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Abstract

VCG is a classical combinatorial auction that maximizes so-
cial welfare. However, while the standard single-item Vick-
rey auction is false-name-proof, a major failure of multi-item
VCG is its vulnerability to false-name attacks. This occurs al-
ready in the natural bare minimum model in which there are
two identical items and bidders are single-minded. Previous
solutions to this challenge focused on developing alternative
mechanisms that compromise social welfare. We re-visit the
VCG auction vulnerability and consider the bidder behavior
in Bayesian settings. In service of that we introduce a novel
notion, termed the granularity threshold, that characterizes
VCG Bayesian resilience to false-name attacks as a function
of the bidder type distribution. Using this notion we show a
large class of cases in which VCG indeed obtains Bayesian
resilience for the two-item single-minded setting.

1 Introduction

In recent years, the scale of web auctions has grown sig-
nificantly — whether for ads, flight tickets or cloud com-
puting resources — among many other commodities. Con-
trary to the settings that apply to government leases or items
sold in an auction house, in such web auctions it is much
easier to forge false identities and submit multiple bids un-
der false names. This expands the action space of an auc-
tion participant and may turn mechanisms that proved for-
mally truthful assuming only a single bid to not be strategy-
proof. Such is the case of the most classic combinatorial
auction mechanism, VCG. VCG is truthful and efficient as-
suming each bidder submits one bid under her name (Nisan
et al. 2007). However, assuming false-name attacks (a.k.a.
sybil attacks) are possible, that is no longer the case, as
demonstrated in (Yokoo, Sakurai, and Matsubara 2002). The
main effort to address this rising issue was done by Yokoo
et al. They suggested various mechanisms that are false
name attack proof (Yokoo, Sakurai, and Matsubara 2001;
Yokoo 2003). The main disadvantage of these mechanisms
is that they in a way incorporate the false-name attacks to be
built into the mechanism, and this significantly reduces their
efficiency. In (Iwasaki et al. 2010) the main result shows that
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under reasonable conditions the worst case efficiency of any
false-name proof combinatorial auction with m items is as
bad as 2

m+1 .
As for VCG, in (Alkalay-Houlihan and Vetta 2014) the

authors show that under some assumptions on the bidders’
valuations, and in a setting with complete information, if a
pure Nash equilibrium exists when false-name bids are con-
sidered, VCG still has a reasonable welfare guarantee. Nat-
urally, Nash equilibrium might not exist. Nevertheless, the
above may hint that VCG may actually be a good false-name
proof mechanism in situations in which a pure equilibrium
exists.

Notice that when the behavior of the other bidders is un-
certain, in some scenarios a false-name attack may benefit
the attacker, while on others the attack can harm her. So
while truthfulness is certainly no longer a dominant strat-
egy, it is worth asking under what circumstances it might
be a truthful Bayesian Nash Equilibrium. That is, when the
auction participants only have partial probabilistic informa-
tion regarding other bidders’ valuations, when is it the best
strategy for a bidder to bid truthfully only her valuation (in a
single bid), assuming all others are truthful as well? Notice
that social welfare is optimized if such an equilibrium exists.
For a seller that wishes to maximize social welfare, under the
conditions in which a truthful Bayesian equilibrium exists,
VCG is the best choice of an auction mechanism.

In this work, we introduce — for the first time, to the
best of our knowledge — a Bayesian equilibrium analysis
of VCG under false-name bids. In service of that we use a
bare-minimum model: an auction of two identical items, and
single-minded bidders. Namely, each bidder is interested in
a single item or in the pair of items. The Bayesian setting
is given by a per-item valuation distribution, and a proba-
bility q for a bidder to have a single-item demand. Notice
that for q = 1 we get the standard Vickrey auction which
is false-name proof. Hence, our model captures the minimal
step forward from the standard Vickrey auction setting to the
general multi-item case. As we will see, the analysis of such
a model already brings out intricate techniques and conclu-
sions, which are essential to address the problem.

To obtain our results, we present a criterion we name
“Granularity threshold” to measure the effect of the gran-
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ularity of bidders’ demands on the mechanism’s Bayesian
truthfulness. In the framework of our model, this measure
is associated with the value of q. The lower the granular-
ity threshold is, then even with a lower q value the mecha-
nism remains truthful. We show results that prove that in our
model, the more “granular” bidders’ demands are, the more
VCG is Bayesian resilient to false-name attacks.

Our main results state that for two bidders (n = 2) and
two items (m = 2) there is a truthful Bayesian equilib-
rium whenever the probability q of a bidder to demand one
item rather than two is at least 2

3 , with any valuation distri-
bution (Section 3). We then show that for any larger num-
ber of bidders (n > 2), such a global granularity thresh-
old can no longer be derived and valuation distributions
do matter (Section 4). Given the above, we consider gen-
eral beta distributions over per-item valuations. This family
includes many natural distributions, and is used widely in
statistics and economic theory (Gupta and Nadarajah 2004;
Krishnamoorthy 2016). With parameters α = β = 1, it is
the uniform distribution, and with large α = β parameter
values, it resembles a Normal distribution. Interestingly, it
admits useful connections to computer algebra techniques,
which allows us to provably present good granularity thresh-
olds, i.e. low q values, in tested cases (Section 5). Lastly, we
focus on an important attack form we call the split attack. In
that attack a bidder who has a 2-item demand with valuation
θ submits two 1-item demand bids with value θ. Interest-
ingly, we observe that in many cases this is the best false-
name attack in the sense that it determines the granularity
threshold (Section 6).

2 Our Model and the Bayesian Resilience

Criterion

We study a multi-item auction with two identical items and
n single-minded bidders. The type of a bidder i is denoted
by θ̂i = (gi, θi) where gi ∈ {1, 2} is the number of items de-
sired by the bidder, and θi is the per-item value of the bidder.
We assume w.l.o.g. that the per-item values are normalized
to be in [0, 1]. The utility of a bidder is quasi-linear, i.e. if
the bidder receives j items and pays a price pi, her utility is{−pi j < gi

gi · θi − pi otherwise.

In this paper, we focus on the analysis of the VCG mech-
anism in a setting where each bidder may submit multi-
ple single-minded bids in an anonymous fashion so that
VCG treats each bid as if it comes from a separate bid-
der. Formally, VCG is the mechanism that given bids B =

(θ̂1, ..., θ̂N ) (where N ≥ n) allocates the items to maximize
the social welfare:
SW (B) = maxI⊆{1,...,N}s.t.∑i∈I gi≤2

∑
i∈I gi · θi.

Let W (B) be an index set I of bidders that attains the
maximal social welfare, and let L(B) be its complement.
Every bid b makes the following payment:

{
SW (B \ θ̂b)− (SW (B)− gb · θb) b ∈ W (B)

0 b ∈ L(B).

Every real bidder i ∈ {1, ..., n} receives her value from
the union of items won by her submitted bids, and pays the
respective sum of prices.

Throughout our analysis, given the symmetric situation,
we fix one bidder, bidder n, and analyze her utility. This is
done when she declares her true type and when she submits
multiple false-name bids, assuming all other bidders reveal
their true types. We term the case where the bidder submits
false-name bids – an “attack”. In our analysis, we refer to
the other bidders as the “adversary” bidders. We introduce
the notation ñ = n−1, the number of adversary bidders. We
call the vector of adversary true types and the corresponding
truthful bids “adversary setup”.

We refer to bidder i with gi = 1 as a “1-type”, and denote
her value by vi. Similarly, we refer to a bidder i with gi =
2 as a “2-type”, and denote her value wi. We assume two
separate indices, for 1-types and for 2-types. Formally, let
k = |{1 ≤ i ≤ t, gi = 1}|, the number of 1-type bids.
The 1-type by v1, ..., vk and the 2-type values are denoted
by w1, ..., wt−k. Notice that the VCG mechanism implies
that for any adversary setup, a bidder’s utility is uniquely
determined by

ṽ1 = max{vi}1≤i≤k,

ṽ2 = second−max{vi}1≤i≤k,

w̃1 = max{wi}1≤i≤t−k,

with max ∅ = 0. We therefore write for bidder n bidding
(θ̂′1, ..., θ̂′m) and adversary setup θ̂1, . . . , θ̂ñ,

u
θ̂′
1,...,θ̂

′
m
(θ̂1, . . . , θ̂ñ) = ũ

θ̂′
1,...,θ̂

′
m
(w̃1, ṽ1, ṽ2)

. Also notice that if biddern n submits more than one 2-type
bid, all but the top one never enters the winning set. The
same holds for all but the top two 1-type bids submitted.
Since in VCG adding more losing bids can only increase the
price paid, we conclude that a bidder that wishes to maxi-
mize utility never submits more than one 2-type bid and two
1-type bids. In fact, we prove a stronger claim:

Lemma 1. Under VCG, in our setting, for any attack of bid-
der n, S = θ̂1, ..., θ̂m, one of the two must be true:

• There exists an attack (1, x), (1, y) such that for any ad-
versary setup, n’s utility from (1, x), (1, y) is not lower
than her utility from S, or,

• For any adversary setup, n’s utility from the truthful bid
is not lower than her utility from S.

Proof. We already observed that a bidder prefers to bid
w̃1, ṽ1, ṽ2, some of which may be zero bids or equivalently
omitted over bidding S. Now, if 2w̃1 ≤ ṽ1 + ṽ2, regard-
less of the adversary bids, (2, w̃1) is never in the winning
set and thus could only increase the price for bidder n. This
constitutes the first case. Otherwise, for any adversary bids
either the higher 1-type bid enters the winning set, the 2-type
bid enters it or no bids enter it, i.e., at most one of the bids
w̃1, ṽ1, ṽ2 win. In this case, it would have been better to bid
truthfully by VCG truthfulness for single bids (Nisan et al.
2007).
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We subsequently regard a false-name bid attack as a
bid vector (1, x), (1, y), w.l.o.g. assuming x ≥ y. Since
the utility function u depends on the bidder’s true type
and her bids, we introduce the conditional utility notation
ũθ̂,truth(w̃1, ṽ1, ṽ2) and ũθ̂,attack(x,y)(w̃1, ṽ1, ṽ2).

Examples

We adjust an example from (Yokoo, Sakurai, and Matsubara
2002). Assume the following two bidders’ true types:
Bid 1 - (2, 0.5), Bid 2 - (2, 0.4)

When bidder 1 bids truthfully, she wins the two items
and pays 0.8. Consider what happens if Bidder 1 splits her
bid:

Bid 1 - (1, 0.5), Bid 1* - (1, 0.5), Bid 2 - (2, 0.4)

Bidder 1 still wins both items, but with a lower pay-
ment of 0.6.

The example is highly dependent on whether Bidder 1
knows her adversary bids. We can now see an example
where the same false-name attack causes a significant loss
to the attacker (double than her previous gain). Consider
the same behavior for bidder 1 as in example 1, but with a
different adversary:

Bid 1 - (2, 0.5), Bid 2 - (1, 0.4)

In this case bidder 1 wins the two items and pays 0.4.
If bidder 1 splits her bid the same way as before —

Bid 1 - (1, 0.5), Bid 1* - (1, 0.5), Bid 2 - (1, 0.4)

Bidder 1 still wins both items, but now her payment is
0.8.

The above hints at the potential benefit of a Bayesian ap-
proach: one might not submit false-name bids as her poten-
tial losses might be higher than her potential gains.

A Bayesian approach

We assume each bidder knows her own type and a distri-
bution over the i.i.d. parameterized ñ adversary true types.
We assume that the distribution of true types is given by
0 ≤ q, (1 − q) ≤ 1 which is the probability of a bidder i
to have gi = 1, 2 respectively, and by a per-item valuation
distribution θi ∼ F which is independent of the bidder’s gi.

A bidder’s expected utility given her true type θ̂, her bids
vector S and q, F is:

Eq,F,n

θ̂,S
[u] =

ñ∑
k=0

(
ñ

k

)
qk(1− q)ñ−kEk,F,n

θ̂,S
[u],

where

Ek,F,n

θ̂,S
[u] =

∫ 1

v1=0

f(v1)...

∫ 1

vk=0

f(vk)∫ 1

w1=0

f(w1)...

∫ 1

wñ−k=0

f(wñ−k)u(v1, ..., wñ−k).

Notice that since Lemma 1 holds for any adversary bids,
it immediately extends to expected utilities as well.

Definition 2.1. For a set of parameters q, F, n, we say that
truthfulness is a Bayesian Nash Equilibrium (BNE) if for any
bidder’s type θ̂, ∀0 ≤ y ≤ x ≤ 1, θ̂ ∈ {1, 2} × [0, 1],

Eq,F,n

θ̂,truth
[u] ≥ Eq,F,n

θ̂,attack(x,y)
[u].

We say that an attack is “beneficial” for a given adversary
setup if there exists a true type such that the attack increases
a bidder’s utility over her truthful bid. If we do not spec-
ify a concrete adversary setup, an attack is “beneficial” if it
increases the bidder’s expected utility.

The following technical lemma holds:

Lemma 2. To prove that a truthful BNE exists under some
settings, it suffices to analyze 1-type attackers that have θ =
1 ≥ x, y, and 2-type attackers that have x = 1 ≥ θ, y.

A Criterion for Bayesian Resilience

We already noted that for q = 1, under any per-item valu-
ation distribution F , and number of bidders n, we expect a
truthful BNE, as it is basically equivalent to the single-item
case where VCG is truthful in dominant strategies. The fol-
lowing technical lemma holds:

Lemma 3. When all adversaries are 1-type an attack is
never beneficial. Thus, q = 1 always induces a truthful BNE.

Our main question is what is the minimal q value that
guarantees Bayesian resilience, i.e. that truth-telling is in
equilibrium.

Definition 2.2. Define q∗n,g,θ,x,y,F ∈ [0, 1], the “granular-
ity threshold”, as the minimal q such that no true type (g, θ)
bidder prefers to attack with (1, x), (1, y) given that her ad-
versaries’ types are chosen with q′ > q∗n,g,x,y,F and valua-
tion distribution F. If any of the parameters are omitted, we
assume the supremum of all different q∗ values with different
instantiations of the parameters. We call

q∗n = supg∈{1,2},0≤y≤x≤1,F q
∗
n,g,x,y,F

the “global granularity threshold” for n.

The fact that VCG is truthful when there is only a single
item, which is equivalent to q = 1, gives us the intuition that
if we have a high enough q, then Bayesian resilience would
be obtained. As q∗ is lower, the distribution is more resilient
to Sybil attacks.

3 A Full Characterization of the Global

Granularity Threshold for n = 2

Theorem 3.1. q∗n=2 = 2
3 .

The remainder of this section proves this theorem.

Lemma 4. q∗n=2,g=1 = 1
2 .

Proof. By Lemma 2 we assume y, x ≤ θ = 1. For n = 2
we have ñ = 1 and so we have one adversary, either of type
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1 or 2. We separate the utility function u to u1, u2, based on
the adversary type. We then have

u2
(1,1),attack(x,y)(w1) =⎧⎪⎪⎨
⎪⎪⎩
1 0 ≤ w1 ≤ y

2

1− 2w1 + y y
2 < w1 ≤ x

2

1− 4w1 + y + x x
2 < w1 ≤ x+y

2

0 otherwise,

u1
(1,1),attack(x,y)(v1) =

{
1− 2v1 0 ≤ v1 ≤ y

1− y y < v1 ≤ 1,

u2
(1,1),truth(w1) =

{
1− 2w1 0 ≤ w1 ≤ 1

2

0 otherwise,

u1
(1,1),truth(v1) = 1.

Define Δ(θ1) = u2
truth(θ1)−u2

attack(θ1)+u1
truth(θ1)−

u1
attack(θ1). We have

Δ(θ1) =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− u2
attack(θ1) ≥ 0 0 ≤ θ1 ≤ y, θ1 ≤ 1

2

6θ1 − 1− y − x ≥ 0 1
2 < θ1 ≤ y

y − u2
attack(θ1) + 1− 2θ1 ≥ 0 y < θ1 ≤ 1

2

4θ1 − 1− x ≥ 0 y, 1
2 < θ1 ≤ x+y

2

y ≥ 0 x+y
2 < θ1,

1
2 < θ1.

This covers all the non-trivial cases. This yields for q = 1
2 ,

E
q= 1

2 ,F,n=2

θ̂,truth
− E

q= 1
2 ,F,n=2

θ̂,attack(x,y)
=

1

2
E[Δ(θ1)] ≥ 0.

By Lemma 3,

E[u1
truth − u1

attack(x,y)] ≥ 0.

Hence, for an attack to be beneficial it must hold that

E[u2
truth − u2

attack(x,y)] < 0.

So, the expression

E[(1− q)(u2
attack − u2

truth) + q(u1
attack − u1

truth)]

is monotone increasing in q, and for all q′ > 1
2 it is non-

positive. In addition, it is straightforward to construct an ex-
ample that shows a beneficial attack for any q < 1

2 , based on
the above expressions. We conclude that q∗n=2,g=1 = 1

2 .

Lemma 5. q∗n=2,g=2 = 2
3 .

Proof. Similar to the one given in Lemma 4.

4 Global Granularity Thresholds for n > 2:

q∗n = 1

Based on the result of q∗n=2 = 2
3 for two bidders, we may

now ask what are the q∗ values for different values of n.

Theorem 4.1. For any n > 2, q < 1, there is an attack x, y
and distribution F such that the attack is beneficial.

Proof. We construct F as a discrete distribution for the sake
of a more concise argument. A continuous distribution close
enough to F satisfies the same argument.

We examine an attacker of type 1. By Lemma 2 we write
θ = 1. We choose x = 1, y = 1

2 . We show how we choose
ε(q, n) later, and we define Fε(q,n) with Pr(0.6) = 1 − 2ε,
Pr(0.5) = Pr(1) = ε.

We prove that the attack is beneficial for q < 1, n > 2.
Consider the following possible adversary configurations.
First we ignore the possibility that the adversary value is 0.5
(the probability for this is (1− ε)ñ):

There exists at least one adversary of type 2 with value
1: the utility for both attack and truthful bidding is 0.
There exist at least two adversaries of type 1: then y is
not in the winning set and also doesn’t affect the price. Thus,
the utility for attack and truthful bidding is the same.
There exists exactly one adversary of type 1: Note that
all other adversaries of type 2 have a value of 0.6. If the type
1 adversary has value 0.6, then attack and truthful bidding
utility are both 0.4. If the type 1 adversary has value 1, then
attack utility is 0.5 while truthful utility is 0.8.
No adversaries of type 1: we are left with only type 2 ad-
versaries with value 0.6. In this case, the truthful utility is 0
and the attack utility is 0.1.

Define δ = (1−q)ñ

1000 and choose

ε(q, n)=min
{ 1− q

3000q
,

1

103
,
1− ñ−1

√
1
10

2
, 1−n−1

√
3

3+(1−q)ñ

1000

}
,

which satisfies

0.1(1−2ε)ñ(1−q)ñ+(0.3)ñ(1−2ε)ñ−1ε(1−q)ñ−1q > δ, (1)

(1− ε)ñδ − 3(1− (1− ε)ñ) > 0. (2)

Equation 1 implies that the expected utility of the attack,
given that there is no 0.5 value adversary, is more than δ. The
first summand refers to the fourth case we described and the
second summand to the third case. Equation 1 implies that
the overall expected utility is positive, where the constant
3 in the equation was chosen since an attack can decrease
the utility relative to truthful bidding by at most 3: since the
attacker is a 1-type, truthful bidding yields at most a utility
of one, and an attack can lose at most 2.

This puts a positive lower bound on the difference be-
tween attack utility and truthful bid utility, and thus the at-
tack is beneficial as defined.

5 Beta Distributions Granularity

Thresholds: a Computer Algebra

Approach

Given the result of the previous section, we know that it
is impossible to guarantee a truthful Bayesian equilibrium
for arbitrary distributions when q < 1. Hence, in this sec-
tion we instead consider a general family of distributions,
namely the Beta distributions. This family of distributions
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includes many natural distributions that are parameterized
by two parameters α and β. We consider these parameter
values to be integers. The probability density function of

Beta(α, β) is then fα,β(θi) = (α + β − 1)!
θα−1
i (1−θi)

β−1

(α−1)!(β−1)! .
Our aim is to find the corresponding granularity thresholds
q∗n,F=Beta(α,β).

We address this challenge as follows. We show that the
difference between the expected utility of a 1-type truthful
bidder and the expected utility of an attacker is a polynomial
P (in x, y, q). Similarly, we show that the difference between
the expected utility of a 2-type truthful bidder and the ex-
pected utility of an attacker is a polynomial Q (in θ, y, q).
The minimal q for which in the domain [0, 1]× [0, 1]× [q, 1]
these polynomials are positive is in fact q∗n,F=Beta(α,β). This
reduces the problem into a computer algebra problem, given
parameters n, α, β which can be solved using state-of-the-
art techniques. Our results show that indeed the desired gran-
ularity thresholds for the tested Beta distributions’ parameter
values are spread around 0.5.

A reduction to a polynomials positivity decision
problem

Let Iθi(α, β) be the cumulative distribution function of
Beta(α, β) at θi. We develop the Bayesian expectation util-
ity expressions.

E
k,Beta(α,β),n

θ̂,∗ [u] =∫ 1

θ1=0

...

∫ 1

θn=0

ñ∏
t=1

fα,β(θt)u(θ1, ..., θñ)dθñ...dθ1 =

∑
1≤i �=j≤k

∑
1≤m≤ñ−k

∫ 1

θ1=0

...

∫ 1

θñ=0

ñ∏
t=1

fα,β(θt)ũ(θm, θi, θj)

�gm=1,∀p,gp=2→θm≥θp,gi=gj=1,∀p,gp=1→θi≥θj≥θpdθñ...dθ1

=
k!

(k − 2)+!

(ñ− k)!

(ñ− k − 1)+!

∫ 1

w1=0

∫ w1

w2=0

...

∫ w1

wn−k=0︸ ︷︷ ︸
n−k∫ 1

v1=0

∫ v1

v2=0

∫ v2

v3=0

...

∫ v2

vk=0︸ ︷︷ ︸
k

n∏
t=1

fα,β(θt)

ũ(w1, v1, v2)dvk...dv1dwñ−k...dw1 =

k!

(k − 2)+!

(ñ− k)!

(ñ− k − 1)+!

∫ 1

ṽ1=0

∫ ṽ1

ṽ2=0

∫ 1

w̃1=0

fα,β(w̃1)fα,β(ṽ1)fα,β(ṽ2)Iw̃1
(α, β)(n−k−1)+

Iṽ2
(α, β)(k−1)+ ũ(w̃1, ṽ2, ṽ1)dw̃1dṽ2dṽ1.

Recall that k!
(k−2)+! =

{
1 k = 0, 1

k(k − 1) k = 2, ..., ñ
,

(ñ−k)!
(ñ−k−1)+! =

{
1 k = ñ

ñ− k k = 0, ..., ñ− 1
.

We then have

Pn
α,β(x, y, θ=1, q)=E

q,Beta(α,β),n
(1,1),truth [ũ]−Eq,Beta(α,β),n

(1,1),attack(x,y)[ũ] =

ñ∑
k=0

(
ñ

k

)
qk(1− q)ñ−kP k,n

α,β (x, y, θ = 1),

Qn
α,β(x=1, y, θ, q)=E

q,Beta(α,β),n
(2,θ),truth [u]−Eq,Beta(α,β),n

(2,θ),attack(1,y)[u] =

ñ∑
k=0

(
ñ

k

)
qk(1− q)ñ−kQk,n

α,β(x = 1, y, θ),

with

P k,n
α,β (x, y, θ=1)=E

k,Beta(α,β),n
(1,1),truth [u]−E

k,Beta(α,β),n
(1,1),attack(x,y)[u],

Qk,n
α,β(x=1, y, θ)=E

k,Beta(α,β),n
(2,θ),truth [u]−E

k,Beta(α,β),n
(2,θ),attack(1,y)[u].

Notice that P k,n
α,β and Qk,n

α,β are polynomial expressions for
any α, β, n and 0 ≤ k ≤ ñ. That is since the probability den-
sity fα,β(θi) is polynomial in its variable, and the incom-
plete beta distribution function Iθi(α, β) is polynomial in
its parameter. Also, the full form of the ũθ̂,Bids(w̃1, ṽ1, ṽ2)
are expressions which are multiples of polynomials in
w̃1, ṽ1, ṽ2, x, y, θ and indicator functions with bounds poly-
nomial in these parameters. We can thus rewrite the triple
integral as a linear combination of triple integrals of the fol-
lowing form:

∫ T2(x,y,θ)

ṽ1=T1(x,y,θ)

∫ T4(ṽ1,x,y,θ)

ṽ2=T3(ṽ1,x,y,θ)∫ T6(ṽ1,ṽ2,x,y,θ)

w̃1=T5(ṽ1,ṽ2,x,y,θ)

T7(w̃1, ṽ1, ṽ2, x, y, θ)dw̃1dṽ2dṽ1,

with all Ti polynomials. Since the class of Polynomials
is closed under integration and composition, we have that
all P k,n

α,β , Q
k,n
α,β are polynomial in x, y, θ. By the defini-

tion of Pn
α,β(x, y, θ = 1, q), Qn

α,β(x, y, θ = 1, q) as lin-
ear combinations of polynomials in q multiplied by the k-
parameterized polynomials, they are also polynomials.

Solving polynomial positivity using computer
algebra

The question of whether truthfulness is a Bayesian Nash
equilibrium is now reduced to whether there are no assign-
ments (a true type and attack bids) where the polynomial
is negative in the domain. For this purpose, any computer
algebra method that is able to prove polynomial positivity
suffices. The method we found most useful for our setting
is Partial Cylindrical Algebraic Decomposition (Caviness
and Johnson 2012). Given a guess of the threshold value
q∗ guess for a given Beta(α, β) distribution and n value,
we feed Maple (Chen and Moreno Maza 2016) with the fol-
lowing problems:

PartialCylindricalAlgebraicDecomposition

(P q,n
α,β(x, y, 1), [x− y, y, 1− q, 1− x, q − q∗ guess],

PolynomialRing([x, y, q]),
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PartialCylindricalAlgebraicDecomposition

(Qq,n
α,β(1, y, theta), [v − theta, y, 1− q, q − q∗ guess],

PolynomialRing([theta, y, q]).

Partial CAD finds representing points in the Cylindrical
Algebraic Decomposition. It then suffices to check each of
the representing points to be positive for the corresponding
polynomial, in order to verify that it does not attain negative
values in the entire domain. The guess q∗ guess is derived
either from a bisection of the [0, 1] interval, or from the split
attack on which we elaborate in the next section.

Our findings are given in the following figures. As can
be seen, the granularity thresholds in all cases we tested are
bound away from 1, in particular, lower than 0.75.
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n

q*

α = 2, β = 1
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α = 2, β = 2
α = 1, β = 3

Figure 1: q* values for beta distribution parameter values
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Figure 2: q* values for beta distributions n=3

Some of the symbols in the figures (in particular, some of
the n’s in the x-axis and some of the α’s and β’s in the leg-

end) are in bold while others are not. Bold symbols represent
cases that were fully verified by the partial CAD method de-
scribed above, and they hold for all possible attacks. In the
three-dimensional figure, the fully verified cases are those
marked with x symbol. For these fully verified cases, we
observe that the granularity threshold is typically decreasing
(improving) as a function of α and increasing as a function
of β. Interestingly, in all fully verified cases, the attack most
persistent in respect to higher values of q (“best attack”) was
the split attack. We therefore extend the figures to include q∗
values that were evaluated only for the split attack – these are
the non-bold parameter values in the figures.

The Mathematica and Maple files to attain and verify
the figures’ exact values independently can be found at
https://github.com/yotam-gafni/vcg bayesian fnp.

6 Split Attacks

As mentioned, all the q∗ values given in the figures of the
last section have a shared property — they are in fact all
derived from one attack, which proves itself in all verified
cases to be the one that yields the highest q* values. This at-
tack is the split attack — where a 2-type attacker with value
1 splits her bid into two 1-type bids x = y = 1. In this sec-
tion, we focus our attention on the split attack, which gives
us a few advantages. First, the problem formulation for the
CAD becomes uni-variable, which allows us to computa-
tionally reach higher parameter values. Also, we are able to
prove analytic results for general n values. We establish a
few lemmas that yield such a general result for the uniform
distribution case.
Lemma 6. For the uniform distribution, Qk,n

1,1 (1, 1, 1) is
monotone increasing as a series in k.

Proof. By direct calculation we have

F (ñ, k) = Qk,n
1,1 (1, 1, 1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(ñ+1)2ñ−1 − 2

ñ+1 k = 0
8

ñ(ñ+1) − 2
ñ − 3

ñ(ñ+1)2ñ−1 k = 1
1

ñ+1 k = ñ
2k

2ñ−k

∑ñ−k
i=0

(
ñ−k
i

)
( 1
i+k + 1

i+k+1 )+
2k(k−1)(ñ−k)

(ñ+1)(ñ−k+1)2ñ−k+1

∑ñ−k+1
i=0

(
ñ−k+1

i

)
1

ñ−i−
2
ñ − 4k(ñ−k)

(ñ−k+1)2ñ−k+1

∑ñ−k+1
i=0

(
ñ−k+1

i

)
1

i+k−
k(k−1)

(ñ+1)2ñ−k

∑ñ−k
i=0

(
ñ−k
i

)
( 1
ñ−i +

1
ñ−i−1 ) o/w.

We show that for any ñ ≥ 2, 0 ≤ k ≤ ñ− 1,

F (ñ, k) < F (ñ, k + 1).

It can be directly verified that F (ñ, 0) < F (ñ, 1) <
F (ñ, 2) for every ñ ≥ 2, and also that for ñ = 2 the se-
ries is monotone. For the ñ ≥ 3, 2 ≤ k ≤ ñ − 1 case, we
can define f

G[ñ, k] = F [ñ, k + 1]− F [ñ, k],

for which the following recurrences hold:

(2ñ− 2k)G[ñ, k] + (−4 + k − 3ñ)G[1 + ñ, k]+

(3 + ñ)G[2 + ñ, k] = 0,
(3)
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(2 + ñ)G[1 + ñ, ñ] = 2ñG[ñ, ñ− 1], (4)

(ñ2+4ñ+3)G[ñ+2, ñ] = (2ñ2+4ñ)G[ñ+1, ñ−1]. (5)
We now show that ∀ñ ≥ 3, 2 ≤ k ≤ ñ − 1, G[ñ, k] > 0.

For that, we denote m = ñ− k. It’s enough to show that for
any m ≥ 1, k ≥ 2,

G[k +m+ 1, k] > G[k +m, k] > 0.

We prove by induction on m. First we show the induction
step. Assume for some m the assumption holds. Then by the
recurrence relation (3)

G[k +m+ 2, k] =

(3m+ 2k + 4) ·G[k +m+ 1, k]− 2m ·G[k +m, k]

3 + k +m
>

(m+ 2k + 4) ·G[k +m+ 1, k]

3 + k +m
≥ G[k +m+ 1, k] ≥ 0.

As for the base case G[ñ+ 1, ñ− 1] > G[ñ, ñ− 1] > 0,
we prove by induction on ñ. For ñ = 3 it holds. Now assume
for some ñ the induction assumption holds, then

G[ñ+ 2, ñ] =
2ñ2 + 4ñ

(ñ2 + 4ñ+ 3)
G[ñ+ 1, ñ− 1] >

2ñ2 + 4ñ

(ñ2+4ñ+3)
G[ñ, ñ−1] = (2 + ñ)(2ñ2 + 4ñ)

2ñ(ñ2 + 4ñ+ 3)
G[ñ+ 1, ñ] >

G[ñ+ 1, ñ] =
2ñ

2 + ñ
G[ñ, ñ− 1] > 0

holds by (5), induction assumption, (4), arithmetics, (4)
and induction assumption respectively.

The recurrences in equations 3 to 5 were found using
RISCErgoSum’s Guess package (Kauers 2009).
Lemma 7. Recall that

Qk,n
α,β(1, 1, 1) = E

k,Beta(α,β),n
(2,1),truth [u]− E

k,Beta(α,β),n
(2,1),attack(1,1)[u],

and regard it as a series of real numbers parameterized
by k. If the series is monotone increasing in k, then if
there exists q such that Qn

α,β(1, 1, 1, q) = 0, it follows that
q∗n,g=2,θ=1,x=1,y=1,F=Uni([0,1]) = q.

Proof. It suffices to prove that ∀q′ < q,Qn
α,β(1, 1, 1, q

′) <
0 and ∀q′ > q,Qn

α,β(1, 1, 1, q
′) > 0. This is due to first

order stochastic dominance of a binomial distribution with a
higher q parameter over another binomial distribution with a
lower q parameter (Wolfstetter 1999).

Theorem 6.1. For the uniform distribution, and any number
of bidders n ≥ 3, q∗n,g=2,θ=1,x=1,y=1,F=UNI([0,1]) =

1
2 .

Proof. We examine the expressions F (ñ, k) derived before
and notice that when q = 1

2 the sum

S[ñ] =

ñ−1∑
k=2

(
ñ

k

)
qk(1− q)ñ−kF (ñ, k)

satisfies the recurrence

−2(1+ñ)S[ñ]+(2+ñ)S[1+ñ] = −7+32(1−ñ)+2ñ, (6)

.
We solve the recurrence and check initial ñ values. We

then see that indeed

S[ñ] = −F (ñ, 0) + ñF (ñ, 1) + F (ñ, ñ)

2ñ
,

which means ∀n ≥ 3,

Qn
α,β(1, 1, 1,

1

2
) =

1

2ñ

ñ∑
k=0

(
ñ

k

)
F (ñ, k) =

S[ñ] +
F (ñ, 0) + ñF (ñ, 1) + F (ñ, ñ)

2ñ
= 0.

By Lemma 7 and Lemma 6 this proves that

∀n ≥ 3, q∗n,g=2,θ=1,x=1,y=1,F=UNI([0,1]) =
1

2
.

We used RISCErgoSum’s HolonomicFunctions Mathe-
matica package to derive and solve the recurrence in equa-
tion 6 (Koutschan 2009).

7 Conclusions and Future Directions

In this work, we investigate the most simple yet general
model for a Bayesian analysis of VCG under Sybil attacks.
Interestingly, our results imply false-name resistance can be
obtained without sacrificing social welfare in many cases,
which we capture using the notion of granularity threshold.
While we were able to show that the split attack is in a sense
the best false-name bid attack in our study, an interesting
open question is under what conditions does the split at-
tack yield the highest q∗ values. Can a formula be derived
for the asymptotic behavior of q∗ as a function of α, β for
the beta distributions, or for specific n values? Can we find
larger classes of distributions that admit a nice analysis? Can
we exploit approximations of other general distributions by
Beta (or more generally polynomial) distributions to yield
precise bounds for their respective q∗ values?

In section 3 we restrict attention to the case F := F1 =
F2, i.e., the same per-item value distribution for different
item demand types, which allows for an elegant analysis. If
they are bound together by a looser correlation or stochastic
dominance criterion, a result in the same spirit might still be
attainable, even though it’s not clear in what form.

It is possible given the computer algebra methods for the
beta distribution to discuss a larger number of items. In the
two item case we were able to prove Lemma 1 that shows a
bidder has two alternatives - to submit a truthful bid or sub-
mit a pair (1, x), (1, y) with 0 ≤ y ≤ x ≤ 1. This results
in a tri-variate polynomial with q,x,y. With more items (e.g.,
3) one might consider other scenarios: The bidder submits
(3,x), or (2, x), (1, y), etc - but still a small finite space that
depends on the number of items. For each case one derives
a polynomial as done in section 5, and using the computer
algebra solvers can come up with analytic results. Though
computationally more demanding, in theory this could ex-
tend to any number of items. Notice that in the two item
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case, there is a single number q that measures ‘granular-
ity’ by quantifying the probability of a 1-item demand bid-
der to appear. Once we analyze 3 items or more, one needs
choose a finer way of defining granularity - for example,
we could say that having the probability vector (0.4,0.5,0.1)
over the amounts (1,2,3) of item demand is more granular
than (0.4,0.1,0.5), even though the “q” value as defined for
both is 0.4.
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