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Abstract

The paper presents a new method for approximating Strong
Stackelberg Equilibrium in general-sum sequential games
with imperfect information and perfect recall. The proposed
approach is generic as it does not rely on any specific prop-
erties of a particular game model. The method is based on
iterative interleaving of the two following phases: (1) guided
Monte Carlo Tree Search sampling of the Follower’s strategy
space and (2) building the Leader’s behavior strategy tree for
which the sampled Follower’s strategy is an optimal response.
The above solution scheme is evaluated with respect to ex-
pected Leader’s utility and time requirements on three sets
of interception games with variable characteristics, played on
graphs. A comparison with three state-of-the-art MILP/LP-
based methods shows that in vast majority of test cases pro-
posed simulation-based approach leads to optimal Leader’s
strategies, while excelling the competitive methods in terms
of better time scalability and lower memory requirements.

1 Introduction
Stackelberg Equilibrium (SE) (Leitmann 1978) defines equi-
librium profile for two-player asymmetric games. One
player – the Leader – commits to a certain strategy and the
other player – the Follower – defines his/her strategy be-
ing aware of the Leader’s commitment. The notion of SE,
which originated in the field of economy, gained momen-
tum in recent decade thanks to intensive research on Se-
curity Games (Sinha et al. 2018) which often use Stackel-
berg Game (SG) to model interactions between a defender
(playing the role of a Leader) and an attacker (being a
Follower). We consider the Strong Stackelberg Equilibrium
(SSE) (Leitmann 1978) in which (additionally to SE) the
Follower breaks ties in favor of the Leader when calculat-
ing the optimal response.

Majority of contemporary SG research is focused on de-
veloping effective methods for specific games, e.g. (Brazdil,
Kucera, and Rehak 2018; Schlenker et al. 2016; Basilico,
Gatti, and Amigoni 2012; Wang et al. 2018; Johnson, Fang,
and Tambe 2012) and there are just a few works related to
finding SE in the case of general SG models.
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Contribution The main contribution of this paper is a
method for approximating SE in a broad and general genre
of sequential general-sum imperfect-information games1,
inspired by a double-oracle approach (Bosansky et al. 2014;
Jain et al. 2011).

Despite being rooted in the double-oracle framework, the
proposed method presents an entirely different operational
principle than those of (Bosansky et al. 2014; Jain et al.
2011) as it relies on iterative Monte Carlo Tree Search
(MCTS) (Browne et al. 2012) sampling of the Follower’s
strategy alternated with an adjustment of the Leader’s be-
havior strategy represented in the form of a tree.

Our method is experimentally proven to yield close-to-
optimal defender’s strategies while scaling better in time and
memory usage than competitive MILP (Mixed Integer Lin-
ear Program) based approaches.

To the best of our knowledge there is only one other
approach that utilizes MCTS method to solve general-sum
extensive-form SGs (Karwowski and Mańdziuk 2015; 2016;
2019a) which, however, adopts a different protocol and re-
lies on iterative adjustment of the Leader’s strategy by means
of direct MCTS sampling against gradually changing Fol-
lower’s strategy. This method, though, could not be applied
to solve games with complex information set (IS) structures,
e.g. Search Games (Bosansky and Cermak 2015) considered
in this paper.

Related Work In the literature, the problem of finding
SE is usually considered in the context of some particular
game model and therefore majority of proposed approaches
are model-specific and cannot be straightforwardly applied
to other kinds of SGs. On a general note, existing solution
methods usually adapt and tune one of the following well-
established techniques: column and constraint generation –
e.g. (Wang et al. 2018; Jain et al. 2010); marginal and com-
pact strategies – exploiting a particular structure of a game
and its payoffs, e.g. (Kiekintveld et al. 2009; Schlenker et
al. 2016); or game abstraction – e.g. (Wang et al. 2018;
Basak et al. 2016). Utilization of these techniques requires
tailoring a solution method to characteristic game proper-

1A source code of the presented method is available on our SGs
project website: https://sg.mini.pw.edu.pl/sgHome/src.html.
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ties, what leads to a highly efficient, though game-dedicated
algorithm.

An efficient exact approach to generic sequential general-
sum SGs was proposed in (Bosansky and Cermak 2015)
where the authors considered a sequence-form representa-
tion of a sequential game to improve scalability of a cor-
responding MILP. Another powerful general approach, in-
troduced by Cermak et al. (2016) starts off with finding
Stackelberg Extensive Form Correlated Equilibrium of a
game using MILP and then restricts it iteratively until the
obtained strategy profile corresponds to SE. Yet another
general approach to extensive-form games (Cerny, Bosan-
sky, and Kiekintveld 2018) starts from a smaller (restricted)
game and gradually expands the game tree to compute the
SSE. These three state-of-the-art generic methods are used
as reference points in experimental evaluation of the approx-
imate approach proposed in this paper.

Our method (referred to as O2UCT – double-oracle UCT
sampling) relies on a guided sampling of the Follower’s
strategy space and finding a feasible Leader’s strategy using
double-oracle method, and does not involve solving Linear
Program (LP) of any kind. Application of O2UCT leads to
scalability performance boost similar to that of using column
and constraint generation method in LP/MILP, albeit with no
direct reference to any specific game model properties, in the
solution method.

2 Imperfect Information Stackelberg Games
A sequential non-zero-sum game with imperfect informa-
tion can be defined using an extensive form. An Extensive
Form (EF) game is an 8-tuple G = (N ,S,Z, ρ,A, u, T , I),
where N = {L,F} is a set of players (the Leader and
the Follower in the case of a two player SG). S and Z
are sets of non-terminal and terminal game states, resp.,
ρ : S → N is a function defining which player acts in a
given state. A =

⋃
s∈S As is a family of sets As, where As

is a set of all actions available to an active player in state s.
u : {Z × N} → [0, 1] is a utility function which provides
utilities for all players in terminal states. T is a set of transi-
tion functions Ts : As → S ∪ Z such that for every s ∈ S ,
Ts(a) is a state resulting from playing action a in state s. I
is a family of information sets Ik ⊆ S which satisfies the
standard definition (Kuhn 1950).

Moreover, all considered games have perfect recall prop-
erty, i.e. an active player is fully aware of his/her past actions
and ISs he/she encountered before reaching the current state.

Let’s denote by AIk a set of actions available in a given
information set Ik and by In a family of information sets in
which player n is an active player. A pure strategy of player
n (denoted by πn) is an assignment of one of the allowed
actions per each IS in In. A mixed strategy δn is a probabil-
ity distribution over all possible pure strategies πn of player
n. In EF games a behavior strategy is additionally defined,
as a function that assigns a probability distribution over all
available actions to each IS. In perfect recall games mixed
and behavior strategies are pairwise equivalent (Kuhn 1950)
and therefore in the remainder of the paper we will denote
behavior strategies of player n by δn and treat them equiva-
lently to mixed strategies.

Sample Follower’s strategy
in a guided manner

Step 1

Apply UCT selection,
expansion & simulation

to AFG

Repeat for a pre-defined number of iterations:

Calculate Leaders’s
strategy

Step 2

Consider moves on the path from the root to
the leaf in the AFG to be a pure Follower’s strategy

and apply procedure from Section 3.1

Collect game payoffs
and use them to guide
subsequent sampling

Backpropagate the Leader’s
payoff in the UCT tree.

Step 3

calculate payoffs

Figure 1: An outline of the O2UCT method. Oval frames
present the method’s general idea, while rectangular dashed
frames summarize particular realization of each step pro-
posed in this work. Implementation of Step 2, which is the
most challenging part of O2UCT, is described in more detail
in Fig. 4.

We will use the notation EUn
δF ,δL

to denote the expected
utility of player n (L – Leader, F – Follower) when the
Leader and the Follower play strategies δL and δF , respec-
tively. An index referring to the Leader’s strategy will be
omitted in the contexts in which it does not lead to misun-
derstandings.

3 Double-oracle sampling method (O2UCT)
for SE approximation

In order to find SE in a perfect recall imperfect-information
deterministic multi-act general-sum game the following it-
erative procedure, depicted in Fig. 1, is applied. In each it-
eration, in the first step the Follower’s strategy is sampled
with a method capable of using the results from previous it-
erations to guide subsequent sampling. Next, a method for
finding the Leader’s strategy, for which the just-sampled
Follower’s strategy is the optimal response, is applied. In
the third step utility values corresponding to obtained strat-
egy profile are collected to adjust the guided sampling pro-
cedure (Step 1) in the next iteration.

A distinctive feature of the proposed method is the lack of
exhaustive search of the Follower’s strategy space, which is
replaced by an iterative guided space sampling procedure.

In order to perform this sampling an Auxiliary Follower’s
Game (AFG) is formulated, which is a one-player game that
yields the Follower’s restricted pure strategy (also called re-
stricted pure realization plan in EF games) when reaching
a terminal state of AFG. AFG is constructed based on the
original EF game in the following way:

• The current AFG state is represented in the form of a
queue of the Follower’s ISs (from the original ES game).
Initially the queue contains ISs observable by the Fol-
lower before their first move.

• Each game round consists in taking the first IS from the
queue, playing one of the moves available in that IS and
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Figure 2: An example of AFG construction. Original two-
player EF game (on the left) and the resulting one-player
AFG (on the right). Rectangles in the bottom part of the fig-
ure present a state of a queue in states I ′1, I ′2 and I ′3, respec-
tively assuming that a path in AFG which is currently con-
sidered by the algorithm is the leftmost one. Signs + and −
represent push and pop operations in the queue, resp.

placing in the queue all ISs that may results from the cur-
rent IS after playing the selected move (i.e. all ISs for
which there exists a Leader’s strategy directly leading to
them).
• The game is played until the queue is empty.
The moves played on the path from the root of AFG to
its leaf define a pure Follower’s strategy in the original EF
game. An example transformation of two-player EF game to
one-player AFG is presented in Fig. 2.

In principle, there are no formal requirements for a sam-
pling heuristic method to be used, except for the ability to
transfer knowledge related to the sampled space to subse-
quent iterations. In the experiments an MCTS (Browne et
al. 2012) variant called Upper Confidence Bound applied
to Trees (UCT) proposed by Kocsis and Szepesvári (Kocsis
and Szepesvári 2006) was applied to guide the Follower’s
strategy space sampling process by means of finding the op-
timal strategy in AFG, as described in the next section.

In short, each MCTS/UCT iteration (playout) is com-
posed of 4 main phases: selection, expansion, simulation,
and backpropagation (please consult (Kocsis and Szepesvári
2006) or (Browne et al. 2012) for a detailed description). In
our method, selection, expansion and simulation correspond
to the first step of an O2UCT iteration (guided sampling)
and backpropagation phase is implemented in its third step
(collection of payoffs). The second step in Fig. 1 refers to
reaching the leaf node (a final state of the AFG) and obtain-
ing the Leader’s payoff. This payoff is equal to the expected
payoff of playing the Leader’s strategy and is calculated us-
ing a method presented in Section 3.1.

UCT is a powerful and versatile metaheuristic which
has proven successful in a wide variety of optimization
problems, including General Game Playing (Świechowski,
Mańdziuk, and Ong 2016), playing classical board

games (Silver et al. 2017), proactive planning under uncer-
tainty (Walȩdzik and Mańdziuk 2018) or combinatorial op-
timization (Sabharwal, Samulowitz, and Reddy 2012). It is
important to note that UCT does not build the entire game
tree at once. Instead, the method maintains only a small, rel-
evant part of the tree and expands it gradually, focusing on
the most promising paths.

The most challenging part of O2UCT is an algorithm (de-
scribed below) which for the current Follower’s strategy πf

finds the respective Leader’s strategy δl for which πf is an
optimal response. The final outcome of O2UCT is a pair
of strategies (δl, πf ) providing the highest Leader’s payoff
found across all iterations.

3.1 A method of finding the Leader’s strategy
The method utilizes a tree structure representation of the
Leader’s behavior strategy which has the following proper-
ties.

• Each node is labeled with the Leader’s IS and contains a
vector of probabilities of actions available in this IS.

• Root node represents the initial Leader’s IS.

• Edges going out of any node are labeled with pairs (a, I ′),
where a is an action and I ′ is an IS reachable by playing
a in a given node.

Please note that several ISs may be reachable after playing
the same move, depending on an opponent’s response. Such
a situation is depicted in Fig. 3 presenting an example tree
in which playing move m6 may lead to either one of the
two ISs (s9 or sa) depending on a move played by the oppo-
nent. Initially, the tree does not contain all ISs, but only those
reachable by an initial strategy profile. Subsequent nodes are
added gradually, as explained below.

The algorithm for finding the Leader’s strategy is in-
spired by a double-oracle approach (Bosansky et al. 2014;
Jain et al. 2011) and consists of alternating the following two
phases: (1) an improvement of the Leader’s strategy against
a fixed Follower and (2) finding the optimal Follower’s re-
sponse against the current Leader’s strategy – based on the
Follower’s oracle. For a sampled Follower’s strategy (Step 1
in Fig. 1) a corresponding Leader’s strategy (Step 2 in Fig. 1)
must satisfy the following conditions:

(*) the optimal Follower’s response to that strategy is the
same as the sampled Follower’s strategy,

(**) among all Leader’s strategies that satisfy the above
constraint it is the one that optimizes the Leader’s payoff.

Any Leader’s strategy satisfying (*) will be called a feasi-
ble strategy (a set of feasible strategies is also called a best
response region in (von Stengel and Zamir 2004)).

Let us denote the sampled Follower’s strategy by πr
F (r

stands for the requested Follower’s strategy). An overview
of the method of finding the Leader’s strategy that fulfills
constraints (*)–(**) is presented in Fig. 4 and consists of the
following steps:

1. Initialize the Leader’s strategy.
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Figure 3: An example of the Leader’s behavior strategy tree.
Nodes represent the Leader’s ISs. Edges are labeled with
pairs (move, probability). Playing some moves (e.g. m6)
may lead to various ISs (s9 or sa, resp.), depending on the
Follower’s action.

2. Seek the Follower’s strategy yielding better Follower’s
payoff against the current Leader’s strategy using the al-
gorithm described in Section 3.2. If such strategy exists
call it πb

F (b stands for better (in terms of payoff) Fol-
lower’s strategy).

3. If πb
F was found, then perform strategy feasibility pass

(see below) and go to 2, otherwise continue.

4. If stopping condition is not met, perform the Leader’s
strategy adjustment that increases the Leader’s payoff
(positive pass - see below) and go to 2, otherwise con-
tinue.

5. Return the best Leader’s strategy among all feasible
strategies found in step (3).

The Leader’s strategy tree is initialized as a single path
representing a move sequence maximizing the Leader’s pay-
off against πr

F . This sequence is found based on a limited
number of UCT simulations. All adjustments to the Leader’s
strategy are performed on a common (continuously evolv-
ing) tree-based representation. In Fig. 4 there are two proce-
dures in which these strategy updates occur: feasibility pass
and positive pass. The first one is executed when the cur-
rent Leader’s strategy becomes infeasible, i.e. there exists
πb
F that yields higher Follower’s payoff than πr

F . The lat-
ter one is run to improve the Leader’s payoff in the case of
feasible (Leader’s) strategy. In both cases the same proce-
dure, presented in Algorithms 1 and 2, is applied to update
the Leader’s strategy tree. The only difference lies in a move
assessment subroutine which is explained below.

Algorithm 1 starts off from the root node of the Leader’s
strategy tree and recursively descends to every leaf node of
the tree. In each step of recursion one node of the tree, de-
noted by nc, is processed. While in nc, the algorithm first
recursively calls itself for all child nodes of nc. Once adjust-
ment of these nodes (changes in probabilities of available
moves) is completed, if there exist moves that are available
to play from the IS corresponding to nc in the game, but not
represented in the tree, a node representing one of them is
added to the tree with some probability (equal to 0.3 in the
experiments) together with a path expanded from this newly-
added node until a leaf node. Next, Algorithm 2 is applied
to nc.

Initialize Leader’s
mixed strategy

Sampled Follower’s
strategy (Fig. 1, Step 1)

Does better
Follower’s strategy

exist?

Adjust Leader’s strate-
gy to lower πb

F payoff
compared to πr

F (‡)

Feasibility pass

Found
πb
F

Stop condition?

Not found

Improve Leader’s payoff
against πr

F (†)

Positive pass
No

Return best feasible
Leader’s strategy

Yes

Store best Leader’s strategy

πr
F

Fig. 1, Step 3

Leader’s payoff

Figure 4: An overview of the method of finding Leader’s
mixed strategy corresponding to the requested Follower’s
strategy. Procedures marked in red adjust the current
Leader’s strategy. Blue labels refer to the names of proce-
dures used in the text. Dashed boxes indicate connection
points to the sampling procedure depicted in Fig. 1.

The role of Algorithm 2 is to accumulate direction of
strategy changes in two passes: positive and feasibility. A
momentum vector is used to store the resultant strategy ad-
justment stemming from those two passes. The algorithm
uses a node assessment vector (as ∈ R

M ) to indicate a
direction of adjustment of the Leader’s strategy and imple-
ments this adjustment based on the resultant direction ac-
cumulated in all previous iterations in a momentum vector
(mom ∈ R

M ). First, the momentum vector is updated by
adding the assessment vector. A positive value in the assess-
ment vector results in increasing the preference for the re-
spective move, a negative one results in decreasing this pref-
erence. Next, a normalization factor (w ∈ R) is increased by
adding L1 norm of assessment vector, to confine mom/w to
interval [−1, 1]. Then the vector of move probabilities is up-
dated with normalized mom values and normalized to rep-
resent a proper probability distribution.

The last element of the method of finding the Leader’s
strategy is calculation of the assessment vector (as) used in
Algorithm 2, which is pass-dependent.

• In positive pass the goal is to maximize the Leader’s
payoff. Consequently, as value for move ai: asi =
EUL

πr
F
(ai) − EUL

πr
F

is a difference between the Leader’s
expected payoff when move ai is played in the current
state and an expected payoff when moves are played ac-
cording to the current probabilities (Leader’s mixed strat-
egy). The higher the result of playing ai compared to the
expected result arising from the current probabilities, the
greater the asi value.
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Algorithm 1: Strategy tree adjustment procedure
Data: nc – a node of a strategy tree currently

processed, M – a set of all moves that are
added to the tree in nc, Ik – an IS corresponding
to nc, AIk – a set of all moves in Ik.

1 foreach m←M do
2 recursively adjust successor of nc after playing m

against πb
F in feasibility pass or πr

F in positive pass
3 end
4 if (rand() ≤ 0.3) ∧ (AIk \M 
= ∅) then
5 expand tree with one move a′ ∈ AIk \M
6 end
7 perform adjustment of nc as described in Algorithm 2;

Algorithm 2: Node adjustment with momentum

Data: prob ∈ [0, 1]
M – a vector of probabilities,

mom ∈ R
M – a momentum vector, w ∈ R – a

momentum normalization factor, as ∈ R
M – an

assessment vector. In each vector the i-th
position corresponds to the i-th move.

1 mom← mom+ as;
2 w ← w + L1(as);
3 prob← max{prob+mom/w, 0}// independent

max at each position
4 prob← normalizeOrEqualprob// Normalize

vector values so their sum is 1
or, as a fallback, assign equal
probability at each position in
case all positions equal 0

• In feasibility pass the goal is to modify the Leader’s
strategy in a way that πr

F will become the correspond-
ing best response strategy. Hence, if the current IS is
reachable when playing against both πr

F and πb
F , then

asi = (EUF
πr
F
(ai) − EUF

πb
F
(ai)) − (EUF

πr
F
− EUF

πb
F
), i.e.

asi is higher for moves that give better result against πr
F

than against πb
F .

If the current IS is reachable only when playing against
πb
F , then asi = EUF

πb
F
− EUF

πb
F
(ai). Note that an order

of subtraction operands is reversed compared to a similar
equation in the positive pass. Here, the weaker the Fol-
lower’s payoff when the Leader plays move ai, the higher
the value of asi because the goal is to discourage the Fol-
lower from playing strategy πb

F .

Stopping condition The algorithm depicted in Fig. 4 stops
when one of the following conditions is reached: a number
of executions of step (†) exceeds Lmax = 5000, an improve-
ment of the Leader’s payoff in 500 subsequent iterations is
less than εI = 10−5, or a number of subsequent executions
of step (‡) without going to step (†) exceeds Mmax = 10000
(infeasible strategy). Values of all steering parameters were
selected based on a limited number of preliminary tests.

3.2 Follower’s strategy oracle
Implementation of the above-mentioned algorithm requires
an ability to find the Follower’s strategy that yields better
Follower’s payoff against the current Leader’s strategy.

The most straightforward approach, suitable for any EF
game, would be to iterate through all possible Follower’s
strategies and choose the one with the highest expected pay-
off. Such an approach, however, is excessively slow and in
practice hinders application of the method to games longer
than 4 steps. In order to address this issue our implementa-
tion attempts to avoid examination of all Follower’s strate-
gies in the following way:

• Between any two consecutive questions to the oracle
about the best response strategy, a collection of Q pairs
(n, πF ) is maintained, where n is the use counter and πF

is the Follower’s pure strategy (Q = 50 was used in the
experiments).

• When asked about a better Follower’s strategy the al-
gorithm first iterates over Follower’s strategies from the
above-mentioned collection. If there exists a strategy that
yields better Follower’s payoff than πr

F by more than εO
(equal to 10−2 in the experiments), then this strategy is
returned and its use counter is incremented. Otherwise:

1. If the collection is filled up (contains Q strategies), a
strategy with the smallest use counter is removed.

2. Examination of all Follower’s pure strategies is per-
formed and the best one is selected and added to the
collection with n = 1.

4 Experimental evaluation
Evaluation of O2UCT was performed on three game sets:
Warehouse Games proposed in (Karwowski and Mańdziuk
2019a), its modified version with more diverse payoffs, and
Search Games used in (Bosansky and Cermak 2015).

Warehouse Games (WHG) WHG model interactions be-
tween the attacker and the defender in a warehouse/office
building. A game graph includes the following three types
of distinguished vertices: one defender’s starting point, one
attacker’s starting point, and several asset locations (targets).
The game is sequential and in each turn each of the players
can either stay in the current vertex or move to any adja-
cent vertex. A full description of a game model is presented
in (Karwowski and Mańdziuk 2019a). In the experiments 25
WHG instances were used.

Modified Warehouse Games (WNZ) WHG setting is rel-
atively close to zero-sum games, the average Pearson’s cor-
relation between the Leader’s and the Follower’ payoffs
equals −0.82. To provide a more challenging setting we
used a game generator from (Karwowski and Mańdziuk
2019a) to obtain benchmark games with more diverse pay-
offs. The following ranges for uniform distributions were
applied: attacker’s penalty in targets: [−1, 0.2] and regular
vertices: [−1, 0] (when caught by the defender), attacker’s
reward in targets: [−0.2, 1] and the corresponding defender’s
penalty in targets: [−1, 0.2] (successful attack). Defender’s
reward (for catching the attacker) in non-target and target
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Figure 5: Example WNZ graph. All games are defined on a
4× 4 grid. Rectangular vertices are targets, a triangle vertex
is evader’s starting point, a blue circle vertex is defender’s
starting point. Values denote payoffs for the evader and the
defender, resp. in the case of evader’s interception in a given
vertex. Additional utilities, in case of successful attack, are
assigned to targets (the second column).

Figure 6: Search Games graph.

vertices was fixed at 0.1 and 0.2, resp. If the game ended
due to reaching the round limit, with no interception of the
attacker or reaching a target by him/her, a neutral payoff of 0
was assigned to both players. A set of 25 games was gener-
ated with the above parameters consisting of games that are
less zero-sum like – the average Pearson’s correlation for
this set equals −0.57. An example WNZ graph is depicted
in Fig. 5.

Search Games (SEG) SEG instances were built on a
graph presented in Fig. 6 previously used in (Bosansky and
Cermak 2015). Five sets of payoff values in the target ver-
tices for each of the two variants of an attacker’s mobility
restrictions (in the first one the attacker can wait in a vertex,
in the other one he/she is forced to move in each round) were
generated. In each case, game variants with T = 4, 5 and 6
were considered, leading to 30 test instances in total.

Similarly to (Bosansky and Cermak 2015), the following
distributions of payoffs were used in the tests. In case of
catching the attacker the reward for the defender equaled 1
and the penalty for the attacker was equal to −1. The at-
tacker’s rewards in targets in case of a successful attack were
sampled uniformly from [1, 2] and the respective defender’s
penalty was equal to −1. Otherwise, when the game ended
due to reaching the step limit T , a neutral payoff equal to 0
was assigned to each side.

Experimental setup In the following description BC2015
refers to the method from (Bosansky and Cermak 2015),
C2016 to approach from (Cermak et al. 2016) (a variant AI-
MILP was used) and CBK2018 to the method from (Cerny,

Bosansky, and Kiekintveld 2018) which, following sugges-
tions from the authors, is implemented in two variants: (a):
ε = 0.3, δ = 0.4 and (b): ε = 0.0, δ = 0.4 (the latter
provides better SSE approximations, though requires longer
computation time). The following experiments were per-
formed to evaluate efficiency and scalability of O2UCT.

• For each of WHG and WNZ instances (defined by game
layout and T ) 15 trails of O2UCT were run and for each
SEG 5 O2UCT tests were run. Multiple trials were re-
quired due to stochastic nature of the method.

• For each WHG, WNZ and SEG instance and each of
the MILP-based methods (BC2015, C2016, CBK2018(a),
CBK2018(b)) a single trial was made (all methods are de-
terministic). Obtained results were used as a baseline for
O2UCT assessment.

All experiments were run on Intel Xeon Silver 4116
@ 2.10GHz with 256GB RAM. Experiments involving
O2UCT were run in parallel, each with 8GB RAM assigned.
The remaining tests were run in sequential manner with full
memory available to a single process. Each test was run with
a time limit of 200 hours and was forcibly terminated if
did not finish within the allotted time or exceeded available
memory.

4.1 Results
Performance of O2UCT is analyzed in two dimensions: an
expected Leader’s payoff and time scalability. In both cases
the results are presented separately for WHG, WNZ and
SEG and grouped by the number of nodes of an extensive-
form game |S ∪ Z|:

bucket = 10round(log10 |S∪Z|), (1)

where round rounds a number to the nearest integer. Con-
sequently, games are grouped by the orders of magnitude of
game nodes. Such a grouping combines two sources of game
complexity: the structure of an underlying game graph and
the game length.

Payoffs Fig. 7 presents the Leader’s payoffs averaged for
all game instances in the respective benchmark sets, calcu-
lated at the end of each test against the worst-case Follower
(found by examining all possible Follower’s pure strategies).
Particular points are plotted if at least 70% of games from
a given bucket were solved by a given method within al-
lotted time. Otherwise the respective points are omitted as
their comparison would be meaningless. Plots of BC2015
and C2016 overlap as both refer to exact methods. Gener-
ally speaking, the average Leader’s payoffs calculated by
O2UCT are very close to optimal results while both variants
of CBK2018 visibly diverge from optimal outcomes, specif-
ically for larger games.

In summary, we believe that the quality of strategies (the
Leaders’s payoffs) found by O2UCT are very encouraging,
as the average results are only slightly worse than the opti-
mal ones.

Computation times Computation time analysis is pre-
sented in Fig. 8. In the case of reaching computation time
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Figure 7: The average Leader’s payoffs obtained by the tested methods for three benchmark sets w.r.t. the number of game
nodes. Plots are cut at the buckets for which exact methods were still able to solve at least 70% of the respective game instances
within 200h time limit. In these borderline cases the average payoffs are calculated for the subsets of solved games only.
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Figure 8: The average computation times for three benchmark sets. BC2015 and C2016 were unable to solve some WHG, SEG,
WNZ game instances from 107, 107, 106 buckets, respectively due to hitting the time limit of 200h (marked as a gray line). In
such cases time limit value was used in place of the respective computation times.

limit for a given game instance, a value of 200h (time limit)
was used in place of the respective result (and averaged with
the remaining times in the bucket).

For small WHG and WNZ instances O2UCT is the slow-
est method, however for larger games it starts to outper-
form MILP approaches. For 107 and 108 buckets O2UCT
managed to solve all WHG/WNZ instances within allotted
time and minimally exceeded time limit in games from 109

bucket. CBK2018(a) solved 23/13 WHG/WNZ games from
107 bucket, resp., and none from 108 bucket. The remaining
methods hit the time limit in almost all 107 bucket games.

For SEG games O2UCT was the slowest for instances
with up to 106 nodes but for 107 nodes its computation times
are already the shortest (all runs were completed within the
time limit). Both CBK2018 variants hit the time limit in at
least 40% of the cases and BC2015 and C2016 did not solve
a single instance.

In summary, it can be observed in Fig. 8 that for small
games the results are in favor of MILP approaches, but
for larger games MILP methods scale poorer than O2UCT.
While all considered methods scale exponentially, extrapo-
lation of results to yet bigger games suggests that O2UCT is
the best-scaling methods amongst the tested ones.

At the same time, it shouldn’t be forgotten that BC2015
and C2016 are exact methods that yield theoretically guar-
anteed SSE utilities, while O2UCT is only experimentally
proven to yield optimal or close-to-optimal strategies.

While exact measurements of memory usage were not
performed (it was not possible because of using Java Vir-
tual Machine and its garbage collection facilities) we noted
that O2UCT was able to compute results for 109 game nodes

using 8GB of memory while solver based methods started
running out of (256GB) memory for games with 107 nodes.

5 Conclusions
This paper presents a novel double-oracle approach for ap-
proximating SSE strategy in sequential games with imper-
fect information and perfect recall. The method does not rely
on solving LP/MILP (which is the most common approach)
but consists in iterative MCTS/UCT sampling of the Fol-
lower’s strategy space alternated with adequate modification
of the Leader’s behavior strategy.

Experimental evaluation shows that proposed approach
provides high-quality solutions (optimal in vast majority
of the tests) and scales visibly better than state-of-the-art
MILP-based methods used for reference. Moreover O2UCT
requires substantially less memory resources and is therefore
capable of solving more complex game instances. Lower
memory requirement stems from two factors: application of
a double oracle approach which does not require storing in
memory all possible strategy profiles simultaneously and dy-
namic expansion of the Leader’s strategy tree – an approach
similar in some aspects to the idea of column generation in
LP methods. However, what makes O2UCT distinct from
column generation is the use of a game-independent UCT
metaheuristic (instead of a game-specific heuristic) when
searching for the most promising moves.

Good time and memory scalability of O2UCT enables its
application to larger (than in the case of other approaches)
game instances. Furthermore, iterative nature of the method
allows an easy adjustment of a balance between computation
time and quality of results. The outer sampling procedure
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employs UCT, which is an anytime algorithm that can be
stopped in any moment, though still returning a high qual-
ity solution (the best one found so far). An anytime prop-
erty makes O2UCT particularly well suited to problems with
strictly allotted time for finding the Leader’s strategy.

The introduced method can be applied to any sequential
game as it does not depend on any specific game structure
or game property.
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