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Abstract

We motivate and propose a new model for non-cooperative
Markov game which considers the interactions of risk-aware
players. This model characterizes the time-consistent dy-
namic “risk” from both stochastic state transitions (inher-
ent to the game) and randomized mixed strategies (due to
all other players). An appropriate risk-aware equilibrium
concept is proposed and the existence of such equilibria
is demonstrated in stationary strategies by an application
of Kakutani’s fixed point theorem. We further propose a
simulation-based Q-learning type algorithm for risk-aware
equilibrium computation. This algorithm works with a spe-
cial form of minimax risk measures which can naturally be
written as saddle-point stochastic optimization problems, and
covers many widely investigated risk measures. Finally, the
almost sure convergence of this simulation-based algorithm
to an equilibrium is demonstrated under some mild condi-
tions. Our numerical experiments on a two player queuing
game validate the properties of our model and algorithm, and
demonstrate their worth and applicability in real life compet-
itive decision-making.

Introduction

Markov games (a.k.a stochastic games) generalize Markov
decision processes (MDPs) to the multi-player setting. In
the classical case, each player seeks to minimize his ex-
pected costs. In a corresponding equilibrium, no player can
decrease his expected costs by changing his strategy. We of-
ten want to compute equilibria to predict the outcome of the
game and understand the behavior of the players.

In this paper, we directly account for the risk preferences
of the players in a Markov game. Informally, risk aversion
is at least weakly preferring a gamble with smaller vari-
ance when payoffs are the same. Risk-averse players give
more attention to low probability but high cost events com-
pared to risk-neutral players. Models for the risk preferences
of a single agent are well established (Artzner et al. 1999;
Ruszczynski and Shapiro 2006) for the static problems and
(Ruszczyński 2010; Shen, Stannat, and Obermayer 2013)
for the dynamic case. We extend these ideas to general
sum Markov games and extend the framework of Markov
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risk measures (Ruszczyński 2010; Shen, Stannat, and Ober-
mayer 2013) to the multi-agent setting. Our model specifi-
cally addresses the risk from the stochastic state transitions
as well as the risk from the randomized strategies of the
other players. The traditional multilinear formulation ap-
proach (Kardes, Ordonez, and Hall 2011; Aghassi and Bert-
simas 2006) for computing equilibria in robust games fails in
our settings, because our model has an intrinsic bilinear term
due to the product of probabilities (the state transitions and
mixed strategies) which leads to computational intractabil-
ity. Thus, it is necessary to develop an alternative algorithm
to compute equilibria.

Risk Preferences Expected utility theory (von Neumann
and Morgenstern 1944; Engelmann and Steiner 2007;
Thomas 2016) is a highly developed framework for mod-
eling risk preferences. Yet, some experiments (Levin 2006)
show that real human behavior may violate the indepen-
dence axiom of expected utility theory. Risk measures (as
developed in (Artzner et al. 1999; Ruszczynski and Shapiro
2006)) do not require the independence axiom and have fa-
vorable properties for optimization.

In the dynamic setting, (Ruszczyński 2010; Shen, Stan-
nat, and Obermayer 2013) develop the class of Markov
(a.k.a. dynamic/nested/iterated) risk measures and establish
their connection to time-consistency. This class of risk mea-
sures is notable for its recursive formulation, which leads
to dynamic programming equations. Practical computational
schemes for solving large-scale risk-aware MDPs have been
proposed, for instance, Q-learning type algorithms (Jiang
and Powell 2017; Huang and Haskell 2017; 2018) and
simulation-based fitted value iteration (Yu, Haskell, and Xu
2018).

Risk-sensitive/Robust Games Risk-sensitive games have
already been considered in (Klompstra 2000; Ghosh, Kumar,
and Pal 2016; Basu and Ghosh 2017; Bäuerle and Rieder
2017; Jose and Zhuang 2018). Risk-sensitivity refers to the
specific certainty equivalent (1/θ) ln (E [exp (θX)]) where
θ > 0 is the risk sensitivity parameter. (Ghosh, Kumar, and
Pal 2016; Basu and Ghosh 2017) focus on zero-sum risk-
sensitive games under continuous time setting.
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Robust games study ambiguity about costs and/or state
transition probabilities of the game. (Aghassi and Bertsimas
2006) develop the robust equilibrium concept where each
player optimizes against the worst-case expected cost over
the range of model ambiguity. This paradigm is extended
to Markov games in (Kardes, Ordonez, and Hall 2011), and
the existence of robust Markov perfect equilibria is demon-
strated. (Aghassi and Bertsimas 2006; Kardes, Ordonez, and
Hall 2011) formulate robust Markov perfect equilibria as
multilinear systems.

Games with risk preferences are not artificial; rather, they
emerge organically from many real problems. Traffic equi-
librium problems with risk-averse agents are analyzed in
(Bell and Cassir 2002) with non-cooperative game theory.
The preferences of risk-aware adversaries are modeled in
Stackelberg security games in (Qian, Haskell, and Tambe
2015), and a computational scheme for robust defender
strategies is presented.

Contributions of This Work We make three main contri-
butions in this paper:

1. We develop a model for risk-aware Markov games where
agents have time-consistent risk preferences. This model
specifically addresses both sources of risk in a Markov
game: (i) the risk from the stochastic state transitions and
(ii) the risk from the randomized strategies of the other
players.

2. We propose a notion of ‘risk-aware’ Markov perfect equi-
libria for this game. We show that there exist risk-aware
equilibria in stationary strategies.

3. We create a practical simulation-based Q-learning type
algorithm for computing risk-aware Markov perfect equi-
libria, and we show that it converges to an equilibrium
almost surely. This algorithm is model-free and so does
not require any knowledge of the true model, and thus
can search for equilibria purely by observations.

Risk-aware Markov Games

In this section, we develop risk-aware Markov games. Our
game consists of the following ingredients: finite set of play-
ers I; finite set of states S; finite set of actions Ai for each
player i ∈ I; strategy profiles A := ×i∈IAi; state-action
pairs K := S ×A; transition kernel P (·|s, a) ∈ P(S) (here
P(S) denotes the distribution over S) for all (s, a) ∈ K,
and cost functions ci : S ×A → R for all players i ∈ I.

Each round t ≥ 0 of the game has four steps: (i) first, all
players observe the current state st ∈ S; (ii) second, each
player i ∈ I chooses ait ∈ Ai (all moves are simultaneous
and independent, and the corresponding strategy profile is
at =

(
ait
)
i∈I); (iii) third, each player i ∈ I realizes cost

ci (st, at); and (iv) lastly, the state transitions to st+1 ac-
cording to P (· | st, at).

We next characterize the players’ strategies. In this work,
we focus on ‘stationary strategies’. Stationary strategies pre-
scribe a player the same probabilities over his actions each
time the player visits a certain state, no matter what route
he follows to reach that state. Stationary strategies are more

prevalent than normal strategies (which rely on the entire
history), due to their mathematical tractability (Vrieze 2003;
Fink 1964; Kardes, Ordonez, and Hall 2011). Furthermore,
the memoryless property of stationary strategies conforms
to real human behavior (Vrieze 2003).

We introduce some additional notations to characterize
stationary strategies x. Let P(Ai) denote the distribution
over Ai. For each player i ∈ I and state s ∈ S , xis ∈ P (Ai

)
is the mixed strategy over actions where xis

(
ai
)

denotes the
probability of choosing ai at state s. We define the strat-
egy xi := (xis)s∈S ∈ X i := ×s∈SP

(Ai
)

of player i, the
multi-strategy x :=

(
xi
)
i∈I ∈ X := ×i∈IX i of all play-

ers, the complementary strategy x−i := (xj)j �=i ∈ X−i :=
×j �=iX j , and the multi-strategy xs =

(
xis
)
i∈I ∈ Xs :=

×i∈IP
(Ai

)
for all players in state s ∈ S . We sometimes

write a multi-strategy as x = (ui, x−i) to emphasize player
i’s strategy ui.

There are two sources of stochasticity in the cost se-
quence: the stochastic state transitions characterized by
the transition kernel P (·|s, a), and the randomized mixed
strategies of players characterized by x−i. In this work, we
consider the risk from both sources of stochasticity. We be-
gin by constructing the framework for evaluating the risk of
sequences of random variables. A dynamic risk measure is
a sequence of conditional risk measures each mapping a fu-
ture stream of random costs into a risk assessment at the cur-
rent stage, following the definition of risk maps from (Shen,
Stannat, and Obermayer 2013), and satisfying the stationary
and time-consistency property of (Ruszczyński 2010, Defi-
nition 3) and (Shapiro and Pichler 2016, Definition 1). We
assume each conditional risk measure satisfies three axioms:
normalization, convexity, and positive homogeneity , which
were originally introduced for static risk measures in the pi-
oneering paper (Artzner et al. 1999). Here “convexity” char-
acterizes the risk-averse behavior of players. From (Shapiro
and Pichler 2016, Definition 1), a risk-aware optimal pol-
icy is time-consistent if, the risk of the sub-sequence of ran-
dom outcome from any future stage is optimized by the re-
solved policy. In the Supplementary materials1, we give ex-
plicit definitions of the above three axioms of risk measures,
stationary and time-consistency risk preferences, and deriva-
tion of recursive evaluation of dynamic risk.

From (Ruszczyński 2010, Theorem 4) and (Shapiro and
Pichler 2016, Proposition 4), time-consistency allows for a
recursive (iterative) evaluation of risk. The infinite-horizon
discounted risk for player i under multi-strategy x will be:

J i
s0(x

i, x−i) :=ρi(ci(s0, a0) + γ ρi(ci(s1, a1)

+ γ ρi
(
ci(s2, a2) + · · ·))), (1)

where ρi is a one-step conditional risk measure that maps
random cost from the next stage to current stage, with re-
spect to the joint distribution of randomized mixed strate-
gies and transition kernel. In Eq. (1), each ci(st, at), t ≥ 1
is governed by the joint distribution of randomized mixed

1https://arxiv.org/abs/1901.04882
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strategies and transition kernel

×i∈Ixist(a
i
t)P (st|st−1, at−1),

which is defined for fixed (st−1, at−1) and for all st and ait.
The initial cost ci(s0, a0) is only governed by the random
mixed strategies distribution ×i∈Ixis0(a

i
0).

The corresponding best response function for player i is:

min
xi∈X i

J i
s0(x

i, x−i). (2)

Suppose we replace all ρi with expectation E in Eq. (1)
which leads to E

x
s

[∑∞
t=0 γ

tci (st, at)
]
, where E

x
s denotes

expectation with respect to multi-strategies x, then Problem
(2) will become risk-neutral. Thus our formulation recovers
the risk-neutral game as a special case.

Denote the ingredients of game
{
J i
s(x

i, x−i)
}
s∈S, i∈I as

{I, S, A, P, c, ρ}. In line with the classical definition of
Markov perfect equilibrium in (Fink 1964), we now define
risk-aware Markov perfect equilibrium.

Definition 1. (Risk-aware Markov perfect equilibrium) A
multi-strategy x ∈ X is a risk-aware Markov perfect equi-
librium for {I, S, A, P, c, ρ} if

J i
s(x

i, x−i) ≤ J i
s(u

i, x−i), ∀s ∈ S, ui ∈ X i, i ∈ I. (3)

In Definition 1, each player i ∈ I implements a (risk-
aware) stationary best response given the stationary comple-
mentary strategy x−i. It also states that x is an equilibrium
if and only if no player can reduce his discounted risk by
unilaterally changing his strategy.

Existence of Stationary Equilibria We prove the exis-
tence of stationary equilibira in this section. Let vi denote
player i’s value function, which is an estimate of the dis-
counted risk starting from the next state S′. For each player
i, the value of the stationary strategy x ∈ X in state s ∈ S
is defined to be vi (s) := J i

s(x), and vi :=
(
vi (s)

)
s∈S is

the entire value function for player i. The space of value
functions for all players is V := ×i∈IR|S|, equipped with
the supremum norm ‖v‖∞ := maxs∈S, i∈I |vi (s) |. Eq. (1)
states that each player must evaluate the stage-wise risk of
random variables on A× S , formulated as

ci (s, A) + γ vi (S′) , (4)

where A is the random strategy profile chosen from A
according to xs, and S′ is the random next state visited
(which first depends on x through the random choice of
strategy profile a, and then depends on the transition kernel
P (· | s, a) after a ∈ A is realized).

Recall that in state s ∈ S , the probability that a =
(ai)i∈I ∈ A is chosen and then the system transitions to
state k ∈ S is

(×i∈Ixis
(
ai
))
P (k | s, a). The probability

distribution of the strategy profile a ∈ A and next state vis-
ited k ∈ S is given by the matrix

Ps

(
uis, x

−i
s

)
:=

[
uis

(
ai
) (×j �=ix

j
s

(
aj
))
P (k | s, a)]

(a, k)∈A×S , (5)

where we explicitly denote the dependence on the multi-
strategy xs =

(
uis, x

−i
s

)
in state s. For simplicity, we often

write Ps instead of Ps

(
uis, x

−i
s

)
when it is not necessary to

indicate the dependence on (u, x).
Let Ci

s

(
vi
)

:=
(
ci (s, A) + γ vi (S′)

)
be the random

cost-to-go for player i at state s. Based on the Fenchel-
Moreau representation of risk (Föllmer and Schied 2002;
Ruszczynski and Shapiro 2006; Guigues, Krätschmer, and
Shapiro 2016), the convex risk of random cost-to-go denoted
by ψi

s(u
i
s, x

−i
s , vi) can be computed as the worst-case ex-

pected cost-to-go
ψi
s(u

i
s, x

−i
s , vi) :=ρi

(
ci(s ,A) + γ vi (S′)

)
= sup

μ∈Mi
s(Ps)

{〈μ, Ci
s

(
vi
)〉 − bis(μ)

}
,

where
{Mi

s(Ps)
}
s∈S, i∈I ⊂ P(A×S) is the risk envelope

of ρi that depends on Ps, and
{
bis
}
s∈S, i∈I : P (A× S) →

R are convex functions satisfying infμ∈P(A×S) b
i
s(μ) = 0

for all i ∈ I and s ∈ S . To connect to risk-neutral games, we
can just choose all Mi

s(Ps) to be singletons {Ps

(
uis, x

−i
s

)}
and bis(μ) = 0 for all μ ∈ Mi

s(Ps), i ∈ I, and s ∈ S .
We next introduce further assumptions on ρi,{Mi

s(Ps)
}
s∈S, i∈I , and

{
bis
}
s∈S, i∈I , that will lead

to the existence of stationary equilibria.
Assumption 1. (i) All ρi are law invariant, ρi(X) = ρi(Y )
for all X =D Y , where =D denotes equality in distribution.

(ii)
{Mi

s(Ps)
}
s∈S, i∈I ⊂ P (A× S) is a collection of

set-valued mappings where Mi
s(Ps) are closed and polyhe-

dral convex for all Ps. Explicitly, there exists M ≥ 1 linear
constraints and [M ] := {1, 2, ...,M}. Then Mi

s(Ps) is de-
fined as:⎧⎨
⎩μ ∈ R

|A||S| :
Ai

s,m μ+ fm(Ps) ≥ his,m,m ∈ [M ],
eTμ = 1,
μ ≥ 0,

⎫⎬
⎭
(6)

whereAi
s,m are matrices, fm are linear functions in Ps and

his,m are constants.
(iii) All

{
bis
}
s∈S, i∈I are convex and Lipschitz continu-

ous.
Formulation (6) explains how Mi

s(Ps) depends on Ps.
In addition, if fm depends linearly on Ps, then fm also de-
pends linearly on uis and x−i

s by definition of Ps in Eq. (5).
In computational terms, this assumption is close to (Kardes,
Ordonez, and Hall 2011) which assumes polyhedral un-
certainty sets for the transition probabilities in its robust
Markov game model. This assumption also corresponds to
the one in (Ferris and Philpott 2018) about representation of
agent risk preferences.
Example 1. Conditional value-at-risk (CVaR) is a widely
investigated coherent risk measure that computes the con-
ditional expectation of random losses exceeding a threshold
with probability α.

CVaR can be constructed from system (6) when we choose
M = 1, Ai

s,m = −e, fm(Ps) = Ps/(1−αi), and his,m = 0
with m = 1.
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The best response function v∗ corresponding to a risk-
aware Markov perfect equilibrium, for all s ∈ S, i ∈ I,
satisfies

vi∗ (s) = min
ui
s∈P(Ai)

J i
s(u

i, x−i)

= min
ui
s∈P(Ai)

ψi
s(u

i
s, x

−i
s , vi∗), (7)

xis ∈ arg min
ui∈X i

J i
s(u

i, x−i), (8)

and vi∗ may not be unique. In the mappingCi
s

(
vi
)

on A×S,
the players control the distribution on P (A× S) through
their mixed strategies. Eqs. (7) - (8) together simply restate
Eq. (3). However, Eqs. (7) - (8) give a computational recipe
that can be encoded into an operator on multi-strategies. We
define this operator Φ on X :

Φ(x) :=
{
q̃ ∈ X : q̃is ∈ arg min

ui
s∈P(Ai)

ψi
s(u

i
s, x

−i
s , vi∗),

vi∗ (s) = min
ui
s∈P(Ai)

ψi
s(u

i
s, x

−i
s , vi∗), ∀s ∈ S, i ∈ I

}
. (9)

This operator returns the set of strategies for every player
that are best responses to all other players’ strategies.

The following Theorem 1 briefly describes the existence
of stationary strategies with detailed proof in the Supple-
mentary materials.
Theorem 1. Suppose Assumption 1 holds, then the game
{I, S, A, P, c, ρ} has an equilibrium in stationary strate-
gies.

Our proof of existence of Theorem 1 draws from (Fink
1964; Kardes, Ordonez, and Hall 2011). The main idea is
to show that Φ is a nonempty, closed, and convex subset
of X , and that Φ is upper semicontinuous. Then, we apply
Kakutani’s fixed point theorem to show that this correspon-
dence Φ has a fixed point which coincides with a risk-aware
Markov perfect equilibrium.

A Q-Learning Algorithm

We propose a simulation-based and asynchronous algo-
rithm for computing equilibria of the risk-aware game
{I, S, A, P, c, ρ}, called Risk-aware Nash Q-learning
(RaNashQL). This algorithm does not require a model for
the cost functions

{
ci
}
i∈I or the transition kernel P , nor

does not it require prior knowledge on S . The algorithm has
an outer-inner loop structure, where the risk estimation is
performed in the inner loop and the equilibrium estimation
is performed in the outer loop.

In each iteration of RaQL, a collection of Q-values for
each player for all strategy profiles, is generated. The one-
shot game formed by the collection of Q-values is called
a stage game. We will later formulate stage game explic-
itly. The outer-inner loop structure follows (Jiang and Pow-
ell 2017; Huang and Haskell 2017; 2018) where multiple
“stochastic approximation instances” for both risk estima-
tion and Q-value updates are “pasted” together. We show
that the Nash equilibria mapping for stage games is non-
expansive, and both the risk estimation error and equilib-
rium estimation error are bounded by the gap between the

estimated Q-value and the Q-value under the equilibrium.
These two conditions allow us to prove the convergence of
the algorithm using the theory of stochastic approximation,
as shown in (Even-Dar and Mansour 2004).

For this section, we assume that our risk measures
{
ρi
}

have a special form as stochastic saddle-point problems to
facilitate computation. Define a probability space (Ω,F , P )
and the space of essentially bounded random variables L =
L∞(Ω,F , P ).
Assumption 2. (Stochastic saddle-point problem) For all
i ∈ I,

ρi(X) = min
y∈Yi

max
z∈Zi

EP

[
Gi(X, y, z)

]
, ∀X ∈ L, (10)

where: (i) Yi ⊂ R
d1 and Zi ⊂ R

d2 are compact and convex
with diametersDY andDZ , respectively. (ii)Gi is Lipschitz
continuous on L × Yi × Zi with constant KG > 1. (iii) G
is convex in y ∈ Yi and concave in z ∈ Zi. (iv) The subgra-
dients of G on y and z are Borel measurable and uniformly
bounded for all X ∈ L.

In (Huang and Haskell 2018, Theorem 3.2), conditions
on Gi are given to ensure that the corresponding minimax
structure (10) is a convex risk measure. Some examples of
the functions Gi are shown in the Supplementary materials
such that the corresponding risk-aware Markov perfect equi-
libria exist. For instance, CVaR can be written as:

CVaRαi(X) := min
η∈R

{
η +

1

1− αi
E [max {X − η, 0}]

}
,

(11)
where αi ∈ [0, 1) is the risk tolerance for player i.

Risk-aware Nash Q-learning Algorithm RaNashQL is
updated based on future equilibrium costs (which depend
on all players). In contrast, single-agent Q-learning updates
are only based on the player’s own costs. Thus, to predict
equilibrium losses, every player must maintain and update a
model for all other player’s costs and their risk assessments,
which follows the settings in (Hu and Wellman 2003).

For all (s, a) ∈ S ×A, i ∈ I,

Qi
∗(s, a) := min

y∈Yi
max
z∈Zi

EP (· | s, a)
{

Gi
(
ci(s ,A) + γ vi∗(S), y, z

) }
, (12)

denotes the Q-values corresponding to a stationary equilib-
rium and its best response function v∗. In the case of multi-
ple equilibria, different Nash strategy profiles may have dif-
ferent equilibrium Q-values, so the pair (vi∗, Q

i
∗) may not

be unique.
In a multi-agent Q-learning algorithm, the agents play

a sequence of stage games where the payoffs are the cur-
rent Q-values. In each state s ∈ S , the corresponding
stage game is the collection (Qi(s))i∈I , where Qi(s) :=
{Qi(s, a) : a ∈ A} is the array of Q-values for player i
for all strategy profiles. Let xs be a Nash equilibrium of
the stage game (Qi(s))i∈I , then the corresponding Nash Q-
value for all i ∈ I is denoted:

Nashi(Qj(s))j∈I :=
∑
a∈A

(×j∈Ixjs
(
aj
))
Qi (s, a) ,
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which gives each player’s corresponding expected cost in
state s ∈ S (with respect to the Q-values) under xs.

RaNashQL builds upon the algorithm in (Hu and Wellman
2003) for the risk-aware case. Figure 1 illustrates how play-
ers interact with others and update their equilibrium estima-
tion through RaQL. Each player chooses an action based on

Figure 1: Illustration of RaQL

a Nash equilibrium of their current Q-values, observed cost,
other players’ actions, and then the new state in each itera-
tion. The Q-values follow a stochastic approximation-type
update as in standard Q-learning.

Algorithm 1 Risk-aware Nash Q-learning
(Step 0) Initialize: Let n = 1, and t = 1, get the initial state
s1. Let the learning agent be indexed by i. For all s ∈ S and
ai ∈ Ai, i ∈ I, let Qi

n,t(s, a) = 0.
For n = 1, ..., N do
(Step 1) Choose ain based on the exploration policy π. Ob-
serve the actions and costs for all players, then observe a
new state;

For t = 1, ..., T do
(Step 2) Compute the NashQ-value; Compute the risk-

aware cost-to-go for all players;
(Step 3) Update each Qi

n,t, i ∈ I using stochastic ap-
proximation;

(Step 4) Stochastic approximation of risk measure by
SASP;

end for
end for
Return Approximated Q-value Qi

N,T , i ∈ I.

The steps of RaNashQL are summarized in Algorithm 1,
which contains N and T number of iterations for outer and
inner loops, respectively. In Step 4, we use the stochastic ap-
proximation for saddle-point problems (SASP) algorithm,
(Nemirovski and Rubinstein 2005, Algorithm 2.1). Classi-
cal stochastic approximation may result in extremely slow
convergence for degenerate objectives (i.e. when the objec-
tive has a singular Hessian). However, the SASP algorithm
with a properly chosen parameter preserves a “reasonable”
(close to O(n−1/2)) convergence rate, even when the ob-
jective is non-smooth and/or degenerate. Thus, SASP is a
robust choice for solving problem (10). The extended for-
mulations from Steps (0)-(4) in Algorithm 1 are given in the
Supplementary materials.

Game 1 Left Right
Up 0, 1 10, 7

Down 7, 10 11, 8

Game 2 Left Right
Up 5, 5 10, 4

Down 4, 10 8, 8
Game 3 Left Right

Up 0, 1 10, 9
Down 7, 10 8, 8

Table 1: Examples of I ′-mixed point

Almost Sure Convergence Let {Qn,T }i∈I be the Q-
value estimations at iteration n and T (the end of each in-
ner loop after the risk estimation has been done) from Algo-
rithm 1. We would like to demonstrate the almost sure con-
vergence ofQi

n,T to the risk-aware equilibriumQ-valuesQi
∗

for all players. (Hu and Wellman 2003) introduce two condi-
tions on the Nash equilibria of all the stage games that lead
to almost sure convergence, a global optimal point when ev-
ery player receives his lowest cost at this point, and a sad-
dle point when each agent would receive a lower cost when
at least one of the other players deviates. We found a spe-
cial type of Nash equilibria that we call an I ′-mixed point,
which builds on (Hu and Wellman 2003), and plays a major
role in our convergence analysis.

Definition 2. Let (Ci)i∈I denote the expected cost of all
players as a function of the multi-strategy x ∈ X . A multi-
strategy x ∈ X is a I ′-mixed point of

(
Ci

)
i∈I if: (i) it is

a Nash equilibrium and (ii) there exists an index of players
I ′ ⊆ I such that: Ci (x) ≤ Ci (x′) , ∀x′ ∈ X , i ∈ I ′, and
Ci

(
xi, x−i

) ≤ Ci
(
xi, u−i

)
, ∀u−i ∈ X−i, i ∈ I\I ′.

Our definition of ‘I ′-mixed point’ combines both notions
of global optimal point and saddle point. From Definition 2,
a subset of players I ′ ⊆ I minimizes their expected costs at
x. The rest of the players I\I ′ each would receive a lower
expected cost when at least one of the other players devi-
ates. An example of an I ′-mixed point in a one shot game
follows.

Example 2. Player 1 has choices Up and Down, and Player
2 has choices Left and Right. Player 1’s loss is the first
entry in each cell, and Player 2’s are the second. The first
game has a unique Nash equilibrium (Up, Left), which is a
global optimal point. The second game also has a unique
Nash equilibrium (Down, Right), which is a saddle-point.
The third game has two Nash equilibrium: a global optimum
(Up, Left), and a mixed point (Down, Right). In equilibrium
(Down, Right), Player 1 receives a lower cost if Player 2
deviates, while Player 2 receives a higher cost if Player 1
deviates.

We now introduce the following additional assumptions
for our analysis of RaNashQL.

Assumption 3. One of the following holds for all stage
games (Qi

n,T (s))i∈I for all n and s ∈ S in Algorithm 1.
(i) Every (Qi

n,T (s))i∈I for all n and s ∈ S has a global
optimal point.

(ii) Every (Qi
n,T (s))i∈I for all n and s ∈ S has a saddle

point.
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(iii) For any two stage games Q, Q̃ ∈ (Qi
n,T (s))i∈I for

all n and s ∈ S , we suppose Q1 has a I1-mixed point x
and Q2 has a I2-mixed point x̃. Then: For i ∈ I1 ∪ (I\I2),
then Qi (x) ≥ Q̃i (x̃); For i ∈ I2 ∪ (I\I1), then Qi (x) ≤
Q̃i (x̃).

Compared with (Hu and Wellman 2003, Assumption 3),
Assumption 3(iii) enables wider application of RaNashQL.
In particular, even the indices I1 and I2 of all the stage
games may differ across iterations. Next we list further stan-
dard assumptions on exploration in RaNashQL and its asyn-
chronous updates.

Assumption 4. (i) The exploration policy π is ε−greedy,
meaning with probability ε ∈ (0, 1), action ai is chosen
uniformly from Ai, and with probability 1 − ε, action ai is
drawn from Ai according to xis which is the equilibrium of
the stage game {Qi(s)}i∈I; (ii) a single state-action pair is
updated when it is observed in each iteration.

By the Extended Borel-Cantelli Lemma (Breiman 1992),
the algorithm satisfying Assumption 4(i) will visit every
state-action pair infinitely often with probability one.

Theorem 2. Suppose Assumptions 3 and 4 hold. For any
T ≥ 1, Algorithm 1 generates sequences

{
Qi

n,T

}
n≥1

such

that Qi
n, T → Qi

∗ almost surely as n→ ∞ for all i ∈ I.

The proof sketch of Theorem 2 is listed as follows, with
the details presented in the Supplementary materials. (i)
Show that all I ′-mixed points of a stage game have equal
value, and the property also holds for global optimal points
and saddle points. Consequently, from (Hu and Wellman
2003), the mapping from Q-values to Nash equilibrium (of
the stage games) is non-expansive. (ii) Show that the Haus-
dorff distance between the subdifferentials of the estimated
risk on Yi and Zi (corresponding to Eq. (10)), is bounded
by a function of ‖Qi

n−1,T −Qi
∗‖2. (iii) Show that the duality

gaps of all the saddle point estimation problems are bounded
by a function of ‖Qi

n−1,T − Qi
∗‖2. (iv) If the conditions in

(i)-(iii) hold, thenQi
n, T from RaNashQL are a well-behaved

stochastic approximation sequence (Even-Dar and Mansour
2004, Definition 7) that converges to Qi

∗ with probability
one.

(Huang and Haskell 2018, Theorem 4.7) shows that the
single-agent version of RaNashQL has complexity

Ω
((
S A ln(S A/δε)/ε2

)1/β
+ (ln(

√
S A/ε))1/(1−β)

)
,

(13)
with probability 1−δ, where S and A denote the cardinality
of state and actions spaces and β ∈ (0, 1] is the learning
rate. In the multi-agent case, our conjecture is to replace A
with |A| in the term (13) to get a rough estimate of the time
complexity of RaNashQL. However, the explicit complexity
bound is difficult to derive and remains for future research.
In RaNashQL, there are multiple Q-values being updated
in each iteration for each state, and their relationships are
complex (they are linked by the solutions of a stage game,
since each stage game may yield multiple Nash equilibria).

In the Supplementary materials, we also discuss (i) meth-
ods for computing Nash equilibria of stage games involving

two or more players; (ii) a rule for choosing a unique Nash
equilibrium of stage games from multiple choices; (iii) the
storage space requirement of RaNashQL.

A Queuing Control Application

We apply our techniques to the single server exponential
queuing system from (Kardes, Ordonez, and Hall 2011). In
this packet switched network, it is service provider’s (de-
noted as “SP” latter in the tables) benefit to increase the
amount of packets processed in the system. However, such
an increase may result in an increase in packets’ waiting
times in the buffer (called latency), and routers (denoted as
“R” latter in the tables) are used to reduce packets’ waiting
times. Thus, the game arises because the service provider
and router choose their service rates to achieve competing
objectives.

The state space S represents the maximum number (30
in these experiments) of packets allowed in the system. We
assume that the time until the admission of a new packet
and the next service completion are both exponentially dis-
tributed. Therefore, the number of packets in the system can
be modeled as a birth and death process with fixed state tran-
sition probabilities. In the Supplementary materials, we pro-
vide the explicit formulation of cost functions, state transi-
tion probabilities, as well as other parameter settings. We
suppose that each player has the same two available actions
(service rates) in every state. CVaR is the risk measure for
both players in all the experiments. The player’s risk prefer-
ences are obtained by setting αi for i = 1, 2, and we allow
α1 �= α2.

Experiment I (RaNashQL vs. Nash Q-learning) We
compare RaNashQL with NashQ-learning in (Hu and Well-
man 2003) in terms of their convergence rates. Given any
precision ε > 0, we record the iteration count n until the
convergence criterion ‖Qi

n, T −Qi
∗‖2 ≤ ε is satisfied. Figure

2 (top) reveals that RaNashQL is more computationally ex-
pensive than NashQ-learning. Table 2 shows the discounted
cost under equilibrium by simulation (1000 samples). The
first table reveals that incorporating risk will help the ser-
vice provider reduce its mean cost, while increase the mean
cost of the router. The second table shows that incorporating
risk will help to reduce the overall cost to the entire system
with only a slightly higher variance.

The first part of Table 3 shows that the mean cost of ser-
vice provider (−44.31) is lower than that under the risk-
neutral Markov perfect equilibrium (−22.22), and the mean
cost of router (59.64) is lower than that under the risk-aware
Markov perfect equilibrium (37.48). This result shows that
incorporating risk preference can help decision makers reach
a new equilibrium that further reduces his mean cost com-
pared to cases where both players are either risk-neutral or
risk-aware. Similar phenomena can also be shown in the sec-
ond part of Table 3. In the final part of Table 3, we construct
a new two-player one-shot game where the risk preferences
(risk-neutral and risk-aware) are the actions and the expected
value from simulation will be outcome of the game. We find
that a equilibrium is attained for this game when the router
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Player Method Mean Variance 5%-CVaR 10%-CVaR
SP Neutral −22.22 1.4736e− 06 −22.22 −22.22

CVaR −77.78 407.84 −69.34 −68.26
R Neutral 37.48 7.32 37.94 38.18

CVaR 83.68 491.20 86.03 87.54

Method Mean 5%-CVaR 10%-CVaR
Neutral 15.26 15.72 15.96
CVaR 5.9 16.69 19.28

Table 2: Simulation (Constructing CVaR with α1 = α2 =
0.1)

Player Method Mean Variance 5%-CVaR 10%-CVaR
SP CVaR −44.31 266.06 −43.38 −42.70
R Neutral 59.64 316.71 61.18 62.77

Player Method Mean Variance 5%-CVaR 10%-CVaR
SP CVaR −54.76 26.05 −54.71 −54.67
R Neutral 70.56 31.03 71.56 71.81

Router
Risk-neutral Risk-aware

Service Provider Risk-neutral (−22.22, 37.48) (−54.76, 70.56)
Risk-aware (−44.44, 59.64) (−77.78, 83.68)

Table 3: Simulation ( Constructing CVaR with α1 = 0.95,
α2 = 0.1 for the first table, and α1 = 0.1, α2 = 0.95 for the
second)

is risk-neutral and the service provider is risk-aware. This
one-shot game demonstrates that the router should be risk-
neutral when service provider is risk-aware, in order to re-
duce his expected cost.

In the Supplementary materials, we further explain the
reason for the increase in variance in risk-aware games in
Table 2 which is counter-intuitive.

Experiment II (RaNashQL vs. Multilinear System) In
this experiment, we consider a special case where the risk
only comes from state transitions (this setting is basically
a risk-aware interpretation of (Kardes, Ordonez, and Hall
2011)). In this case, we can compute the risk-aware Markov
equilibrium “exactly” using a multilinear system and interior
point algorithm as detailed in the Supplementary materials.
We evaluate performance in terms of the relative error

√∑
s∈S

(
Nashi(Qj

n, T (s))j∈I − vi∗(s)
)2

√∑
s∈S vi∗(s)2

, n ≤ N,

where vi∗ is the value function corresponding to the equi-
librium solved by multilinear system. The Supplementary
materials confirm that the service provider’s strategy pro-
duced by RaNashQL converges almost surely to the one pro-
duced by multilinear system. From the Supplementary ma-
terials, interior point algorithm finds a local optimum with
10471.975 seconds, and RaNashQL has relative error lower
than 25% with 5122.657 seconds. Thus, our approach pos-
sesses superior computational performance compared to an
interior point algorithm for solving multilinear systems.

Experiment III (Computational Complexity Conjecture)
In this experiment, we explore the conjecture on the com-
putational complexity of RaNashQL. Given a fixed ε, we
could compute the complexity conjecture through formula-
tion (13). Figure 2 (bottom) shows that the relative errors of
service provider and router under computed complexity con-
jecture are bounded by ε. Thus we derive a potential heuris-
tic for the computational complexity of solving a general
sum game given the size of the game. In other words, each
practitioner can estimate the upper bound of total complex-
ity in computing the ε− equilibrium through this conjecture.

Figure 2: Computational Complexity

Conclusion

In this paper, we propose a model and simulation-based
algorithm for non-cooperative Markov games with time-
consistent risk-aware players. This work has made the fol-
lowing contributions: (i) The model characterizes the “risk”
from both the stochastic state transitions and the random-
ized strategies of the other players. (ii) We define risk-
aware Markov perfect equilibrium and prove its existence
in stationary strategies. (iii) We show that our algorithm
converges to risk-aware Markov perfect equilibrium almost
surely. (iv) From a queuing control numerical example, we
find that risk-aware Markov games will reach new equilib-
ria other than risk-neutral ones (this is the equilibrium shift-
ing phenomenon). Moreover, the variance is increased for
risk-aware Markov games, which is contrary to the vari-
ance reduction property of risk-aware optimization for sin-
gle agents. The sum of expected cost over all players is re-
duced in risk-aware Markov game, compared to risk-neutral
ones. In future research, we seek to improve the scalability
of our framework for large-scale Markov games.
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