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Abstract

It is widely observed that individuals prefer to interact with
others who are more similar to them (this phenomenon is
termed homophily). This similarity manifests itself in various
ways such as beliefs, values and education. Thus, it should
not come as a surprise that when people make hiring choices,
for example, their similarity to the candidate plays a role in
their choice. In this paper, we suggest that putting the deci-
sion in the hands of a committee instead of a single person
can reduce this bias.
We study a novel model of voting in which a committee of ex-
perts is constructed to reduce the biases of its members. We
first present voting rules that optimally reduce the biases of a
given committee. Our main results include the design of com-
mittees, for several settings, that are able to reach a nearly op-
timal (unbiased) choice. We also provide a thorough analysis
of the trade-offs between the committee size and the obtained
error. Our model is inherently different from the well-studied
models of voting that focus on aggregation of preferences or
on aggregation of information due to the introduction of sim-
ilarity biases.

1 Introduction

Homophily – the tendency of people to prefer others who
are more similar to them – was long studied in several disci-
plines including sociology and economics (see (McPherson,
Smith-Lovin, and Cook 2001) and references within as well
as (Currarini, Jackson, and Pin 2009)). The similarity can be
over different dimensions varying from values and beliefs
to social status and gender. Usually homophily is discussed
in the context of structure of social networks – individuals
choose friends or spouses based on similarity. However, it
was observed that homophily also plays a role in other set-
tings, such as hiring (Rivera 2012). When the decision is of
a personal nature (e.g., choosing a spouse) this bias towards
similar individuals is natural and expected. However, when
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the decision has a more public nature (e.g., hiring for a firm
or for an academic department), mitigating this bias can be
valuable. As we will see in this paper, entrusting decisions
such as who to hire in the hands of a committee may help in
reducing this bias.

Committees are chosen to make decisions for various rea-
sons. Sometimes individuals have different preferences and
the committee is formed to make a decision that will max-
imize the individuals’ “happiness” (“aggregation of prefer-
ences”). Other times there is a true state of the world which
individuals have noisy signals about and a planner wishes
to discover what this true state is (“aggregation of informa-
tion”). Here we suggest that there are some settings in which
there is an additional benefit for using a committee instead of
a single decision maker – that is to reduce individual biases.
To further study the advantages of a committee when the in-
dividuals are biased, we devise a simple model in which a
planner wishes to learn the true state of the world. To this
end he organizes a committee that consists of experts that
have biased views of the true state of the world. By utilizing
some information on the experts’ biases the planner is able
to extract a less biased estimate of the true state.

A concrete example of such a setting, from which we will
also borrow our terminology, is academic hiring. Consider a
dean that needs to form a hiring committee to choose among
several different candidates, each working in a different sub-
area of some academic field. In our setting, the dean, who is
not from the academic field in question, has no information
about the “quality” of the candidates. All faculty members
in the academic area – the “experts” – have estimates of the
candidates qualities that are shaped by the “true” qualities of
the candidates and their own cognitive biases. Specifically,
faculty members prefer candidates that are more similar to
them and as a result underestimate the qualities of candi-
dates in sub-fields that are far from their own sub-field. The
dean, who is aware of these biases, will thus naturally at-
tempt to construct a committee that is “diverse” in terms of
its biases as to enable him to negate some of these biases and
determine who the highest quality candidate is.

To model the similarities between the experts and can-
didates we assume that the candidates and experts reside
in known locations in some metric space1. The similar-

1This is in line with to the way similarity between voters and
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ity between a candidate and an expert is determined by
the distance between them. The two main metric spaces
we consider are the unit interval and the more general d-
dimensional unit hyper-cube. The former can model, for ex-
ample, how theoretical their research is, while the latter can
capture several aspects of their research simultaneously.

We assume that each candidate j has an absolute quality
qj ∈ R. To model the cognitive process by which experts
decide which candidate to vote for we assume that an ex-
pert i that resides at location ei in the metric space assigns
a grade gi(j) = qj − d(ei, cj) to candidate j that resides in
location cj (where d(ei, cj) is the distance between the two
locations). Next, each expert votes for the candidate with the
maximal grade: votei = argmaxj∈C gi(j), where C is the
set of candidates. We stress that the grade an expert gives a
candidate is not necessarily a part of some conscious com-
putation but rather a result of biases that the expert might
be unaware of. Given a committee E of experts, the dean
that is aware of the locations of the experts and their vot-
ing process will aggregate the votes votei of all committee
members, and will need to pick some candidate j∗. Due to
the experts’ biases the dean will not always be able to find
the candidate that truly maximizes qj∗ among all qj , so we
will aim to minimize the dean’s regret 2: maxj∈Cqj − qj∗ .

To familiarize the reader with our model, let us inspect a
few simple examples. In all three examples depicted in Fig-
ure 1 the candidates are marked by circles, the experts by
squares and there is an arrow from each expert to the can-
didate he votes for. First, in Figure 1(a) we observe that if
we only have two candidates, an expert located at equal dis-
tances from both will always vote for the candidate of higher
quality. In Figure 1(b) we see that for three candidates, hav-
ing an expert at equal distances from each pair of candidates
does not necessarily suffice to find the best candidate. This
is due to the fact that the expert located at 0 might prefer
the candidate at 0 instead of voting for the better of the can-
didates located at −1 and +1. Lastly, in Figure 1(c), we see
that combining information from several experts may suffice
for determining the best candidate. In the example the expert
at −0.4 vote implies that the quality of the candidate at 0 is
at most 0.2 less than the quality of the candidate at −1. This
is because the distance between the expert at −0.4 and the
candidate at 0 is smaller by 0.2 than the distance between
him and the candidate at −1. The expert at +0.4 vote im-
plies that the candidate at 1 is better by at least 0.2 from the
candidate at 0. Hence, the best candidate is the one at 1.

Our Results

We start our investigation by considering given sets of can-
didates and experts and ask which voting method should we
use to determine who the best candidate is. In the example in
Figure 1(c) we have already seen that this can require com-
bining the experts’ votes in a non-trivial way. We show that

political parties is modeled in political science (Enelow and Hinich
1989; Roemer 2001).

2Our definition of regret differs from the online learning
term regret, although conceptually they both address similar sub-
optimality issues.
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Figure 1: Examples of simple committees.

majority voting, or more generally, plurality voting, can be
extremely bad for some sets of candidates. We then iden-
tify the regret-minimizing voting method, and show how it
can be implemented efficiently using a set of shortest-path
computations.

Next, we study the question of committee size: how large
must a committee be in order to achieve a given level of re-
gret? There are two variants of this problem: the first is the
“universal committee” in which our committee must be cho-
sen before the locations of the set of candidates are known,
and the second is the “ad-hoc committee” that is chosen for
a set of candidates with known locations. In our academic
hiring setting, the first “universal committee” describes the
scenario in which the dean chooses a hiring committee be-
fore the applications arrive, while the second “ad-hoc com-
mittee” describes a scenario in which a hiring committee is
chosen after the subareas of the candidates are known. When
both the candidates and the experts are located on the unit
interval, we are able to give an essentially complete picture:

Theorem 1.1 In the unit interval, for every ε > 0 and can-
didate set of size m, there exists a universal committee of
size O(m/ε) that achieves regret of at most ε. The bound is
asymptotically tight even for ad-hoc committees.

The universal committee is constructed by equally spac-
ing the experts across the unit-interval. It might come as a
surprise that spacing of O(ε) does not suffice. In particular,
the committee size must increase with the size of the candi-
date set. Thus, the only advantage in choosing the committee
in an ad-hoc manner is when the size of the candidate set is
unknown in advance. This is not the case for higher dimen-
sional metric spaces:

Theorem 1.2 In the d-dimensional unit hyper-cube, for ev-
ery ε > 0 and candidate set of size m the following commit-
tees achieve regret of at most ε:

• A universal committee of size O(md/εd).
• An ad-hoc committee of size O(m2/ε).

Moreover, every universal committee for m ≥ 2d+1 candi-
dates requires Ω(1/εd) size.

While the universal committee, again, is obtained by spread-
ing the experts “uniformly” over the unit hypercube (in
an (ε/m)-net), ad-hoc committees can be much smaller.
Roughly speaking, this is done by constructing a maximal
spanning tree of the candidates and constructing an ε-cover
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of the tree. For d = 2 we can further improve this bound and
construct ad-hoc committees of size O(m1.5/ε).

For ad-hoc committees, we also consider the computa-
tional question of efficiently constructing a committee that
chooses a candidate with minimal regret. For the unit inter-
val we show:

Theorem 1.3 There exists a polynomial time algorithm
that, given a set of candidates in the unit interval and a tar-
get committee size k, outputs a committee of size k whose
regret is within a constant factor of the regret of the best
committee of size k.

Unfortunately, this is not the case for general discrete met-
ric spaces for which we show that constant approximation
is hard, even in a weak bi-criteria sense: It is NP-hard to
approximate to with a factor better than Ω(logm) the com-
mittee size needed to achieve error ε = 0 (“a perfect com-
mittee”).

Related Work

Collective decision making has been studied by various au-
thors (e.g., (Young 1988; Austen-Smith and Banks 1996;
Feddersen and Pesendorfer 1998)). In this setting commit-
tee members need to jointly decide which state of the world
is correct. A leading example is that of a jury that is ap-
pointed to decide whether the defendant is guilty or inno-
cent. Each committee member receives some noisy signal
about the state and submits a vote accordingly. The goal of
this literature is to find voting rules that minimize the proba-
bility of a mistake. Often, the search domain is the set of ma-
jority mechanisms. Of particular interest is the comparison
between simple majority and unanimity. In our setting vot-
ing is for candidates; a main contribution of our paper is the
consideration of a particular type of noise, namely the dis-
tance between the voter and the different candidates. A novel
aspect of our work is that it provides a first formal model to
deal with the optimal selection of jury while modeling the
jury members’ biases. While this topic is of course of major
importance (see, e.g., (Neilsona and Winterb 2000)) we are
not aware of formal models dealing with this fundamental
topic in economic and social systems.

Our paper is situated in an active line of work in AI
that takes a utilitarian view of voting (Procaccia and Rosen-
schein 2006; Boutilier et al. 2015; Anshelevich et al. 2018;
Caragiannis et al. 2017). In this line of work each voter has
an underlined utility function. The voter then reports his
preferences based on this utility function. For example, he
may only report his top preference (as in our case) or give a
complete ordinal ranking. Given this partial information the
objective is to choose a candidate that approximately maxi-
mizes the social welfare. Note that this is different from our
work as we seek to choose a candidate that is objectively the
best and not to maximize the social welfare.

Treating both voters and candidates as points in space,
where distances between them is the basis for voting is quite
standard (see, e.g., (Enelow and Hinich 1989)). An exciting
recent line of work initiated by Anshelevich et al. (Anshele-
vich et al. 2018; Anshelevich and Postl 2017) is particularly
relevant: voters and candidates are points in a metric space

and each voter prefers candidates that are closer to him. This
line of work takes a utilitarian point of view and explores the
distortion of known voting rules and develops new simple
rules.

Moreover, some models where such type of representa-
tion of candidates and voters as points in a metric space
is augmented with some objective quality for the candi-
dates have been considered (see, e.g., (Maravall-Rodriguez
2005)). This is however studied in the context of shaping
policies by candidates rather than in the context of removing
experts’ biases. A similar setting was also consider in (Kr-
ishna and Morgan 2011) in which a large population should
vote for one of two candidates, each has two properties: ide-
ology and competence. Each voter might prefer a candidate
of different ideology but they all agree on the competence
of the candidates. The paper is interested in a different set
of questions than the ones we consider, in particular it con-
siders mechanisms for voting for the whole population (and
not just a chosen committee) resulting in the more compe-
tent candidate being elected.

A different body of literature addresses the problem of
strategic experts which would like to influence the outcome.
The setting for two experts was studied in (Krishna and Mor-
gan 2001) as an extension of Crawford and Sobel celebrated
paper (Crawford and Sobel 1982). In general, assuming that
the agents are rational, we can use mechanism design to ad-
dress this concern. A major tool in this context is virtual im-
plementation (Hitoshi 1993): ask the experts for their reports
and then bias the decision (e.g., based on reported preference
(Gerardi, McLean, and Postlewaite 2009)) in a way that fa-
vors experts which were more consistent with the rest. The
approach we take here has some of that flavor, as we bias
the decision based on information we have about agents’ bi-
ases. Another related work is the one by (Alpern and Gal
2009), which conducts an equilibrium analysis of selection
committees under sequential voting with veto power.

2 Model and Preliminaries
In our setting, there is a set C = {1, . . . ,m} of m can-
didates, located along a metric space Ω. The location of
candidate j ∈ C is cj ∈ Ω and is known to all and its
quality is qj ∈ R. The quality vector of the candidates
is q = (q1, . . . , qm) ∈ R

m and the location vector is
c = (c1, . . . , cm) ∈ Ωm. Along the same metric space Ω,
there is also a set E of experts, whose locations are known
to all.

A planner that does not know the qualities of the candi-
dates needs to choose the best one. To make this decision
the planner chooses a committee E ⊂ E of size k among
the set of experts; we identify the members of the commit-
tee with {1, . . . , k}. The experts location vector is given by
e = (e1, . . . , ek) ∈ Ωk.

Each expert i ∈ E gives candidate j a grade gi(j) =
qj − d(ei, cj). The expert then votes for the candidate with
the maximal grade: votei(q) = argmaxj gi(j). When q is
clear from the context we omit it and simply write votei.

A voting rule is a function V : Ck → C, which re-
ceives the votes vote(q) = (vote1(q), . . . , votek(q)) of
the committee members, and returns a winning candidate.
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Our goal is to choose the candidate with the highest qual-
ity. However, as discussed in the introduction, we are often
unable to choose the candidate with the highest quality. In-
stead, we would like to minimize the regret. The regret of
selecting candidate j with respect to a quality vector q is
R(j,q) = maxj′{qj′ − qj}. The regret of a voting rule V is
R(V ) = maxq R(V (vote(q)),q).

We note that for simplicity of presentation we do not deal
with tie breaking explicitly throughout the paper, rather we
assume that ties are broken in favor of “our needs”. It is easy
to verify that this can be formally addressed by adding an
arbitrarily small ε to the quality of the chosen candidate.

3 Minimal Regret Voting Rule

The problem of choosing a committee to minimize the regret
is composed of two problems. First, a committee should be
chosen. Second, a voting rule should be chosen; that is: an
aggregation rule that, given the committee members’ votes,
chooses a candidate that minimizes the regret. In this sec-
tion, we deal with the second problem of choosing a voting
rule: given the locations of the candidates c = (c1, . . . , cm),
the locations of the experts e = (e1, . . . , ek), and the votes
of the experts vote = (vote1, . . . , votek). Which candidate
should be chosen in order to minimize the regret over all
quality vectors? We first observe that natural voting rules,
such as majority (or plurality), may perform very poorly:

Observation 3.1 For every committee, there exist instances
for which applying the majority voting rule will result in re-
gret of Ω(1).

Proof: Consider the case of 3 candidates on the unit inter-
val located at 0, 1/2, 1. We will show that for any possible
locations of a set of experts (of any size), there is a vector
of qualities where the majority rule will result in regret of
Ω(1). Assume without loss of generality that the majority
of the experts lie to left or exactly at 1/2. Now consider the
quality vector q1 = 0, q2 = 1, q3 = 1.4. Notice that all the
experts left of 1/2 vote for candidate 2, and so the majority
vote has regret 0.4.

We next give a polynomial-time voting rule that mini-
mizes the worst-case regret over any quality vector q. More-
over, we will see that by using the optimal voting rule we can
make the regret as small as desired using sufficiently large
committees.

Let vi = votei(q) and v = (v1, . . . , vk). The key for
defining the minimal regret rule is observing that different
qualities vector q′ may result in the same vector of votes
v. We refer to the set of such quality vectors as indistin-
guishable qualities and denote it by Q(v) = {q′ : v =
vote(q′)}. To minimize the regret we should choose the
candidate with minimal regret over the set of the indistin-
guishable qualities. This is a candidate j ∈ C such that
j = argminj maxq′∈Q(v) R(j,q

′) and we refer to it as the
minimal regret candidate.

We show a set of linear programs that are used to com-
pute the minimal regret candidate. The first step is to ob-
serve that the set of indistinguishable qualities Q(v) can be
written using linear constraints. Specifically, for each expert
i ∈ E and each candidate j ∈ C we have the constraint:

qvi − d(ei, cvi) ≥ qj − d(ei, cj), where the variables are the
unknown qualities qj . For each candidate h such that there
exists at least a single expert that voted for him and every
j ∈ C, we can compute the regret of selecting h when j is a
better candidate as

max
q

Rh,j = qj − qh

∀i ∈ E, qvi − d(ei, cvi
) ≥ qj − d(ei, cj).

We can compute the minimal regret candidate by solving
at most m2 linear programs, one per pair of candidates. For
each candidate h we compute Rh = maxj Rh,j and select the
candidate h with the minimal Rh.

In the next theorem we show how to compute the minimal
regret candidate more efficiently. This is done by reducing
the problem to computing shortest paths on a directed graph.
Theorem 3.2 Given candidate locations c, experts loca-
tions e and expert votes v, the minimal regret candidate can
be computed in time O(mk +m3).
Proof: We construct a directed graph where every node is
associated with a candidate in C. For each expert i ∈ E
we add a directed edge from the candidate that i voted
for (vi) to any other candidate h with weight wvi,h =
d(ei, ch)− d(ei, cvi). Recall that we have qvi − d(ei, cvi) ≥
qh − d(ei, ch) or equivalently

qvi ≥ qh − wvi,h (1)
We claim that the resulting graph does not have cycles with
negative weights. To show this consider a cycle

vi1 → vi2 → · · · → vin → vi1
Summing the corresponding Equations (1) we get

n∑
r=1

qvir ≥
n∑

r=1

qvir −
n∑

r=1

wvir ,vir+1
,

which implies that
∑n

r=1 wvir ,vir+1
≥ 0, hence the sum of

the weights along any cycle is non-negative.
Therefore, we can find the minimal regret candidate as

follows: (1) Build the directed weighted graph (in time
O(mk)), (2) Solve all-pair shortest paths (either naively in
time O(m3) or use one of the more sophisticated matrix
multiplication algorithms), and compute a matrix A where
Aj1,j2 is the regret for choosing candidate j1 compared to
candidate j2. Then, (3) for each candidate h compute Rh (in
time O(m) by computing maximum in row h of A, for a
total time of O(m2)) and finally, (4) compute the minimal
regret candidate h∗ (in time O(m) by computing min Rh).

4 Universal Committees
We are now ready to discuss our main question, how should
we form a committee that will be able to choose the best
candidate even when the locations of the candidates are un-
known in advance (i.e., a universal committee). More for-
mally, our goal is to form a committee that would be able
to guarantee a regret of at most ε for any set of m candi-
dates that may appear. We do assume that the number of
candidates m is known in advance. As we shall see, this is
unavoidable since the committee size must grow with the
number of candidates.
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4.1 General Upper bound

We begin by constructing a universal committee that
achieves a regret of at most ε. We assume here that we
can choose an expert at any point in the metric space (i.e.,
E = Ω). We will need the following definition:
Definition 4.1 (δ-cover) A set E ⊂ Ω is an δ-cover of a
metric space Ω if for each point x ∈ Ω there exists y ∈ E
such that d(x, y) ≤ δ.
We construct the universal committee by constructing an
(ε/4m)-cover of Ω:

Lemma 4.2 Let Ω be a connected set. Any (ε/4m)-cover of
Ω is a universal committee for m candidates that guarantees
a regret of at most ε.

Proof: We will show that given the votes of the experts
on any set locations c = (c1, . . . , cm) of the m candidates,
we can determine the difference in quality between any two
candidates that were voted by at least one expert up to an
additive error of ε. We assume that every candidate received
at least a single vote by one of the committee members. 3

Consider the following directed graph. Every candidate
j ∈ C is associated with a vertex vj . There exists an edge
between candidates j and j′ if there are experts i and i′ such
that votei = j, votei′ = j′, and d(i, i′) ≤ 2ε/(4m). Such
an edge is assigned weight w(j, j′) = d(i, j)− d(i, j′). The
votes of the experts imply that qj − d(i, j) ≥ qj′ − d(i, j′)
and qj − d(i′, j) ≤ qj′ − d(i′, j′).

Combining the last inequalities with the bounds on dis-
tances and the triangular inequality implies that

d(i, j)− d(i, j′) ≤ qj − qj′ ≤ d(i, j)− d(i, j′) + ε/m.

Therefore, the difference in quality is w(j, j′) up to an addi-
tive error of ε/m.

Consider any two nodes in the graph (which correspond to
candidates in C) which are connected by a path vj1 , . . . , vjr .
Since the difference in qualities between any two consecu-
tive candidates j, j′ is w(j, j′) up to an error of ε/m, the
difference between qjr and qj1 is

∑r−1
i=1 w(ji, ji+1) up to an

additive error of ±ε.
It remains to show that the resulting graph is strongly

connected. Consider two nodes j and j′ which are not con-
nected. Consider a shortest path p in the metric space con-
necting j and j′. For any point on the path, there is an ex-
pert of distance at most ε/(4m). Consider the set of experts
Ep ⊂ E which are at distance at most ε/(4m) from the path
p. We can create a path from the experts in Ep such that
the distance between any two is at most 2ε/(4m), where the
first expert votes for j and the last votes for j′. As we march
along the path, if an expert votes differently than its prede-
cessor, we add an edge to the graph, and thus we have a path
in the graph connecting j and j′.

The following theorem is a straightforward corollary of
the last lemma, using standard bounds on covers.

3The proof can be easily extended to the case that some of the
candidates were not voted by any expert. This is done by noting
that the quality of a candidate j that did not receive any votes is
at most qj ≤ qj′ + ε/4m where j′ is another candidate that was
voted for.

Theorem 4.3 For any number of candidates m, and any
d ≥ 1, the metric space Ω = [0, 1]d admits a universal
committee of size (4m/ε)d that guarantees a regret of ε.

We establish a better bounds for the special case of d-
dimensional unit hyper-cubes with two candidates:

Theorem 4.4 For the case of m = 2 candidates and any
d ≥ 1, the metric space Ω = [0, 1]d admits a universal
committee of size O(2d/ε) that guarantees a regret of ε.

Proof: We show how to choose a set of experts E with
the property that for any two candidates there exists a single
expert in E that can distinguish between them with accu-
racy ε. For x ∈ {0, 1}d define x̄ = 1 − x, component-wise,
i.e., x̄i = 1 − xi. We call the line connecting x to x̄ the
diagonal of (x, x̄). Along each diagonal of (x, x̄) we place
experts spaced ε/2 away from each other. This gives a total
of O(2d/ε) experts.

Given two candidates in locations c1 and c2, consider the
equi-distance hyperplane from c1 and c2. This hyperplane
must intersect at least one of the diagonals (x, x̄). By the
construction, there exists an expert at distance at most ε/2
from the intersection point, which implies that the difference
between its distance to c1 and c2 is at most ε.

4.2 Lower Bounds

We begin by considering d-dimensional unit hyper-cubes
and present two lower bounds on the required size of the
committee: one for achieving a regret smaller than 1/2 and
the other for achieving a regret smaller than ε ≤ 1/

√
d:

Theorem 4.5 For any d ≥ 1, a universal committee that
guarantees a regret of at most 1/2 in Ω = [0, 1]d must be of
size at least m− 1.

Proof: For contradiction, assume there is a universal com-
mittee E of size m− 2. For every expert in E, locate a can-
didate in the exact same location as the expert. Then, locate
the additional two candidates in (0, . . . , 0) and (1, . . . , 1),
respectively. The quality of a candidate is determined as fol-
lows. We have two states of the world. In state plus the qual-
ity of each candidate is its first coordinate, i.e., x1, and in
state minus it is the complement of its first coordinate, i.e.,
1− x1.

Note that each expert selects the candidate which is at
the same location as him, since for any other candidate the
difference in quality is at most the distance between them.
Therefore, the two states of the world are indistinguishable
given the experts’ votes, and the same candidate will be se-
lected. The chosen candidate has quality either q or 1 − q,
while the best candidate has quality 1. Consequently, the re-
gret is max{1− q, 1− (1− q)} ≥ 1/2.

Theorem 4.6 For any d ≥ 1, a universal committee that
guarantees a regret of at most ε ≤ 1/

√
d for any set of

m ≥ 2d + 1 candidates in [0, 1]d must be of size at least
(2ε

√
d)−d.

Proof: Consider partitioning the space into boxes of size
(2δ)d each; there are (2δ)−d such boxes. We will show that
if there is a box that does not include any expert, then we
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can select 2d candidates at the exterior of the box and one
candidate in the interior of the box, such that for any expert
outside the box, there exists at least one exterior candidate
whose distance from the expert is smaller by at least ε than
the distance between the expert and the internal candidate.
This implies that if the quality of the internal candidate is
higher than the other candidates by ε, no expert will vote
for the internal candidate. Therefore, we can force a regret
of ε in this case. Thus, any box should have an expert in its
interior, and hence the number of experts is at least (2δ)−d.

Let δ = ε
√
d < 1, then ε = δ/

√
d. Consider the hyper-

box, [−δ,+δ]d and the 2d unit vectors δei and their nega-
tion −δei. Consider any point x 
∈ [−δ,+δ]d, and assume
that |x1| = maxi |xi|. We compare its distance to the ori-
gin versus its distance to ±δe1. The distance of x to the

origin is
√∑d

j=1 x
2
j = R. The distance of x from δe1 is√

(|x1| − δ)2 +
∑d

j=2 x
2
j ≥ R− 2δx1

2R . Since |x1| ≥ R/
√
d

we have that the difference in the distance is at least δ/
√
d.

This implies that any point outside the box has a distance
smaller by δ√

d
to at least one of the ±δei compared to the

origin.
To conclude, if there is a box which does not have any

expert, we build the bad example as follows. We locate 2d+1
candidates, one in each ±δei with quality 1 and one in the
origin with quality 1+ δ√

d
. No expert outside the box would

prefer the candidate at the origin which implies the lower
bound.

Next, we reconcile the last two lower bounds for the case
of the unit interval. Interestingly, this lower bound holds
even for the case of an ad-hoc committee (the committee
is chosen only after the candidates’ locations are known).

Theorem 4.7 For the unit interval, every m ≥ 3 and ε > 0
there exists a set of m candidates such that every (even ad-
hoc) committee that achieves regret at most ε requires size
k = Ω(m/ε).

Proof: We sketch the proof of the dual argument that for
every m ≥ 3 and k, if the set of candidates are located
along the unit interval in equal distances: ci = i−1

m−1 for
i = 1, . . . ,m, then every committee of size k achieves re-
gret at least Ω(m/k). The complete proof can be found in
the full version.

Before presenting the exact construction, we give a high-
level description of the intuition behind it. We construct two
different quality vectors q1 and q2 that, on the one hand,
admit identical voting of all k experts (and are therefore in-
distinguishable from the planner’s point of view), and on the
other hand, admit an Ω(m/k) gap between the highest and
the lowest qualities.

Both quality vectors consist of a decreasing sequence of
qualities followed by an increasing sequence. The differ-
ence is that in q1, qualities first decrease sharply and then
increase mildly, while in q2 they first decrease mildly and
then increase sharply. This way, the best candidate in q1 is
the left-most candidate, while the best candidate in q2 is the
right-most one. The actual construction is subtle: the chal-
lenge is to delicately find the right sequence of qualities that

ensure identical voting on the one hand, yet a sufficiently
large gap in qualities on the other hand.

We now proceed with the exact construction. Divide the
line into 10k equal intervals of size δ = 1/(10k) each.
This way, there are 10k

m−1 intervals between any two candi-
dates. Let e = (e1, . . . , ek) be the location of the experts
such that ei ≤ ei+1 for every expert i. Given an index
� ∈ 1, . . . , 10k

2(m−1) (i.e., the index of an interval that resides
to the left of the center of two consecutive candidates), two
consecutive candidates are said to be �-empty if there are no
experts in the �th interval between them, nor in its “mirror”
interval �̂ := 10k

m−1 − � + 1. Pick � ≤ 10k
2(m−1) for which the

number of �-empty pairs is maximal and let m′ denote this
number. Observe that m′ > 4m/5. 4 Finally, further divide
the set of �-empty pairs into two equal-size sets — the left
set and the right set. 5

Let the pair (j, j + 1) be an �-empty pair of candidates
from the left set. We wish to build the qualities such that
every expert in [cj , cj+(�̂−1)δ] votes for candidate j, while
every expert in [cj + �̂δ, cj+1] votes for candidate j + 1.
(recall, there are no experts inside the interval [cj + (�̂ −
1)δ, cj + �̂δ]). All experts in [cj , cj + (�̂ − 1)δ] will prefer
candidate j over candidate j + 1 if and only if

qj+1 ≤ qj +
1

m− 1
− 2(�̂− 1)δ. (2)

Similarly, all experts in [cj + �̂δ, cj+1] will prefer candidate
j + 1 over candidate j if and only if

qj+1 ≥ qj +
1

m− 1
− 2�̂δ. (3)

The combination of the two inequalities leave us a leeway
of 2δ. In particular, we can decrease the quality of qj+1 by
value 2(�̂ − 1)δ − 1

m−1 + Δ for any Δ ∈ [0, 2δ]. (This is

indeed a decrease since (̂�− 1)δ ≥ 1
2(m−1) ).

Consider next an �-empty pair (j, j+1) from the right set.
We build the qualities such that every expert in the interval
[cj , cj + (� − 1)δ] votes for candidate j, while every expert
in the interval [cj + �δ, cj+1] votes for candidate j + 1. By
replacing �̂ by � in Equations (2) and (3) we can increase the
quality of qj+1 by 1

m−1 − 2(�− 1)δ+Δ for any Δ ∈ [0, δ].
We now present the explicit quality vectors q1 and q2. In

both q1 and q2, for every pair (j, j + 1) that is not �-empty,
we set qj = qj+1. In q1, for a pair of candidates j, j + 1

in the left set, we set q1j+1 = q1j + 1
m−1 − 2�̂δ, while for

a pair in the right set, we set q1j+1 = q1j + 1
m−1 − 2�δ.

In q2, for every �-empty pair in the left set, we set q2j+1 =

q2j +
1

m−1 −2�̂δ+2δ , and for every �-empty pair in the right
set, we set q2j+1 = q2j +

1
m−1−2�δ+2δ. For these qualities it

4Otherwise, for any � ≤ 10k
2(m−1)

there exists at least m/5 pairs
that are not �-empty. The total number of experts required for this
is 10k

2(m−1)
· m

5
= m·k

m−1
> k.

5We briefly discuss the case that m′ is odd later.
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holds that q1m = q11−m′δ while q2m = q21+m′δ. This implies
that q1 and q2 are indistinguishable and since m′ ≥ 4m/5,
the regret is at least mδ = Ω(m/k), as required.

5 Ad-hoc Committees

We return to discussing the case of forming a committee
after observing the locations of the candidates. In the full
version, we provide a polynomial time approximation for
the unit interval. Consider the candidates location vector
c = (c1, . . . , cm). Roughly speaking, the heart of the algo-
rithm is identifying the interval which is at the center be-
tween the leftmost and rightmost candidates and locating
about half of the experts in this interval. The algorithm then,
cleverly decides how many experts are needed in each of the
rest of the intervals [cj , cj+1] and essentially equally spaces
them in each interval.

Our techniques also imply the dual approximation: given
a target regret ε we can find a committee whose size is within
a constant factor of the size of the smallest committee with
ε regret for that set of candidates.

For general discrete metric spaces we show that constant
approximation is hard, even in a weak bi-criteria sense. To
this end, we consider the problem of computing a minimal
size committee that always chooses the optimal candidate
(i.e., perfect committee) and show: 6

Theorem 5.1 Approximating the perfect committee prob-
lem to with an o(logm)-factor is NP-hard.

To prove the theorem we define the pair cover problem in
which we are given a bipartite graph and need to compute
a minimal subset of left vertices such that each pair of right
vertices has a left vertex that is connected to both. We show
that the latter problem is NP-hard to approximate with in
o(logm)-factor by reducing from set cover.

Next, we contrast ad-hoc committees and universal com-
mittees with respect to the required size of a committee guar-
anteeing at most ε regret. As discussed in Section 4, for the
unit interval there is no difference between the performance
of universal and ad-hoc committees. Interestingly, for higher
dimensions, observing the locations of the candidates can
help reduce the committee size needed to guarantee a certain
regret. This is done by first building a minimum spanning
tree (MST) over the candidates, then densely populating the
edges of the MST with experts. The length (or weight) of an
MST T is denoted by w(T ).

Theorem 5.2 Let Ω be a connected metric space and T a
minimum spanning tree of the locations of the candidates
c = (c1, . . . , cm) over Ω with a total weight of w(T ). There
exists a committee of size k = O(w(T )m/ε) which guaran-
tees a regret of at most ε.

Proof: Define a new metric space ΩT that includes only
points on the edges of T . We now create an (ε/4m)-cover
for ΩT , which has size at most k = O(w(T )m/ε) and lo-
cate the k experts in those locations. By Lemma 4.2 this is
a universal committee for ΩT which guarantees a regret of
at most ε. Since our set of candidates, by construction, are

6Note that a perfect committee does not always exist.

in ΩT , it implies that in particular the committee will have
regret at most ε.

Let D denote the diameter of Ω. Clearly, the weight of
the MST is bounded by Dm, which implies the following
corollary.

Corollary 5.3 For any connected metric space Ω of di-
ameter D, there exists an ad-hoc committee of size k =
O(Dm2/ε) which guarantees a regret of at most ε.

The last corollary implies a big separation between ad-hoc
and universal committees. While the required size of a uni-
versal committee is exponential in the dimension of the met-
ric space, this exponential growth can be avoided in the case
of ad-hoc committees. For the special case of Ω = [0, 1]2 we
provide a better bound by establishing a better bound on the
weight of the MST. We show:

Theorem 5.4 For Ω = [0, 1]2, there exists a committee of
size k = O(m1.5/ε) which guarantees a regret of at most ε.

6 Discussion

In this paper we initiate the study of forming committees
to reduce biases in voting. We show that eliminating biases
is a difficult task and often requires very large and diverse
committees. Furthermore, the required size of the commit-
tee increases as the dimension of the metric space increases.
To remedy this, one should prefer forming ad-hoc commit-
tees whenever possible, as we show that for d-dimensional
hyper-cubes ad-hoc committees can be substantially smaller.
Alternatively, to simplify the metric space, one should seek
to minimize the exposure of the experts to irrelevant infor-
mation that may bias them. For hiring decisions, one can,
for example, refrain from disclosing the family status of the
candidates.

In the full version of the paper we explore additional as-
pects of committee formation. We consider randomized vot-
ing rules and show that for the unit interval they can perform
better than deterministic voting rules by a constant gap. We
also revisit the assumption that experts vote for the candi-
date with the maximal grade. Instead we allow the experts
to vote strategically in order to get a candidate they prefer
to be chosen. We show that if it is possible to locate many
experts at the same location then we can transform any non-
strategic voting rule to a strategyproof voting rule that ob-
tains the same regret by tripling the size of the committee
and locating three experts in each original location. If we
are not allowed to locate multiple experts at the same loca-
tion then even for 3 candidates on the unit interval there is
no strategyproof voting rule that is guaranteed to do well.

Our work raises some new and exciting questions. On a
more concrete level, we leave open the question of clos-
ing the gap between the lower bound and upper bound
on the size of ad-hoc committees for d-dimensional unit
hyper-cubes. More generally, in line with (Anshelevich et
al. 2018), it is interesting to consider the tradeoff between
the quality of the chosen candidate and the amount of infor-
mation each expert should report. In our work each expert
only reports his top candidate. By how much can we im-
prove the quality of the chosen candidate (or reduce the size
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of the committee) if we allow each expert to report his two
(or more) favorite candidates?
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