold at v, denoted STHR(v), is a budget ratio such that:
• If Player 1’s ratio exceeds STHR(v), he has a strategy

that guarantees winning with probability 1.
• If Player 1’s ratio is less than STHR(v), Player 2 has a

strategy that guarantees winning with positive probabil-
ity.
To show existence of surely-winning threshold ratios, we

define threshold functions, show their existence, and show
that they coincide with surely-winning threshold ratios.
Definition 3.2 (Threshold functions). Consider a qualita-
tive game G = 〈V,E, t1, t2〉. Let T : V → IR≥0 be a func-
tion. For v ∈ V \ {t1, t2}, let v−, v+ ∈ N(V ) be such that
T (v−) ≤ T (u) ≤ T (v+), for every u ∈ N(v). We call T a
threshold function if

T (v) =

⎧⎨
⎩
0 if v = t1
∞ if v = t2
T (v−) + 1− T (v−)/T (v+) otherwise.4

We start by making observations on surely-winning
threshold ratios and threshold functions. The proof of the
following lemma can be found in the full version.
Lemma 3.1. Consider a qualitative game G =
〈V,E, t1, t2〉, and let T be a threshold function.

4We define 1/∞ = 0 and c < ∞, for every c ∈ IR.

1801



• For v ∈ V , if Player 1’s initial ratio exceeds STHR(v),
then he has a pure strategy that guarantees winning.

• For v ∈ V \ {t1, t2}, we have STHR(v) ≥ 1.
• We have T (v−) ≤ T (v) ≤ T (v+) and the inequalities

are strict when T (v−) �= T (v+).

We first show that threshold functions coincide with
surely-winning threshold ratios, and then show their exis-
tence.

Lemma 3.2. Consider a qualitative game G = 〈V,E, t1, t2〉
and let T be a threshold function for G. Then, for every ver-
tex v ∈ V , we have T (v) ≤ STHR(v); namely, Player 1
surely wins from v when his budget exceeds T (v).

Proof. We claim that if Player 1’s ratio is T (v)+ε, for ε > 0,
he can surely-win the game. For t1 and t2, the claim is triv-
ial and vacuous, respectively. We provide a strategy f1 for
Player 1 that guarantees that in at most n = |V | steps, either
Player 1 has won or he is at some node u ∈ V with rela-
tive budget T (u) + ε + dε, where dε > 0 is a small fixed
positive number. By repeatedly applying this strategy, either
Player 1 at some point wins directly, or he accumulates rel-
ative budget n and then he can force a win in n steps by
simply bidding 1 in each round.

Suppose the token is placed on vertex v ∈ V \{t1, t2} fol-
lowing 0 ≤ i ≤ n biddings, let v−, v+ ∈ N(v) be neighbors
of v that achieve the minimal and maximal value of T , re-
spectively. For convenience, set x = T (v−), y = T (v+),
and δ = ε2. Player 1 bids 1 − x/y + δk+1−i. We first
disregard the supplementary δk+1−i. When Player 1 wins,
we consider the worst case of Player 2 bidding 0, thus
Player 1’s normalized budget is greater than

(
T (v) − (1 −

x/y)
)
/
(
1 − (1 − x/y)

)
= T (v−). On the other hand,

when Player 1 loses, Player 2 bids at least as much as
Player 1, and Player 1’s normalized budget is greater than(
T (v)− (1− x/y)

)
/
(
1− 2(1− x/y)

)
= T (v+).

Upon winning a bidding, Player 1 moves to a neigh-
bor u ∈ N(v) with T (u) = T (v−), and when losing,
the worst case is when Player 2 moves to a vertex u with
T (u) = T (v+). The claim above shows that in both cases
Player 1’s budget exceeds T (u). Since T (t2) = ∞, we have
established that the strategy guarantees not losing. In the full
version, we define Player 1’s moves precisely, and show how
Player 1 uses the surplus δ to guarantee winning.

To obtain the converse, in the full version, we show a strat-
egy for Player 2 that wins with positive probability. We iden-
tify an upper bound β in each vertex such that a Player 1
bid that exceeds β exhausts too much of his budget. Then,
Player 2 bids 0 with probability 0.5 and the rest of the prob-
ability mass is distributed uniformly in [0, β]. This definition
intuitively allows us to reverse the quantification and assume
Player 1 reveals his strategy before Player 2; that is, when
Player 1 bids at least β, we consider the case that Player 2
bids 0, and when Player 1 bids less than β, we consider the
case where Player 2 slightly overbids Player 1. Both occur
with positive probability.

Lemma 3.3. Consider a qualitative game G = 〈V,E, t1, t2〉
and let T be a threshold function for G. Then, for every ver-
tex v ∈ V , we have T (v) ≥ STHR(v); namely, Player 2
wins with positive probability from v when Player 1’s bud-
get is less than T (v).

Finally, in the full version, we show existence of thresh-
old functions. We first show existence in DAGs, which is a
simple backwards-induction argument that we have imple-
mented (see Example 1.2). To obtain existence in a general
game G, we find threshold functions in games on DAGs of
the form Gn, for n ≥ IN, in which Player 1 is restricted to
win in at most n steps. We tend n to infinity and show that
the limit of the threshold functions in the games is a thresh-
old function in G.
Lemma 3.4. Every qualitative reachability bidding game
has a threshold function.

The characterization of surely-winning threshold ratios by
means of threshold functions (Lemmas 3.2 and 3.3) have
computation complexity consequences on the problem of
finding surely-winning threshold ratios. In DAGs, finding
threshold functions is done in linear time. In general graphs,
the characterization implies a reduction to the existential
theory of the reals (ETR, for short) by phrasing the con-
straints in Definition 3.2 as an input to ETR. It is known that
ETR is in PSPACE (Canny 1988). Combining the lemmas
above, we have the following.
Theorem 3.5. Surely-winning threshold ratios exist in every
qualitative reachability game and coincide with threshold
functions, and can be irrational. Moreover, given a vertex
v and a value c ∈ Q, deciding whether STHR(v) ≥ c is in
PSPACE for general graphs and can be solved in linear time
for games on DAGs.

4 Finding Approximated Values
In this section, we focus on games on DAGs. The algorithm
that we construct is based on a discretization of the budgets;
namely, we restrict the granularity of the bids and require
Player 1 to bid multiples of some ε > 0, similar in spirit to
discrete-bidding games (Develin and Payne 2010). We first
relate the approximated value with the value in G with no re-
striction on the bids. Then, in Section 6, we experiment with
an implementation of the algorithm and show interesting be-
havior of all-pay bidding games. We define the approximate
value as follows.
Definition 4.1 (Approximate Value Function). Let G be a
game on a DAG and ε > 0. Let valε be the approximate-
value function in G when Player 1 is restricted to choose
bids in {ε · k : k ∈ IN} and Player 2 wins ties.

Our algorithm is based on the following theorem.
Theorem 4.1. Consider a game on a DAG G where each
leaf is labeled with a reward. Let v be a vertex in G, B1 ∈ IR
be an initial budget for Player 1, d(G) be the longest path
from a vertex to a leaf in G, and ε > 0. Then, we have
val(v,B1) ≤ valε(v,B1 + d(G) · ε).

Theorem 4.1 gives rise to Algorithm 3 that finds
valε(B1), for every B1 that is a multiple of ε. Note that as-
suming Player 1 bids only multiples of ε, we can assume that
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Approx-Values(v, ε)
if N(v) = ∅ then return weight(v)

∀u ∈ N(v) call APPROX-VALUES(u, ε)
for B1 = k · ε s.t. 0 ≤ B1 ≤ STHR(v) do

// Construct a two-player finite-action matrix game.
A1 = {b1 = i · ε s.t. 0 ≤ b1 ≤ B1}
A2 = {b2 = j · ε s.t. 0 ≤ b2 ≤ 1}
for b1 ∈ A1, b2 ∈ A2 do

// Player 1’s normalized new budget.
B′

1 = �(B1 − b1)/(1− b2)�ε
if b1 > b2 then

pay(b1, b2) = maxu∈N(v) valε(u,B
′
1)

else
pay(b1, b2) = minu∈N(v) valε(u,B

′
1)

valε(v,B1) = SOLVE(A1, A2, pay)

return valε

Figure 3: An FPTAS for finding upper- and lower-bounds on
the values for every initial budget ratio.

Player 2 also bids multiples of ε. The algorithm constructs a
two-player zero-sum matrix game, which is 〈A1, A2, pay〉,
where, for i ∈ {1, 2}, Ai is a finite set of actions for Player i,
and, given ai ∈ Ai, the function pay(a1, a2) is the pay-
off of the game. A solution to the game is the optimal pay-
off that Player 1 can guarantee with a mixed strategy, and
it is found using linear programming. Let STHR(v) denote
the threshold budget with which Player 1 can guarantee the
highest reward, then valε(B1) equals the highest reward, for
B1 > STHR(v). To compute STHR(v), we use the linear-
time algorithm in the previous section.

5 “Win n in a Row” Games

In this section we study a simple fragment of qualitative
games.

Definition 5.1 (Win n in a Row Games). For n ∈ IN,
let WnR(n) denote the qualitative game in which Player 1
needs to win n biddings in a row and otherwise Player 2
wins. For example, see a depiction of WnR(2) in Fig. 1.

We start with a positive results and completely solve
WnR(2). Then, we show that optimal strategies require infi-
nite support already in WnR(3).

A solution to “win twice in a row”

We start by solving an open question that was posed in
(Lazarus et al. 1999) and characterize the value as a func-
tion the budget ratio in the win twice in a row game WnR(2)
(see a depiction of the game in Fig. 1).

Theorem 5.1. Consider the all-pay bidding game WnR(2)
in which Player 1 needs to win twice and Player 2 needs to
win twice. The value exists for every pair of initial budgets.
Moreover, suppose the initial budgets are B1 for Player 1
and 1 for Player 2. Then, if B1 > 2, the value is 1, if B1 < 1,
the value is 0, and if B1 ∈ (1 + 1

n+1 , 1 + 1
n ], for n ∈ IN,

then the value is 1
n+1 .

Proof. The cases when B1 > 2 and B1 < 1 are easy. Let
2 ≥ n ∈ IN such that B1 = 1+1/n+ ε, where ε is such that
B1 < 1 + 1/(n − 1). We claim that the value of WnR(2)
with initial budgets B1 and B2 = 1 is 1/n. Consider the
Player 1 strategy that choses a bid in {k/n : 1 ≤ k ≤ n}
uniformly at random. We claim that no matter how Player 2
bids, one of the choices wins, thus the strategy guarantees
winning with probability at least 1/n. Let b2 be a Player 2
bid and let k ∈ IN be such that b2 ∈ [k/n, (k + 1)/n]. Con-
sider the case where Player 1 bids b1 = (k + 1)/n and wins
the first bidding. Player 1’s normalized budget in the sec-
ond bidding is B′

1 = B1−b1
1−b2

≥ n+1/n+ε−(k+1)/n
1−(n−k)/n > 1, thus

Player 1 wins the second bidding as well. Next, we show that
Player 1’s strategy is optimal by showing a Player 2 strategy
that guarantees winning with probability at least (n− 1)/n.
Let ε′ > ε such that (n − 1) · ε′ < 1, which exists since
B1 < 1 + 1/(n − 1). Player 2 chooses a bid uniformly at
random in {k·(1/n+ε′) : 0 ≤ k ≤ n−1}. Suppose Player 1
bids b1, and we claim that the bid wins against at most one
choice of Player 2. Let b2 be a Player 2 bid. When b2 > b1,
Player 2 wins immediately. A simple calculation reveals that
when b1 − b2 > 1/n + ε, then Player 1’s normalized bud-
get in the second bidding is less than 1, thus he loses. It is
not hard to see that there are n− 1 choices for Player 2 that
guarantee winning.

Remark 5.1. Note that the tie-breaking mechanism affects
the winner at the end-points of the intervals. For example, if
we would have let Player 2 win ties, then the intervals would
have changed to [1 + 1

n+1 , 1 +
1
n ).

Infinite support is required in WnR(3)
We continue to show a negative result already in WnR(3):
there is an initial Player 1 budget for which his optimal
strategy requires infinite support, which comes as a contrast
to the optimal strategies we develop for WnR(2), which all
have finite support.

Infinite support is required. The following lemma,
whose proof can be found in the full version, shows a con-
dition for the in-optimality of a strategy.
Lemma 5.2. Consider a Player 1 strategy f in WnR(n), for
some n ∈ IN, that has finite support b1 > . . . > bm in the
first bidding. If there is 1 ≤ i < m, 1 ≤ k ≤ i, and bi >
x > bi+1 with out(bk, bi) > out(bk, x) and out(x, x) =
out(bi, bi), then f is not optimal.

Next, we use Lemma 5.2 to show that any strategy with
finite support is not optimal.
Theorem 5.3. Consider the game WnR(3) in which Player 1
needs to win three biddings and Player 2 needs to win once.
Suppose the initial budgets are 1.25 for Player 1 and 1 for
Player 2. Then, an optimal strategy for Player 1 requires
infinite support in the first bidding.

6 Experiments
We have implemented Algorithm 3 and experiment by run-
ning it on qualitative games that are called a race in (Harris
and Vickers 1985).
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Figure 4: Upper- and lower-bounds on the values of the
games G(1, 3), G(1, 2), G(2, 2), G(2, 1), and G(3, 1).

Definition 6.1 (Race Games). For n,m ∈ IN, let G(n,m)
be the qualitative game that consists of at most n + m − 1
biddings in which Player 1 wins if he wins n biddings and
Player 2 wins if he wins m biddings. Specifically, we have
WnR(n) = G(n, 1).

The algorithm is implemented in Python and it is run on a
personal computer. In our experiments, we choose ε = 0.01.
In terms of scalability, the running time for for solving the
game G(5, 5) is at most 10 minutes. Solutions to smaller
games are in the order of seconds to several minutes.

Figure 4 depicts some values for five games as output
by the implementation. We make several observations. First,
close plots represent the upper- and lower-bounds of a game.
We find it surprising that the difference between the two
approximations is very small, and conclude that the output
of the algorithm is a good approximation of the real val-
ues of the games. Second, the plot of G(2, 1) = WnR(2)
(depicted in red), is an experimental affirmation of Theo-
rem 5.1; namely, the step-wise behavior and the values that
are observed in theory are clearly visible in the plot. Third,
while a step-wise behavior can be seen for high initial bud-
gets in G(3, 1) (depicted in purple), for lower initial bud-
gets, the behavior seems more involved and possibly contin-
uous. In Theorem 5.3, we show that optimal strategies for
initial budgets in this region require infinite support, and the
plot affirms the more involved behavior of the value function
that is predicted by the theorem. Continuity is more evident
in more elaborate games whose values are depicted in Fig-
ure 5. Both plots give rise to several interesting open ques-
tions, which we elaborate on in the next section.

7 Discussion

We study, for the first time, all-pay bidding games on graphs.
Unlike bidding games that use variants of first-price auc-
tions, all-pay bidding games appropriately model decision-
making settings in which bounded effort with no inherent
value needs to be invested dynamically. While our nega-
tive results show that all-pay bidding games are significantly
harder than first-price bidding games, our results are mostly
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Figure 5: Upper- and lower-bounds on the values of the
games G(3, 2), G(3, 3), and G(2, 3).

positive. We are able to regain the threshold-ratio phenom-
ena from first-price bidding games by considering surely-
winning threshold ratios, and our implementation for games
on DAGs solves non-trivial games such as tic-tac-toe. We
show a simple FPTAS that finds upper- and lower-bounds
on the values for every initial budget ratio, which we have
implemented and show that it performs very well.

We leave several open questions. The basic question on
games, which we leave open, is showing the existence of a
value with respect to every initial ratio in every game. We
were able to show existence in WnR(2), and Fig. 5 hints
the value exists in more complicated games. Also, while we
identify the value function in WnR(2), we leave open the
problem of a better understanding of this function in general.
For example, while for WnR(2) we show that it is a step-
wise function, observing Fig. 5 it seems safe to guess that
the function can be continuous. Finally, characterizing the
function completely, similar to our solution of WnR(2), in
more involved games, is an interesting and challenging open
problem.
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