
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

The Complexity of Computing Maximin Share Allocations on Graphs

Gianluigi Greco, Francesco Scarcello
University of Calabria

87036 Rende (CS), Italy
{gianluigi.greco, francesco.scarcello}@unical.it

Abstract

Maximin share is a compelling notion of fairness proposed
by Buddish as a relaxation of more traditional concepts for
fair allocations of indivisible goods. In this paper we consider
this notion within a setting where bundles of goods must in-
duce connected subsets over an underlying graph. This setting
received much attention in earlier literature, and our study
answers a number of questions that were left open. First,
we show that computing maximin share allocations is FΔP

2 -
complete, even when focusing on consistent scenarios, that
is, where such allocations are a-priori guaranteed to exist.
Moreover, the problem remains intractable if all agents have
the same type, i.e., have the same utility functions, and if ei-
ther the values returned by the utility functions are polynomi-
ally bounded, or the underlying graphs have a low degree of
cyclicity (more precisely, have bounded treewidth). However,
if these conditions hold all together, then computing max-
imin share allocations (or checking that none exists) becomes
tractable. The result is established via machineries based on
logspace alternating machines that use partial representations
of connected bundles, which are interesting in their own.

Introduction

Since the late forties, fair allocation of indivisible goods
has been attracting much attention in the areas of math-
ematics, economics, and political science (Steihaus 1948;
Brams and Taylor 1996). More recently, due to the intrigu-
ing computational and algorithmic questions that naturally
arise within this context, fair division gained popularity in
the AI community too—see, e.g., (Bouveret et al. 2016;
Lang and Rothe 2016). The setting is very simple, but has
a tremendously wide spectrum of applicability: we are given
a set N of agents expressing some preferences over a set V
of indivisible goods, and we want to allocate these goods
to the agents in a way that is perceived as a “fair” one. For
instance, we might require that no agent envies other agents.

Actually, most of the well-established notions of fairness,
such as envy-freeness (or equitability or proportionality, just
to name two further), are rather demanding in practice, so
that defining meaningful relaxations is a very active topic of
research. A noticeable example of a weaker (Bouveret and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lemaı̂tre 2016) but still very compelling notion is the max-
imin share proposed by Budish (2011). The idea is that ev-
ery agent i ∈ N must get a bundle Bi ⊆ V of goods for
which she gets an utility that is not worse than the utility
she could guarantee to herself if asked to divide the set of
goods in |N | bundles and then to keep the worst one. In fact,
there are experimental and theoretical evidences showing
that maximin share allocations can be singled out in many
relevant settings (Kurokawa, Procaccia, and Wang 2016;
Bouveret and Lemaı̂tre 2016); moreover, while their ex-
istence cannot be guaranteed in general (Procaccia and
Wang 2014), allocations that “nearly satisfy” the maximin
share criterion always exist and can be computed effi-
ciently (Procaccia and Wang 2014; Amanatidis et al. 2017;
Barman and Krishna Murthy 2017; Ghodsi et al. 2018;
Nguyen, Nguyen, and Rothe 2017; Farhadi et al. 2019).

In this paper, we study maximin share allocations in the
setting proposed by Bouveret et al. (2017), where bundles
are subject to constraints captured by a connectivity con-
dition over an underlying graph. More precisely, the nodes
of the graph are the available goods and a bundle is al-
lowed if the subgraph induced by such goods/nodes is con-
nected. This condition emerges in many applications, often
in presence of spatial constraints (e.g., when dividing of-
fices among research groups) or temporal constraints (when
goods represent time slots).

Fair allocation under connectivity constraints is receiv-
ing growing attention in the literature (Suksompong 2017;
Lonc and Truszczynski 2018; Bouveret, Cechlárová, and
Lesca 2018; Igarashi and Peters 2018; Bilò et al. 2019). Nev-
ertheless, our knowledge is still quite partial when focus-
ing on maximin share allocations: The problem of deciding
whether a maximin share allocation exists is known to be
NP-hard, and to belong to the complexity class ΔP

2 (Lonc
and Truszczynski 2018). Moreover, computing such allo-
cations is known to be tractable on trees (Bouveret et al.
2017) and on simple cycles (Lonc and Truszczynski 2018),
but it was open whether it remains tractable on classes of
graphs having more general structural properties, in partic-
ular for those classes of graphs having a limited degree of
cyclicity—as it can be formalized by the notion of bounded
treewidth (Robertson and Seymour 1986).

2006

In this paper, we fill these gaps by giving a clear picture of
the complexity of maximin share allocations under connec-
tivity constraints, and by identifying islands of tractability
when the degree of cyclicity is small. In particular,

• We first focus on consistent scenarios for which max-
imin share allocations are a-priori guaranteed to exist1.
Rather surprisingly, we show that even on these scenarios
(where the decision problem is trivial) computing a max-
imin share allocation is intractable, in fact complete for
the class FΔP

2 —the natural counterpart of ΔP
2 on compu-

tation problems. The proof evidences that the main source
of complexity lies in computing the minimum utility that
each agent must guarantee to herself.

• Motivated by the above observation, we then embark on
the study of more restricted settings. It turns out that com-
puting maximin share allocations remains intractable even
if there is one agent type only, i.e., all agents have the
same utility functions, and if either (i) the values returned
by the utility functions are polynomially bounded (equiv-
alently, if they are given in unary notation), or (ii) the
underlying graph has treewidth 2. In particular, point (ii)
evidences that the tractability result on cycles (Lonc and
Truszczynski 2018) cannot be extended to the more gen-
eral class of those graphs having treewidth 2 (that is, hav-
ing the same degree of cyclicity as the simple cycles, ac-
cording to the treewidth measure).

• On the positive side, we are able to identify an is-
land of tractability for instances whose underlying graphs
are much more general than cycles: computing maximin
share allocations is feasible in polynomial time for allo-
cation scenarios with a bounded number of agent types,
smooth utility functions, and bounded treewidth graphs.

Formal Framework and Preliminaries

Maximin Share Allocations. An allocation scenario is a
tuple σ = (N,G, {ui}i∈N) where N is a set of agents,
G = (V,E) is a graph whose nodes in V are the available
goods and, for each i ∈ N , ui is the utility function of agent
i, which maps each good v ∈ V to a non-negative ratio-
nal number ui(v). Utility functions are naturally extended
to subsets of V by assuming additivity; to this end, we de-
fine ui(∅) = 0 for each i ∈ N . In the following, agents with
the same utility function are said to have the same type. For
any natural number h, denote by [h] the set {1, . . . , h}.

An allocation for σ is a tuple B = (B1, ...,Bn) whose
components associate each agent i ∈ N with a bundle
Bi ⊆ V , i.e., with a set of goods such that the subgraph
of G induced by them is connected. Moreover, since goods
are indivisible, such bundles are required to be disjoint, that
is, Bi ∩Bi′ = ∅ for each pair of distinct agents i and i′.

The maximin share of agent i ∈ N w.r.t. σ is defined as
the value

mmsσ(i) = max
B

min
j∈N

ui(Bj)

1E.g., if all agents have the same utility, then a maximin share
allocation is always guaranteed to exist.

An allocation B is a maximin share allocation if, for each
i ∈ N , it holds that ui(Bi) ≥ mmsσ(i). Note that maximin
share allocations are not always guaranteed to exist (Lonc
and Truszczynski 2018). Whenever a maximin share alloca-
tion exists for σ, then we say that σ is a consistent scenario.

Problem of Interest. In this paper we study the C-MMSA
problem of computing a maximin share allocation (or check-
ing that none exists). We assume a standard encoding for al-
location scenarios σ. In particular, for each agent i ∈ N , her
utility function ui is encoded by explicitly listing all possible
goods v with the associated value ui(v) represented in frac-
tional form (and with binary notation). Therefore, the size of
the encoding ||σ|| is such that ||σ|| = O((|V | log(|V |))2 +
|N | × |V | × Mσ), where Mσ is the maximum size over
the encodings of the values returned by the utility functions.
A class C of allocation scenarios has smooth utility func-
tions if their output values are polynomially bounded, that
is, Mσ = O(log(|N |+ |V |)), for each σ ∈ C.2

Computational Complexity. Recall that an NP metric
Turing machine MT is a polynomial-time nondeterminis-
tic Turing machine that, on every computation branch, halts
with the binary encoding of a number on its output tape.
The output of MT is the maximum number over its com-
putations. The class OptP contains all integer functions
that are computable by an NP metric Turing machine, and
OptP[O(log n)] is the subclass of OptP containing all func-
tions f whose output values f(x) have O(log n) bits, where
n is the size of the input x. Then, FNP//OptP (resp.,
FNP//OptP[O(log n)]) is the class of all partial multi-
valued functions g computed by polynomial-time nondeter-
ministic Turing machines T such that, for every x, g(x) =
T (x ·h(x)), where · denotes the concatenation operator, and
h is a function in OptP (resp., OptP[O(log n)]) (Chen and
Toda 1995). Note that FΔP

2 can be viewed as the functional
version of the complexity class ΔP

2 , hence consisting of all
problems for which a solution can be computed in polyno-
mial time by invoking with unitary cost an NP oracle. Ob-
serve that all functions in FΔP

2 belong to FNP//OptP, and
for each multi-valued function g in FNP//OptP, its single-
valued refinements are in FΔP

2 (Krentel 1988).

Tree decompositions. In our fine-grained complexity
analysis, we study the C-MMSA problem on classes of
quasi-acyclic graphs, as they are formalized by the notion
of treewidth (Robertson and Seymour 1986). We recall that
a tree decomposition of a graph G = (V,E) is a pair 〈T, χ〉,
where T is a tree, and χ is a labeling function assigning to
each vertex p in T a set of nodes χ(p) ⊆ V , such that the
following conditions are satisfied: (1) for each node x ∈ V ,
there exists p in T such that x ∈ χ(p); (2) for each edge
{x, y} ∈ E, there exists p in T such that {x, y} ⊆ χ(p);
and, (3) for each node x ∈ V , the subgraph of T induced by
all vertices p such that x ∈ χ(p) is connected.

The width of 〈T, χ〉 is the number maxp∈T (|χ(p)| − 1).
The treewidth of G, denoted by tw(G), is the minimum

2All results we prove for smooth functions hold over scenarios
where utility functions are encoded with unary notation, too.

2007

width over all its decompositions. Treewidth is a general-
ization of acyclicity: G is acyclic if, and only if, tw(G) = 1.

Computing Maximin Share Allocations

In this section, we start our complexity analysis by show-
ing that C-MMSA is complete for FΔP

2 . Rather surpris-
ingly, the hardness result holds even on scenarios that are
consistent—where the problem of deciding the existence
of maximin share allocations trivializes. This is a remark-
able result, since our hardness result on consistent scenarios
matches the upper bound for the decision problem (member-
ship in ΔP

2) that is known to hold over scenarios that are not
necessarily consistent (Lonc and Truszczynski 2018).

The analysis of C-MMSA is eventually completed on
scenarios where agents have smooth utility functions.

Arbitrary Utility Functions

We first point out that C-MMSA belongs to the class FΔP
2 ,

the functional version of ΔP
2 .

Theorem 1 C-MMSA belongs to FΔP
2 .

Proof Sketch. The maximin share values can be computed
by using the algorithm described in the proof that the
problem of deciding whether there exists some maximin
share allocation is in ΔP

2 (Lonc and Truszczynski 2018).
Once the maximin share values have been computed,
we can compute a maximin share allocation by using a
self-reducibility argument on the NP problem of deciding
whether there is an allocation with the given share values. �

We next show that C-MMSA is also hard for FΔP
2 even

on scenarios that are consistent, by exhibiting an involved re-
duction of the prototypical FΔP

2 -complete LEX-SAT prob-
lem (Krentel 1988): given a Boolean formula Φ = c1∧· · ·∧
cm in conjunctive normal form over the set {α1, ..., αn} of
variables, compute the lexicographically maximum satisfy-
ing assignment, with variables being ordered by their in-
dices, or return −1 if Φ is not satisfiable. Equivalently, this
problem can be defined by associating each variable αh with
a weight w(αh) = 2n−h and, for each truth assignment τ for
Φ, defining its weight w(τ) as the sum of all weights w(αh)
of those variables αh such that τ(αh) = true. Accordingly,
LEX-SAT is the problem of computing the satisfying assign-
ment for Φ having the maximum possible weight (or −1, if
Φ is not satisfiable). We first show the simple fact that this
problem remains intractable even when Φ is satisfiable.

Lemma 2 LEX-SAT is FΔP
2 -complete even if restricted on

classes of satisfiable Boolean formulas.

Proof Sketch. Let Φ = c1 ∧ · · · ∧ cm be a formula defined
over the variables in {α1, ..., αn}, and consider the formula
Φ′ = (¬αn+1 ∨ c1)∧ · · · ∧ (¬αn+1 ∨ cm)∧∧n

h=1(αn+1 ∨
¬αh) defined over the variables in {α1, ..., αn+1}. If Φ is
not satisfiable, then the only satisfying assignment for Φ′ is
the one, say τ ′0, where every variable evaluates to false;
note that w(τ ′0) = 0. Otherwise, Φ is satisfied by the assign-
ment τ if, and only if, Φ′ is satisfied by the assignment τ ′

���

���

Figure 1: Reduction in the proof of Theorem 3: (a) The graph
built for the formula Φ = c1∧ c2 where c1 = α1∨¬α2∨α3

and c2 = ¬α3 ∨α4; (b) The allocation B[τ] (represented by
evidencing the connected components corresponding to the
bundles) such that τ is the assignment where α3 is the only
variable evaluating to false.

such that τ ′(αn+1) = true and τ ′(αh) = τ(αh), for each
h ∈ {1, ..., n}. Note that, in this latter case, we have

w(τ ′) =
∑

h∈{1,...,n+1}|τ(αh)=true

2n+1−h = 2× w(τ) + 1.

Hence, given the answer to LEX-SAT on input Φ′ we can
immediately return the answer to LEX-SAT on input Φ. �

Theorem 3 C-MMSA is FΔP
2 -hard, even on consistent

scenarios with only one type of agents.

Proof Sketch. Let Φ = c1∧· · ·∧cm be a satisfiable Boolean
formula over the set {α1, ..., αn} of variables. Based on Φ,
we build in polynomial time the allocation scenario σ[Φ] =
(N,G, {ui}i∈N) where N = {1, ..., n+ 1} and where G =
(V,E) and the utility functions are defined as follows.

The set of goods is given by V = {sh, th, αh, ᾱh | h ∈
{1, ..., n}} ∪ {cj | j ∈ {1, ...,m}} ∪ {e} and edges in
E are such that (see Figure 1, for an illustration): for each
h ∈ {1, ..., n}, the edges {sh, αh}, {sh, ᾱh}, {αh, th}, and
{ᾱh, th} are in E; for each j ∈ {1, ...,m} and for each vari-
able αh occurring (either positively or negated) in cj , both
edges {αh, e} and {ᾱh, e} are in E; for each j ∈ {1, ...,m}
and for each variable αh occurring positively in cj , the edge
{αh, cj} is in E; for each j ∈ {1, ...,m} and for each vari-
able αh occurring negated in cj , the edge {ᾱh, cj} is in E;
and, no further edge is in E.

Finally, all agents are defined on the same utility func-
tion, so that it is immediate to check that maximin share

2008

allocations are guaranteed to exist. In particular, for each
i ∈ N , ui = u holds with u being the utility function such
that: u(sh) = M + m

2 (2
n+1 + 2n) + 2n + n

2 , for each
h ∈ {1, ..., n}; u(th) = M + m

2 (2
n+1 + 2n) + 2n + n

2 ,
for each h ∈ {1, ..., n}; u(αh) = w(αh) + 1, for each
h ∈ {1, ..., n}; u(ᾱh) = 1, for each h ∈ {1, ..., n}; u(cj) =
2n+1+2n, for each j ∈ {1, ...,m}; and, u(e) = 2M , where
M = 4nm(2n+1+2n). Note that M > u(V)−2nM−2M .

We now state some crucial properties of the construction.
To this end, for each assignment τ for Φ, let us define B[τ]
as the tuple whose n+ 1 elements are defined as follows:
• B[τ]h = {th, sh} ∪Xh where Xh is either the set {αh}

or the set {ᾱh} depending on whether τ(αh) = false or
τ(αh) = true, respectively.

• B[τ]n+1 = V \⋃n
h=1 B[τ]h.

Property P1 If τ is an assignment that satisfies Φ, then
B[τ] is an allocation for σ[Φ].

Proof of P1. By construction, the elements of B[τ] are
pairwise-disjoint subsets of goods. Moreover, for each h ∈
{1, ..., n}, it is immediate to check that the subgraph of
G = (V,E) induced by the goods B[τ]h is connected. To
conclude, we show that the subgraph of G induced by the
nodes in B[τ]n+1 is connected, too. Indeed, the subgraph in-
duced by the nodes in {e, α1, ..., αn, ᾱ1, ..., ᾱn} ∩B[τ]n+1

is clearly connected. Consider then a node cj , for j ∈
{1, ...,m}. Since τ is a satisfying assignment, there is a lit-
eral occurring in it, say αh or ¬αh, such that τ(αh) = true
or τ(αh) = false, respectively. In the former case, cj is
connected with the node αh, which belongs to B[τ]n+1 (as
B[τ]h includes instead ᾱh, by construction). In the latter
case, cj is connected with ᾱh, which belongs to B[τ]n+1

(as B[τ]h includes αh). �
Property P2 If τ is an assignment that satisfies Φ, then
u(B[τ]n+1) = 2M +m(2n+1+2n)+n+w(τ). Moreover,
u(B[τ]h) ≥ u(B[τ]n+1), for each h ∈ {1, ..., n}.

Proof of P2. Note that B[τ]n+1 = {e} ∪ {c1, ..., cm} ∪
{αh | τ(αh) = true} ∪ {ᾱh | τ(αh) = false}. The fact
that u(B[τ]n+1) = 2M +m(2n+1 + 2n) + n+ w(τ) then
follows since u(e) = 2M , u(ci) = 2n+1 + 2n for each i ∈
{1, ...,m}, and u(αh) = w(αh) + 1 and u(ᾱh) = 1. More-
over, note that u(B[τ]h) ≥ 2M+m(2n+1+2n)+n+2n+1,
for each h ∈ {1, ..., n}, so that u(B[τ]h) ≥ u(B[τ]n+1) de-
rives because w(τ) < 2n+1. �
Property P3 From any maximin share allocation, a lexi-
cographically maximum satisfying assignment for Φ can be
obtained in polynomial time.

Proof of P3. Let B∗ be a maximin share allocation, and
observe that u(B∗

i) ≥ 2M+m(2n+1+2n)+n+w∗, for each
i ∈ N and where w∗ is the weight of a lexicographically
maximum satisfying assignment. Indeed, Properties P1 and
P2 guarantee that such a best allocation has at least the above
value for every bundle in B∗.

Note that {v ∈ V | u(v) ≥ M} = {e} ∪⋃n
h=1{sh, th}.

In fact, since M > u(V) − 2nM − 2M and since—in
particular—we must have u(B∗

i) ≥ 2M , for each i ∈ N ,

then we conclude that one of the bundles, say B∗
n+1, must

contain e, and any other bundle must contain precisely two
nodes in {sh, th | h ∈ {1, ..., n}}. Furthermore, note that
u(cj) = 2n+1 + 2n > u({α1, ..., αn, ᾱ1, ..., ᾱn}), for each
j ∈ {1, ...,m}. Therefore, from the above properties and the
fact that u(B∗

n+1) ≥ 2M +m(2n+1+2n)+n+w∗ we can
entail B∗

n+1 ⊇ {e, c1, ..., cm}. Consider now any agent i ∈
{1, ..., n}, and recall that the subgraph induced by the nodes
in B∗

i is connected. Combined with the above fact, this im-
plies the existence of some index h(i) ∈ {1, ..., n} such that
both sh(i) and th(i) occur in B∗

i and {αh(i), ᾱh(i)}∩B∗
i �= ∅.

Moreover, note that either αh(i) or ᾱh(i) must belong to
B∗

n+1, because B∗ is a maximin share allocation, u(B∗
n+1)

is less than the values of the other bundles, and u(B∗
n+1) ≥

2M+m(2n+1+2n)+n+w∗ (so that every Boolean variable
must contribute to this worst bundle with a weight).

Then, define a truth assignment τ as follows: for each
i ∈ {1, ..., n}, τ(αh(i)) = true if αh(i) ∈ B∗

n+1; other-
wise, τ(αh(i)) = false. We claim that τ is satisfying. In-
deed, since the subgraph of G induced by the nodes in B∗

n+1
is connected, then for each node cj with j ∈ {1, ...,m},
B∗

n+1 must contain at least one of her neighbors, i.e., a node
having the form αh(i) (resp., ᾱh(i)) if the variable αh(i) oc-
curs positively (resp., negated) in cj . If αh(i) is in B∗

n+1,
τ(αh) = true, by construction, and if ᾱh(i) is in B∗

n+1,
then τ(αh) = false. In both cases, τ satisfies the clause cj .

To conclude, consider the allocation B[τ] and ob-
serve that it is the same as B∗, modulo a permu-
tation of the bundles assigned to agents in {1, ..., n},
so that

∑
i∈{1,...,n} u(B[τ]i) =

∑
i∈{1,...,n} u(B

∗
i) and

u(B[τ]n+1) = 2M+m(2n+1+2n)+n+w(τ) = u(B∗
n+1),

which entails w(τ) = w∗. �
By latter property, we immediately derive that from any

solution to C-MMSA on input σ[Φ], we get a solution
to LEX-SAT on input Φ. Note that σ[Φ] is a consistent
scenario, since it contains only one type of agent. The
desired complexity result then follows by Lemma 2. �

Smooth Utility Functions

The careful reader might have noticed that, in the proof of
Theorem 3, we have exploited utility functions taking values
that are exponential with respect to the number of agents
and goods. However, values used in practice might be not
that large, and it makes sense to consider the restriction of
the general problem to those instances having smooth util-
ity functions. In this section we show that the problem is
in fact slightly easier when such functions are considered,
but it remains intractable, precisely FNP//OptP[O(log n)]-
complete (Chen and Toda 1995).

Theorem 4 On smooth utility functions, C-MMSA is
FNP//OptP[O(log n)]-complete. Hardness holds even on
consistent scenarios with only one type of agents.

Proof Sketch. (Membership) On smooth utility functions,
we have polynomially many utility values and we can show
that the maximin share of all agents can be computed by us-
ing an NP metric machine with O(log n) output bits. Given

2009

the knowledge of such maximin shares, we can guess an al-
location B = (B1, ...,Bn), by subsequently verifying in
polynomial time that, for each agent i, ui(Bi) ≥ mmsσ(i)
actually holds.

(Hardness) We exhibit a reduction of the problem
X -MAXIMAL MODEL, which is FNP//OptP[O(log n)]-
complete (Chen and Toda 1995): given a formula Φ =
c1 ∧ · · · ∧ cm over the set {α1, ..., αn} of variables and
a subset X ⊆ {α1, ..., αn}, we are asked to compute a
satisfying truth assignment τ whose X -part is maximal.
That is, there is no satisfying truth assignment τ ′ such that
{αi | τ ′(αi) = true} ∩ X ⊃ {αi | τ(αi) = true} ∩ X .

It is easy to see—and it has been already observed in the
literature (Eiter et al. 2007)—that one can focus, w.l.o.g.,
on formulas Φ that are satisfiable. Hence, the reduction is
identical to the one used in the proof of Theorem 3, provided
that we set w(αh) = 1 (resp., w(αh) = 0) if αh ∈ X (resp.,
αh �∈ X), and that in the utility functions we replace each
expression of the form 2n (resp., 2n+1) with n (resp., 2n).

Indeed, with these adjustments, it can be checked that the
whole proof still works (basically, we have just to consis-
tently replace the above values in the proof). So, we get that
any maximin share allocation corresponds to a satisfying
assignment τ∗ for Φ with a maximum number of variables
from X evaluating to true (rather than to a lexicographically
maximum satisfying assignment). Clearly, the satisfying
assignment τ∗ is also a solution to X -MAXIMAL MODEL. �

Maximin Share Allocations on Quasi-Acyclic

Graphs

Since C-MMSA is already known to be tractable when re-
stricted to acyclic graphs (Bouveret et al. 2017), a natural
avenue of research is to assess whether it remains tractable
by considering proper generalizations of acyclicity, such as
the notion of bounded treewidth (Robertson and Seymour
1986). This is a well-known measure of the degree of cyclic-
ity of graphs—with acyclic graphs being all and only graphs
having treewidth 1.

Hard Quasi-Acyclic Scenarios

In many reasoning problems arising in AI (Gottlob, Greco,
and Scarcello 2014), tractability over acyclic structures usu-
ally extends to quasi-acyclic ones. A natural step in this di-
rection is the polynomial time algorithm for cycles (whose
treewidth is 2) exhibited in the literature for scenarios with a
fixed number of agent types (Lonc and Truszczynski 2018).
Unfortunately, the following result shows that, somehow
surprisingly, moving from simple cycles to the larger class
of those cyclic graphs having the same (minimum) treewidth
2, makes the problem intractable.

Theorem 5 C-MMSA is NP-hard even on classes of in-
stances having graphs G such that tw(G) = 2. Hardness
holds even if there is a fixed number of agents (having the
same type).

Proof Sketch. The well-known NP-hard PARTITION prob-
lem (Garey and Johnson 1979) takes as input a multiset

of positive integers I = {s1, ..., s�} and asks whether it
is possible to find two disjoint multisets S1 and S2 with
S1 ∪ S2 = I and such that

∑
x∈S1

x =
∑

x∈S2
x. Assume,

w.l.o.g., that 2M =
∑

x∈I x (that is,
∑

x∈I x is even).
Given the multiset I , we build in polynomial time the allo-

cation scenario σ[I] = (N,G, {ui}i∈N), with G = (N,E),
N = {1, 2}, and V = {w1, w2, v1, ..., v�}. In particular, the
graph G = (V,E) is such that {w1, vh} and {w2, vh} are
in E, for each h ∈ {1, ..., �}; and no further edge is in E.
Moreover, the two agents have the same utility function u,
which is such that: u(w1) = u(w2) = 0 and u(vh) = sh,
for each h ∈ {1, ..., �}. Note that tw(G) = 2.

We claim that: I is a “yes” instance to PARTITION if, and
only if, there is a maximin share allocation B for σ[I] with
u(B1) = u(B2) = M .

(only-if part) Assume that S1 ⊆ I and S2 ⊆ I are
two multisets with S1 ∪ S2 = I and

∑
vh∈S1

vh = M

and
∑

vh∈S2
vh = M . Consider the tuple B such that:

B1={w1}∪{vh|sh∈S1} and B2={w2}∪{vh|sh∈S2}. Note
that B is an allocation with u(B1) = u(B2) = M . In partic-
ular, it is a maximin share allocation because u(V) = 2M .

(if part) Assume that a maximin share allocation, say B,
exists such that u(B1) = u(B2) = M . Since u(V) = 2M
and by the connectedness properties of the bundles, we can
write, w.l.o.g., B1 = {w1} ∪ V1 and B2 = {w2} ∪ V2,
where V1 and V2 are two subsets of {v1, ..., v�} such that∑

vh∈V1
u(vh) = M and

∑
vh∈V2

u(vh) = M . Therefore,
S1 = {sh | vh ∈ V1} and S2 = {sh | vh ∈ V2} witness that
I is a “yes” instance to PARTITION. �

Islands of Tractability for Maximin Share
Allocations via Bounded Treewidth

Note that in the proof of Theorem 5, the graph used in
the encoding has bounded treewidth but utility functions
are not smooth. To the contrary, from Theorem 4, we al-
ready know that smooth utility functions are intractable too,
but the graph used in that reduction does not have bounded
treewidth. Therefore, it is natural to ask what happens if we
apply bounded treewidth with smooth utility functions. Our
main result in this section is a polynomial-time algorithm
that works for such instances. In particular, note that the re-
sult holds even if the number of agents is arbitrary, but the
number of their distinct types is required to be small.

Theorem 6 On classes of smooth allocation scenarios with
a bounded number of agent types and having bounded
treewidth, C-MMSA can be solved in polynomial time.

Proof Idea. Let σ = (N,G, u), with G = (V,E), be
a smooth allocation scenario with h different agent types.
Let nj , ∀j ∈ [h], be the number of agents of type j, with∑

j∈[h] nj = |N |. Assume that tw(G) ≤ k, for some fixed
k ≥ 1. Then we can compute a tree decomposition of the
graph G having width at most k in linear time (Bodlaender
1993). Moreover, we can easily transform this decomposi-
tion into a tree decomposition 〈T, χ〉 of G having the same
width and such that T is a (rooted) full binary tree, that is,
every node is either a leaf or has two children.

2010

Input: σ,M, 〈T, χ〉
Task: decide whether there is an allocation B such that, ∀j ∈ [h], ua(Ba) ≥ Mj , for each agent a ∈ N with type(a) = j
Method:

let q be root of T
CHECK(q, ∅, ∅, ∅, 〈n1, . . . , nh〉)

Procedure CHECK(q, λp, ωp,CT p, rest)
Begin Procedure

guess a (total) mapping λq : χ(q) �→ N assigning to agents the goods occurring at q
Stop and Fail if λq(g) �= λp(g), for some good g occurring in both mappings
let new = AGq \AGp, and let new j = {a ∈ AGq \AGp | type(a) = j} (the new type-j active agents introduced at q)
let terminal = AGp \AGq (the agents that are active at p and disappear at q)
for each agent a ∈ terminal , Stop and Fail if

ωp[a] > 0 (the goods assigned to a are not enough), or
CT p[a] contains more than one component (the bundle of goods assigned to a is not connected)

for each type j ∈ [h] and each agent a ∈ new j :
compute the minimum value to be assigned to a: ωq[a] = Mj −

∑
g∈goodsq [a]

ua(g)

guess the components-tree CT q[a] with the connected components of the induced subgraph G[goodsq[a]]
for each other agent a′ ∈ AGq \ new :

update the minimum value to be assigned to a′: ωq[a
′] = ωp[a

′]−∑
g∈(goodsq [a

′]\goodsp[a′]) ua′(g)

guess an update of the components-tree CT q[a
′] (to consider new goods and remove disappeared goods)

if q is a leaf of T then
if restj �= |new j | for some j ∈ [h], then Stop and Fail (there is some agent without any bundle of goods)
for each agent a ∈ AGq , Stop and Fail if

ωq[a] > 0 (the goods assigned to a are not enough), or
CT q[a] contains more than one component (the bundle of goods assigned to a is not connected)

otherwise (q is not a leaf of T)
guess two arrays of numbers rest ′ and rest ′′ such that rest ′j + rest ′′j = restj − |new j |, for each j ∈ [h]
guess two sets of remaining values ω′

q and ω′′
q such that, ∀a ∈ AGq , ωq[a] = ω′

q[a] + ω′′
q [a]

guess a split (CT ′
q[a],CT

′′
q [a]) of the components-tree of each a ∈ AGq

Let � and r be the left child and the right child of q in T
CHECK(�, λq, ω

′
q,CT

′
q, rest

′)
CHECK(r, λq, ω

′′
q ,CT

′′
q , rest

′′)
End Procedure

Figure 2: Algorithm EXISTBUNDLES.

Our algorithm is based on a number of calls to a function
called EXISTBUNDLES, which is reported in Figure 2. The
function gets as its input the allocation scenario σ, a vector
M̄ of h rational numbers holding the minimum value Mj to
be guaranteed to each agent having type j ∈ [h], and the
tree decomposition 〈T, χ〉 of G. EXISTBUNDLES decides
whether there is an allocation B such that, for each type j ∈
[h], ua(Ba) ≥ Mj , for every agent a ∈ N having type j.

EXISTBUNDLES is a non-deterministic function that
can be implemented on a logspace Alternating Turing
Machine (ATM), which entails that it can be imple-
mented on a polynomial-time deterministic Turing ma-
chine, too. It is easy to obtain a (standard deterministic)
dynamic-programming algorithm given an ATM implemen-
tation (Chandra, Kozen, and Stockmeyer 1981). However,
inventing directly such a standard algorithm may be highly
non-trivial, as in our case. Recall that an ATM is a non-
deterministic machine having existential states and univer-
sal states, and accepts its input if there is an accepting com-
putation tree (instead of an accepting path, as in standard
Turing machines). The latter is a tree of machine descrip-
tions, where all leaves hold accepting states, each descrip-

tion with an existential state has one child (encoding the
non-deterministic choice performed at that point), and each
universal state has some children (hence, subtrees of the
computations tree). Whenever a logspace ATM is guaran-
teed to have computation trees having polynomial size for
each “yes” input-instance, the problem solved by this ma-
chine belongs to the complexity class LogCFL, and it is
thus parallelizable (Ruzzo 1980). We shall show that this is
the case for EXISTBUNDLES, and this entails that such an
accepting computation tree, which in our problem encodes
the bundles assigned to agents, can be computed in the func-
tional version of LogCFL (Gottlob, Leone, and Scarcello
2002). It follows that C-MMSA can be solved within the
same complexity, and hence in polynomial time.

Theorem 6 is then established as C-MMSA can be solved
in polynomial time by using EXISTBUNDLES as follows:

• We first compute the value mmsσ(j) for each agent type
j ∈ [h]. This value can be computed by looking for the
maximum share value that can be guaranteed to all agents
in the modified allocation scenario, say σj , where there
is only the one type j (Bouveret et al. 2017). This can be
obtained by performing a logarithmic search with suitable

2011

values M on the range [0, ua(V)] to be checked (where
a is any type-j agent), by calling EXISTBUNDLES on
the modified scenario σj (and with the tree decomposi-
tion 〈T, χ〉). This computation requires clearly polyno-
mial time and should be repeated for each type, hence a
constant number of times.

• After the previous step, it is sufficient to call EXISTBUN-
DLES with the parameters σ and 〈T, χ〉, and with the vec-
tor of values holding mmsσ(j) for each type j ∈ [h].

In order to conclude the proof, we analyze EXISTBUN-
DLES and its properties.

The function EXISTBUNDLES: It is designed to run on
an ATM that, intuitively, works top-down along the tree de-
composition 〈T, χ〉. We use the term “node” to refer to any
node of the decomposition tree T , while we use the term
“good” to refer to any node of the graph G. If ξ : X �→ Y is
a partial mapping from X to Y , we write x ∈ ξ to mean any
element x in the active domain of ξ, that is, such that x ∈ X
is actually mapped to some ξ(x) ∈ Y . Moreover, ∅ denotes
the empty mapping (having an empty active domain).

At each node q of T , the ATM performs a number of non-
deterministic choices by using its existential states. These
choices are then checked on the subtrees rooted at the chil-
dren of q by using the universal states. We describe the pro-
cedure as a high-level recursive procedure with the ability to
perform non-deterministic guess operations. More precisely,
when called with a node q as its parameter, the procedure
CHECK starts guessing an assignment of goods λq : χ(q) �→
N . Denote by AGq the so-called active agents at q, that is,
the set of agents {a ∈ N | λq(g) = a, for some g ∈ χ(q)}
to which the goods occurring at q are assigned. Denote by
goodsq[a] the set of goods assigned to such an agent a at q,
i.e., the set {g ∈ χ(q) | λq(g) = a}. Note that there are
at most k + 1 goods in χ(q), and thus at most k + 1 active
agents at q. These sets and the mapping can be stored with
O(log n) bits (indeed, goods, agents, and nodes are encoded
with suitable pointers to the input tape, or indices identify-
ing such elements). The machine also stores for each active
agent a the minimum remaining value ωq[a] to be assigned
to a: if type(a) = j, it is initially the minimum required
value Mj , and it is then reduced by considering the values
of the goods assigned to a along the tree. Before the recur-
sive calls on the children of q in T , the ATM guesses two
values ω′

q[a] and ω′′
q [a], such that ωq[a] = ω′

q[a] + ω′′
q [a],

that encode the values that remains to be assigned to a in the
subtrees rooted at the children of q. Similarly, for each type
j, it is stored the number of agents restj to be dealt with in
the subtree rooted at q; at the root, this number is nj . When a
new active agent of type j is introduced at some node, restj
is decremented. Before the recursive calls on the children of
q in T the ATM guesses two values rest ′j and rest ′′j holding
the number of remaining agents of type j to be dealt with in
the subtrees rooted at the children of q. At leaves, all these
numbers should go to zero.

A difficult point in this non-deterministic logspace algo-
rithm, is requiring that the bundle Ba of goods assigned

to each agent a is connected, and that no good can be as-
signed to different agents during the algorithm, possibly at
different non-adjacent nodes of T . Note that we do not have
enough memory to store all the goods of a bundle, let alone
the goods in the bundles of all agents. Consider a connected
bundle of goods Ba. From the properties of tree decomposi-
tions, it can be seen easily that the nodes of the decomposi-
tion tree T containing goods of Ba induce a connected sub-
tree of T . However, the goods goodsq[a] from Ba that occur
at node q of this subtree can be goods that are not directly
connected in the graph G. Because of the logarithmic-space
constraint, we may have only a partial view of Ba, and we
cannot say anything about the connection property of Ba.

The main ingredient here is to manage, at such a node q
of the decomposition-tree, a logarithmic-space partial rep-
resentation of the bundle assigned to each active agent a
at that node, which we may call components-tree of a at
q, and denoted by CT q[a]. The vertices of CT q[a] encode
a partition of the goods goodsq[a] assigned to a at q, and
are initially set to be the connected components of the sub-
graph G[goodsq[a]] induced on G by these goods. Note that
there are at most k such vertices, because the treewidth is k
and at most k + 1 goods occur at q. The edges (at most k)
are guessed non-deterministically by the ATM, and encode
paths among the connected components. Such paths include
goods, still unknown at this point of the algorithm, that will
be eventually found along the decomposition tree, because
the bundle must be connected. We cannot expect to check
such paths coming across the missing goods in every branch
of the tree T where the agent a at hand is active. Rather,
at any node q with two children � and r, it is possible that
some edges will be dealt with in the subtree rooted at � and
other edges in the subtree rooted at r. We thus use in the
algorithm what we call a split operation to produce, non-
deterministically, a suitable pair of components-tree CT ′

q[a]

and CT ′′
q [a] to be checked in the recursive calls.

Eventually, EXISTBUNDLES executes a recursive call for
each child of q in order to check, over the subtrees rooted
at � and r, that the non-deterministic choices performed at q
are actually correct. Observe that all the information needed
at each call of EXISTBUNDLES can be encoded in O(log n).
Moreover, it can be seen that computation trees have polyno-
mial size for each “yes” input-instance, so that EXISTBUN-
DLES is in LogCFL, as required. �

Conclusion

We have depicted a clear picture of the complexity of com-
puting maximin share allocations over graphs. We have
shown that the problem is in general FΔP

2 -complete, and
that it remains intractable if there is a small number of types,
and if either the values returned by the utility functions are
polynomially bounded, or the underlying graph has a low de-
gree of cyclicity. However, if these conditions hold together,
then the problem becomes solvable in polynomial time.

The techniques we have used to identify islands of
tractability are rather elaborated. Interestingly, they can be
smoothly applied to analyze settings where utilities can be
negative, that is, when some of the items to be allocated

2012

are actually chores (Aziz et al. 2017; Aziz, Caragiannis,
and Igarashi 2018). Our research leaves open the question
about whether bounded treewidth and smooth utility func-
tions alone (i.e., without the bound on the number of types)
are sufficient to guarantee tractability.

References

Amanatidis, G.; Markakis, E.; Nikzad, A.; and Saberi, A.
2017. Approximation algorithms for computing maximin
share allocations. ACM Trans. Algorithms 13(4):52:1–
52:28.
Aziz, H.; Rauchecker, G.; Schryen, G.; and Walsh, T. 2017.
Algorithms for max-min share fair allocation of indivisible
chores. In Proc. of AAAI’17, 335–341.
Aziz, H.; Caragiannis, I.; and Igarashi, A. 2018. Fair alloca-
tion of combinations of indivisible goods and chores. arXiv
preprint arXiv:1807.10684.
Barman, S., and Krishna Murthy, S. K. 2017. Approxima-
tion algorithms for maximin fair division. In Proc. of EC’17,
647–664.
Bilò, V.; Caragiannis, I.; Flammini, M.; Igarashi, A.;
Monaco, G.; Peters, D.; Vinci, C.; and Zwicker, W. S. 2019.
Almost envy-free allocations with connected bundles. In
Proc. of ITCS’19, 14:1–14:21.
Bodlaender, H. L. 1993. A linear time algorithm for find-
ing tree-decompositions of small treewidth. In Proc. of
STOC’93, 226–234.
Bouveret, S., and Lemaı̂tre, M. 2016. Characterizing
conflicts in fair division of indivisible goods using a scale
of criteria. Autonomous Agents and Multi-Agent Systems
30(2):259–290.
Bouveret, S.; Chevaleyre, Y.; Maudet, N.; and Moulin, H.
2016. Fair Allocation of Indivisible Goods. Cambridge Uni-
versity Press. 284–310.
Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; and
Peters, D. 2017. Fair division of a graph. In Proc. of IJ-
CAI’17, 135–141.
Bouveret, S.; Cechlárová, K.; and Lesca, J. 2018. Chore
division on a graph. Autonomous Agents and Multi-Agent
Systems 1–24.
Brams, S. J., and Taylor, A. D. 1996. Fair division: From
cake-cutting to dispute resolution. Cambridge University
Press.
Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6):1061–1103.
Chandra, A. K.; Kozen, D. C.; and Stockmeyer, L. J. 1981.
Alternation. J. ACM 28(1):114–133.
Chen, Z., and Toda, S. 1995. The complexity of se-
lecting maximal solutions. Information and Computation
119(2):231–239.
Eiter, T.; Erdem, E.; Faber, W.; and Senko, J. 2007. A logic-
based approach to finding explanations for discrepancies in
optimistic plan execution. Fundamenta Informaticae 79:25–
69.

Farhadi, A.; Ghodsi, M.; Hajiaghayi, M. T.; Lahaie, S.; Pen-
nock, D. M.; Seddighin, M.; Seddighin, S.; and Yami, H.
2019. Fair allocation of indivisible goods to asymmetric
agents. Journal of Artifcial Intelligence Reserach 64:1–20.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Ghodsi, M.; Hajiaghayi, M.; Seddighin, M.; Seddighin, S.;
and Yami, H. 2018. Fair allocation of indivisible goods:
Improvements and generalizations. In Proc. of EC’18, 539–
556.
Gottlob, G.; Greco, G.; and Scarcello, F. 2014. Treewidth
and hypertree width. In Tractability: Practical Approaches
to Hard Problems. Cambridge University Press. 3–38.
Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Computing
LOGCFL certificates. Theor. Comput. Sci. 270(1-2):761–
777.
Igarashi, A., and Peters, D. 2018. Pareto-optimal alloca-
tion of indivisible goods with connectivity constraints. arXiv
preprint arXiv:1811.04872.
Krentel, M. W. 1988. The complexity of optimization prob-
lems. Journal of Computer and System Sciences 36(3):490–
509.
Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2016. When
can the maximin share guarantee be guaranteed? In Proc. of
AAAI’16, 523–529.
Lang, J., and Rothe, J. 2016. Fair division of indivisible
goods. In Economics and Computation. Springer. 493–550.
Lonc, Z., and Truszczynski, M. 2018. Maximin share allo-
cations on cycles. In Proc. of IJCAI’18, 410–416.
Nguyen, N.-T.; Nguyen, T. T.; and Rothe, J. 2017. Approx-
imate solutions to max-min fair and proportionally fair allo-
cations of indivisible goods. In Proc. of AAMAS’17, 262–
271.
Procaccia, A. D., and Wang, J. 2014. Fair enough: Guar-
anteeing approximate maximin shares. In Proc. of EC ’14,
675–692.
Robertson, N., and Seymour, P. 1986. Graph minors. ii.
algorithmic aspects of tree-width. Journal of Algorithms
7(3):309–322.
Ruzzo, W. L. 1980. Tree-size bounded alternation. J. Com-
put. Syst. Sci. 21(2):218–235.
Steihaus, H. 1948. The problem of fair division. Economet-
rica 16:101–104.
Suksompong, W. 2017. Fairly allocating contiguous blocks
of indivisible items. In Algorithmic Game Theory, 333–344.

2013

