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Abstract

Auctions via social network, pioneered by Li et al. (2017),
have been attracting considerable attention in the litera-
ture of mechanism design for auctions. However, no known
mechanism has satisfied strategy-proofness, non-deficit, non-
wastefulness, and individual rationality for the multi-unit
unit-demand auction, except for some naı̈ve ones. In this pa-
per, we first propose a mechanism that satisfies all the above
properties. We then make a comprehensive comparison with
two naı̈ve mechanisms, showing that the proposed mecha-
nism dominates them in social surplus, seller’s revenue, and
incentive of buyers for truth-telling. We also analyze the char-
acteristics of the social surplus and the revenue achieved by
the proposed mechanism, including the constant approxima-
bility of the worst-case efficiency loss and the complexity of
optimizing revenue from the seller’s perspective.

1 Introduction

Auction theory has attracted much attention in artificial in-
telligence as a foundation of multi-agent resource alloca-
tion. One of the mainstreams in the literature is analyzing
auctions from the perspective of mechanism design. In par-
ticular, several works studied how to design strategy-proof
auctions, which incentivize each buyer to truthfully report
her valuation function, regardless of the reports of the other
buyers. One critical contribution in the literature is the devel-
opment of the Vickrey-Clarke-Groves mechanism (VCG),
which satisfies strategy-proofness and various other proper-
ties (Vickrey 1961; Clarke 1971; Groves 1973).

Li et al. (2017) proposed a new model of auctions, in
which buyers are distributed in a social network and the in-
formation on the auction propagates over it. Utilizing a so-
cial network, the seller can advertise the auction to more po-
tential buyers beyond her followers, as many works studied
in network science (Emek et al. 2011; Borgatti et al. 2009;
Jackson 2008; Kempe, Kleinberg, and Tardos 2003). From
the buyers’ perspective, however, forwarding the informa-
tion increases the number of buyers, which reduces the pos-
sibility that they will get the item. Therefore, the main chal-
lenge in the auction via social network is how to incentivize
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buyers to forward the information to as many followers as
possible, as well as truthfully reporting their valuation func-
tions. For selling a single unit of an item, Li et al. (2017)
developed an auction mechanism in which each buyer is in-
centivized to forward the information to her followers.

Zhao et al. (2018) studied a multi-unit unit-demand auc-
tion via social network, where each unit is identical and each
buyer requires a unit. They proposed the generalized infor-
mation diffusion mechanism (GIDM) and argued that it is
strategy-proof. However, Takanashi et al. (2019) pointed out
an error in their proof and argued that GIDM is not strategy-
proof. They also proposed a strategy-proof mechanism for
the same model, which however violates a revenue condi-
tion called non-deficit, i.e., the seller might suffer a deficit.
To the best of our knowledge, for the multi-unit unit-demand
auction via social network, no mechanism satisfying both
strategy-proofness and non-deficit has been developed, ex-
cept for some naı̈ve ones.

The main objective of this paper is to propose a mecha-
nism that satisfies both strategy-proofness and non-deficit,
as well as some other properties. As Takanashi et al. (2019)
pointed out, no mechanism satisfies those properties and
Pareto efficiency, i.e., maximizing the social surplus, un-
der certain natural assumptions. They thus considered weak-
ening the non-deficit condition. In this paper, on the other
hand, we consider a weaker efficiency property called non-
wastefulness, which only requires the allocation of as many
units as possible. Non-wastefulness has its own importance
in practice. For example, in a spectrum auction, it is impor-
tant to allocate as much frequency range as possible to car-
riers in order to guarantee a sufficient number of services.

We propose a new mechanism, called dinstance-based
network auction mechanism for multi-unit, unit-demand
buyers (DNA-MU), for a multi-unit unit-demand auction
via social network, which satisfies strategy-proofness, non-
deficit, non-wastefulness, and individual rationality, i.e., no
buyer receives negative utility under truth-telling, and whose
description is much simpler than GIDM. It is inspired by the
concept of the diffusion critical tree, originally proposed in
Li et al. (2017), which specifies, for each buyer i, the set of
critical buyers for i’s participation. If a buyer j is critical for

1A full version is available at http://arxiv.org/abs/1911.08809
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another buyer i’s participation, i.e., if i cannot participate in
the auction without j’s forwarding of information, j must
receive a higher priority in the competition.

We then make a comprehensive comparison with two
naı̈ve mechanisms that also satisfy (most of) the above prop-
erties. One is based on VCG, being applied only to the
buyers who are directly connected to the seller. The other
mechanism simply allocates the units in the first-come-first-
served manner with no payment. We show that the DNA-
MU dominates both of these naı̈ve ones in terms of social
surplus and the seller’s revenue. Furthermore, in those mech-
anisms, hiding the information, combined with reporting the
true value, is also a dominant strategy, while this is not the
case in our mechanism when k ≥ 2. This indicates that each
buyer has a stronger incentive for truth-telling in the DNA-
MU.

We further analyze the characteristics of the social sur-
plus and the revenue of the DNA-MU. About social surplus,
it guarantees that each winner is in the set of top-k buyers
except for her followers. It also has a constant worst-case
efficiency loss, based on a measure proposed by Nath and
Sandholm (2018), when an optimal reserve price is intro-
duced. About revenue, we show that a revenue monotonicity
condition fails and that maximizing revenue by optimally
sending the information is NP-complete.

2 Preliminaries

We first define the standard notations for multi-unit unit-
demand auctions. Let s be a seller who is willing to sell the
set K of k identical units. Let N be the set of n buyers,
where each buyer i ∈ N has a unit-demand valuation func-
tion for K. Let x = (xi)i∈N ⊂ {0, 1}n be an allocation,
which specifies who obtains a unit, where xi = 1 indicates
that buyer i obtains a unit under allocation x, and xi = 0
otherwise. Let vi ∈ R≥0 indicate the true unit-demand value
of buyer i for a single unit. We assume that each buyer’s util-
ity is quasi-linear, i.e., the utility of buyer i under allocation
x, when she pays pi ∈ R, is given as vi · xi − pi.

Next, we define additional notations for the auction via
social network. For each buyer i ∈ N , let ri ⊆ N \ {i}
be the set of buyers to whom buyer i can forward the infor-
mation, called i’s followers. Also, let rs ⊆ N be the set of
direct buyers, i.e., those to whom the seller s can directly
send the information. Given (ri)i∈N∪{s}, we define the auc-
tion network as a digraph G = (N ∪{s}, E), where for each
i ∈ N ∪ {s} and each j ∈ ri, a directed edge, from i to j,
is added to the set E. Note that ri is also private informa-
tion of buyer i in our model, so the auction network is de-
fined according to reported r′ = (r′i)i∈N , where r′i indicates
the set of i’s followers to whom i forwards the information.
To summarize, for each i, the private information is given
as θi = (vi, ri), called the true type of i, consisting of the
true value vi and the set ri of the followers. Any reportable
type θ′i = (v′i, r

′
i) of i with true type θi = (vi, ri) satisfies

r′i ⊆ ri, i.e., a buyer can only forward the information to her
followers. Let R(θi) be the set of all reportable types by i
with θi. Also, let θ′ denote the profile of types reported by
all buyers and Θ denote the set of all possible type profiles.

For notation simplicity, we introduce additional technical
terms regarding the auction network. A buyer i is connected
if a path s → · · · → i in G is formed based on the reported
r′. Let N̂ denote the set of connected buyers. For each i,
let d(i) denote the distance of the shortest path from s to
i. If i is not connected, we assume d(i) = ∞. Given θ′,
a buyer j ∈ N̂ is a critical parent of i ∈ N̂ if, without
j’s participation, i is not connected, i.e., j appears in any
path from s to i in G. Let Pi(θ

′) ⊆ N̂ denote the set of all
critical parents of i under θ′. The buyer j ∈ Pi(θ

′) closest
to i is called the least critical parent of i. An allocation x is
feasible if

∑
i∈N xi ≤ k, and xi = 1 implies i ∈ N̂ for each

i ∈ N . Let X be the set of all feasible allocations.
Now we are ready to give a formal description of (di-

rect revelation) mechanisms2. A mechanism (f, t) consists
of two components, an allocation rule f and a profile of
transfer rules (ti)i∈N . An allocation rule f maps a profile
θ′ of reported types to a feasible allocation f(θ′) ∈ X . We
sometimes use the notation of f(θ′i,θ

′
−i) instead, especially

when we focus on the report of a specific buyer i, where θ′
−i

indicates the profile of types reported by the others. Given
θ′, fi(θ′) ∈ {0, 1} denotes the assignment to buyer i. Each
transfer rule ti maps a profile θ′ to a real number ti(θ′) ∈ R,
which indicates the amount that buyer i pays to the seller.

Here, we define several properties that mechanisms
should satisfy. Feasibility requires that for any input, the al-
location returned by the mechanism is feasible.
Definition 1. A mechanism (f, t) is feasible if for any θ′,
f(θ′) is feasible.

Strategy-proofness is an incentive property, requiring that,
for any buyer, reporting its true valuation and forwarding the
information to all of its followers is a dominant strategy.
Definition 2. Given a mechanism (f, t) and a buyer i with
true type θi = (vi, ri), a report θ∗i = (v∗i , r

∗
i ) ∈ R(θi) is a

dominant strategy if for any θ′
−i and θ′i ∈ R(θi),

vi · f(θ∗i ,θ′
−i)− ti(θ

∗
i ,θ

′
−i) ≥ vi · f(θ′i,θ′

−i)− ti(θ
′
i,θ

′
−i)

holds. A mechanism (f, t) is strategy-proof if reporting θi is
a dominant strategy for any i under (f, t).

Individual rationality is a property related to the incen-
tives of the buyers for participation, which requires that
truth-telling guarantees a non-negative utility.
Definition 3. A mechanism (f, t) is individually rational if
for any i, θi, and θ′

−i, vi ·f(θi,θ′
−i)−ti(θi,θ′

−i) ≥ 0 holds.
Non-deficit is a property about seller’s revenue, which re-

quires that the seller’s revenue cannot be negative. Note that
it does not consider each individual transfer and thus does
not imply the non-negativity of each buyer’s payment.
Definition 4. A mechanism (f, t) satisfies non-deficit if for
any θ′,

∑
i∈N ti(θ

′) ≥ 0 holds.
Non-wastefulness is a property about the efficiency of

allocation, which requires that the mechanism allocate as
2As discussed in the full version, the revelation principle holds

under our assumption R on reportable subset r′i ⊆ ri. Therefore,
focusing on direct revelation mechanisms is w.l.o.g.
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many units as possible. Note that the traditional definition
of non-wastefulness ignores the network structure, and thus
the second term in RHS is replaced with |N |.
Definition 5. A mechanism (f, t) is non-wasteful if for any
θ′,

∑
i∈N fi(θ

′) ≥ min{k, |N̂ |} holds.

2.1 Two Naı̈ve Mechanisms for Comparison

One might expect that those properties hold in naı̈ve mech-
anisms. Indeed, we can easily find the following two candi-
dates. The formal definitions are in the full version. We com-
pare their performances with that of our new mechanism in
the following sections.

The first mechanism applies VCG to only the direct buy-
ers rs. It satisfies strategy-proofness, individual rationality,
non-deficit, and non-wastefulness for |rs| ≥ k. We refer to
this mechanism as No-Diffusion-VCG (ND-VCG in short).
Such a mechanism is also considered in Li et al. (2017), al-
though they focused on single-item auctions.

The second mechanism gives the units to buyers for free,
in the first-come-first-served manner, which is referred to as
FCFS-F. It satisfies individual rationality, non-deficit, and
non-wastefulness, and it is strategy-proof when earlier ar-
rivals are not allowed, e.g., based on ascending order of d(·),
as usually assumed in online mechanism design (Hajiaghayi,
Kleinberg, and Parkes 2004; Todo et al. 2012).

3 Distance-based Network Auction

mechanism for Multi-unit, Unit-demand

buyers

The definition of the new mechanism is given in Defini-
tion 6. A key concept in describing the mechanism is the
diffusion critical tree T (θ′), originally introduced in Zhao
et al. (2018). Given θ′, the diffusion critical tree T (θ′) is
a rooted tree, where s is the root, the nodes of T (θ′) are
all the connected buyers N̂ , and for each node i ∈ N̂ and
its least critical parent j ∈ P (θ′), an edge (j, i) is drawn.
If Pi(θ

′) = ∅, we draw an edge (s, i). Furthermore, given
T (θ′) and a node i, all of the nodes in the subtree of T (θ′)
rooted at i are called i’s descendants. Also, given a report
θ′, a subset S ⊆ N̂ , and an integer k′ ≤ k, v∗(S, k′) de-
notes the k′-th highest value in S under θ′. For k′ ≤ 0, let
v∗(S, k′) =∞. In addition, if |S| < k′, then v∗(S, k′) = 0.

Definition 6. Given θ′, first order the connected buyers N̂
in ascending order of d(·), with arbitrary fixed tie-breaking.
Note that d(·) is the distance from s in the original graph,
not the distance in T (θ′). The order � is called the priority
order. For each i �∈ N̂ , fi(θ

′) = ti(θ
′) = 0. For each i ∈ N̂ ,

let N̂−i be the set of all connected buyers except i and its
descendants in T (θ′). It then runs as follows:

1: k′ ← k,W ← ∅
2: for each i ∈ N̂ selected in the order of � do
3: pi ← v∗(N̂−i \W,k′)
4: if v′i ≥ pi then
5: fi(θ

′)← 1, ti(θ
′)← pi

6: k′ ← k′ − 1,W ←W ∪ {i}
7: else
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Figure 1: Example of Buyers Network and Corresponding
Diffusion Critical Tree.

8: fi(θ
′)← 0, ti(θ

′)← 0
9: end if

10: end for
The following example demonstrates how the DNA-MU

works. The network of buyers, defined by r, as well as their
true values, is shown in Fig. 1.
Example 1. Consider three units and seven buyers N =
{i1, i2, . . . , i7}. Each vertex in the left figure of Fig. 1 cor-
responds to a buyer, and the number in each vertex denotes
her true valuation. The priority order is given as i1 � i2 �
· · · � i7. Assume that every buyer forwards the informa-
tion to all of her followers, i.e., N̂ = N . The corresponding
diffusion critical tree is given on the right in Fig. 1.

The assignment to buyers is computed one-by-one, in the
priority order. For buyer i1, the price is given as pi1 =

v∗(N̂−i1 \ W,k − |W |) = v∗({i2, i3, i4, i5, i6, i7}, 3) =
vi5 = 50. Since pi1 > vi1 , she does not win a unit. For buyer
i2, the price is given as pi2 = v∗({i1, i3, i5, i6, i7}, 3) =
vi7 = 40. Note that vi4 is ignored because i2 is a criti-
cal parent of i4. Since vi2 > pi2 , she wins a unit; W is
updated to {i2}, and k is decremented to 2. For i3, the
price is given as pi3 = v∗({i1, i4}, 2) = vi1 = 30. Since
vi3 > pi3 , she wins a unit; W is updated to {i2, i3},
and k is decremented to 1. For i4, the price is given as
pi4 = v∗({i1, i5, i6, i7}, 1) = vi6 = 66. Since pi4 > vi4 ,
she does not win a unit.

For i5, the price is given as pi5 = v∗({i1, i4}, 1) =
vi4 = 45. Since vi5 > pi5 , she wins a unit; W is updated to
{i2, i3, i5} and k is decremented to 0. Since no unit remains,
the prices for the remaining buyers, i6 and i7, become infin-
ity, and thus neither of the buyers wins a unit. To sum up, i2,
i3, and i5 are winners, who pay 40, 30, and 45 respectively.

Let us clarify how it differs from GIDM by Zhao et al.
(2018) and how it maintains strategy-proofness. GIDM first
assigns, according to the reported θ′, a certain number of
units to each subtree of T (θ′). The buyers in a subtree then
compete with each other to buy the units assigned to it. This
is something like creating a sub-market for each subtree.
However, by not forwarding the information, some buyer,
who originally loses due to the existence of some winning
parent, can reduce the number of units assigned to the sub-
tree, make the sub-market more competitive and the parent
losing, and obtain a chance to win. This is actually the case
found by Takanashi et al. (2019).

The DNA-MU also uses the diffusion critical tree. How-
ever, it does not create such a sub-market for each subtree.
Instead, it has a single market with all of the units, where
buyers’ priorities are defined based on the distance d(·),
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which is not successfully manipulable; no buyer can make
the distance shorter by not forwarding the information to her
followers, which is shown by Lemma 1.

3.1 Properties of DNA-MU

We show feasibility, individual rationality, and non-deficit
in Theorem 1, non-wastefulness in Theorem 2, and strategy-
proofness in Theorem 3. The proofs of Theorems 1 and 2 are
in the full version due to space limitations. Let Ŵ denote a
set of winners {w1, w2, . . .} and Ŵ�j denote {w ∈ Ŵ |
w � j}.
Theorem 1. The DNA-MU satisfies feasibility, individual
rationality, and non-deficit.

Theorem 2. The DNA-MU is non-wasteful.

Theorem 3. The DNA-MU is strategy-proof.

Proof. Let (f, t) be the DNA-MU. It suffices to show that
(I) a buyer has no incentive not to forward information to
her followers, and that (II) a buyer cannot obtain any gain
by misreporting her value. That is, for any θi = (vi, ri) and
θ′i = (v′i, r

′
i) ∈ R(θi), consider an intermediate type θmi =

(vi, r
′
i). The strategy-proofness condition thus holds from (I)

vi ·fi(θi,θ′
−i)−ti(θi,θ′

−i) ≥ vi ·fi(θmi ,θ′
−i)−ti(θmi ,θ′

−i)

and (II) vi · fi(θmi ,θ′
−i)− ti(θ

m
i ,θ′

−i) ≥ vi · fi(θ′i,θ′
−i)−

ti(θ
′
i,θ

′
−i). These inequalities are proven in Lemmas 1 and

2.

Lemma 1. For any i, θi = (vi, ri), θ
′
−i, and θ′i = (vi, r

′
i)

s.t. r′i ⊂ ri, vi ·fi(θi,θ′
−i)− ti(θi,θ

′
−i) ≥ vi ·fi(θ′i,θ′

−i)−
ti(θ

′
i,θ

′
−i) holds.

Proof. By not forwarding the information, i can affect an-
other buyer j in one of the following ways: (i) buyer j, who
is originally a descendant of i in T (θ′), becomes discon-
nected, (ii) for buyer j, which originally satisfies i � j, the
distance d(j) becomes larger. In case (i), j is originally not
included in N̂−i. Furthermore, making j disconnected might
decrease the price of other buyers j′ s.t. j′ � i. Then there
is a chance that i’s price increases. Thus, not forwarding the
information is useless in case (i). In case (ii), even when d(j)
becomes larger, i � j holds originally, and i’s price does not
change. Thus, not forwarding the information is futile.

Lemma 2. For any i, θi = (vi, ri), θ
′
−i, and θ′i = (v′i, ri),

vi · fi(θi,θ′
−i)− ti(θi,θ

′
−i) ≥ vi · fi(θ′i,θ′

−i)− ti(θ
′
i,θ

′
−i)

holds.

Proof. For buyer i, her price pi is given as: v∗(N̂−i \
Ŵ�i, k − |Ŵ�i|). It is clear that pi ≥ v∗(N̂−i, k) holds.
Let πi denote v∗(N̂−i, k). πi is determined independently
from i’s declared evaluation value. If vi ≤ πi holds, i
cannot gain a positive utility regardless of her declaration.
Thus, assume vi > πi holds. Her actual price, i.e., pi =

v∗(N̂−i \ Ŵ�i, k − |Ŵ�i|), can be strictly larger than πi, if
some buyer j (where j � i) s.t. v′j ≤ πi becomes a winner.
Note that if v′j > πi holds, j is within the top k − 1 winners
in N̂−i; the fact that j becomes a winner does not change pi.

The only way for i to decrease her price is to turn such a
winner into a loser by over-bidding. Assume j (where j � i)
is such a winner. If j is i’s ancestor, i cannot affect j’s price.
Thus, j and i are in different branches in T (θ′). Since j is
a winner, v′j ≥ v∗(N̂−j \ Ŵ�j , k − |Ŵ�j |) holds. Also,
to increase j’s price, vi must be smaller than or equal to
v∗(N̂−j \Ŵ�j , k−|Ŵ�j |). Note that i is included in N̂−j \
Ŵ�j . If i is within the top k − |Ŵ�j | − 1 buyers in N̂−j \
Ŵ�j , even if i over-bids, she cannot change j’s price. Thus,
v′j ≥ vi holds. However, we assume v′j ≤ πi < vi holds.
This is a contradiction. Thus, i cannot decrease her price by
misreporting her evaluation value.

4 Efficiency Analysis

In this section we conduct a more detailed analysis on effi-
ciency. We show that any winner has a value that is in the set
of top-k buyers except for her descendants. Also, the social
surplus of the DNA-MU is always as large as those of the
two naı̈ve ones. Furthermore, the worst-case inefficiency of
the DNA-MU can be bounded by choosing an appropriate
reserve price.

4.1 Bounded Efficiency

Pareto efficiency in the multi-unit auction with k units re-
quires that each buyer is a winner only if she is in the set
of top-k buyers, i.e., whose value is more than or equal to
the k-th highest value. However, it is not compatible with
strategy-proofness in our model with the buyers’ network,
since a buyer would have an incentive for not forwarding in-
formation to her descendants if she needs to compete with
them. Thus, we introduce a weaker concept called bounded
efficiency, which is consistent with the incentive of buyers
to forward the information. We say an allocation satisfies
bounded efficiency if each winner is in the set of top-k buy-
ers except for its descendants. Also, a mechanism satisfies
bounded efficiency if it always obtains a bounded efficient
allocation. By ignoring the descendants of each buyer, the
incentive of information forwarding can still be guaranteed.3
Indeed, our mechanism satisfies bounded efficiency.

Proposition 1. The DNA-MU satisfies bounded efficiency:
∀θ′, ∀i ∈ N̂ s.t. fi(θ

′) = 1, #{j ∈ N̂−i | v′j > v′i} < k.

Proof. Let i ∈ N̂ be an arbitrarily chosen winner and
W ⊆ N̂ \ {i} be the set of winners chosen before i in
the mechanism. By definition, the winner i faces the price
v∗(N̂−i \W,k − |W |). Since i is a winner, v′i ≥ v∗(N̂−i \
W,k−|W |) holds, implying that there are less than k−|W |
buyers in N̂−i \W , whose values are strictly larger than v′i,
i.e., #{j ∈ N̂−i \W | v′j > v′i} < k − |W |. Therefore,
regardless of how many winners in W have a strictly larger
value than v′i, it holds that #{j ∈ N̂−i | v′j > v′i} < k.

3Note that the number of buyers, each of which is in the set of
top-k buyers except its descendants, can be more than k. Thus, it is
impossible to guarantee that all of them are winners.
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Figure 2: Implementation of Reserve Price vh(= 40) by
Adding k(= 3) Dummy Buyers to Diffusion Critical Tree.

This property is useful to show other characteristics of our
mechanism, e.g., Proposition 2. One can also easily observe
that the two naı̈ve mechanisms violate this property.

4.2 Social Surplus Domination

A mechanism (f, p) is said to dominate another mechanism
(f ′, p′) in terms of social surplus if for any N and any θ′, it
holds that

∑
i∈N vi · fi(θ′) ≥∑

i∈N vi · f ′
i(θ

′).

Proposition 2. The DNA-MU dominates both ND-VCG and
FCFS-F in terms of social surplus, but not vice versa.

Proof. When |N̂ | ≤ k, every buyer receives a unit both in
the distance-based mechanism and in ND-VCG. We then
consider the cases of |N̂ | > k. First observe that, when
rs = N̂ , i.e., there only exist the direct buyers, the set of
winners in both mechanisms coincides, so that the top-k
buyers win a unit; this is obvious from the definition for ND-
VCG, and it also holds for the DNA-MU from Proposition 1.

Furthermore, consider the following imaginary process.
We start from the situation where only direct buyers exist,
then we add other buyers one by one in the ascending or-
der of their distances from the source. On one hand, a win-
ner becomes a loser only when her value is lower than the
value of a newly added buyer; the addition of a new buyer
weakly increases the social surplus in DNA-MU. Also, there
exists a case where the social surplus strictly increases. On
the other hand, winners and the social surplus remain the
same in ND-VCG. Thus, DNA-MU dominates ND-VCG but
not vice versa. Using a similar argument, we can show that
DNA-MU dominates FCFS-F, but not vice versa.

4.3 Worst-Case Efficiency Loss

When the seller wants to maximize revenue, it is natural to
consider introducing a reserve price, i.e., the threshold bid-
ding value for each buyer to own the right to win a unit (My-
erson 1981). Letting vh be the reserve price that the seller in-
troduces, the DNA-MU with a reserve price vh is then imple-
mented by adding k dummy vertices with value vh in T (θ′),
each of which is connected only to s (see Fig. 2), while in
line 2 of the algorithm the dummies are not considered. In
other words, those dummies only affect N̂−i for each i ∈ N̂
and have no chance to win. The following example, which
uses the same profile of the reports with Example 1, demon-
strates how the introduction of a reserve price changes the
allocation.

Example 2. See Fig. 2. Since there are three units, the mech-
anism first adds three dummy vertices. The price for i1 is
given as pi1 = 50, and she is not allocated a unit. The price
for i2 is given as pi2 = 45, and she wins a unit. The price
for i3 is given as pi3 = 40, which comes from the valua-
tion of the dummy buyer. Since her value is strictly less than
pi3 , she is not allocated a unit. The price for i4 is given as
pi4 = 50, and she is not allocated a unit. The price for i5 is
given as pi5 = 40, and she wins a unit. At this moment one
unit remains. For buyer i6, the price is given as pi6 = 45,
which is strictly less than her value of 66. Thus, she wins a
unit. Now that no unit remains, the price for buyer i7 is set
to be infinity, To sum up, i2, i5, and i6 win a unit, and each
pays 40, 40, and 45, respectively.

Nearly identical proofs work for feasibility, non-deficit,
individual rationality, and strategy-proofness. However, the
introduction of a reserve price obviously breaks down non-
wastefulness. Actually, for any non-zero vh, there is a case
where no buyer wins a unit, e.g., vi < vh for every i ∈
N . This implies that, when we consider the approximation
ratio an efficiency measure, the DNA-MU with reserve price
performs poorly. Even worse, the original definition without
a reserve price still has an arbitrarily worse (i.e., arbitrarily
close to zero) approximation ratio.

Nevertheless, it remains important to clarify the effect of
different reserve prices, given the practical usefulness of re-
serve prices. We therefore consider the following worst case
efficiency measure called α-inefficiency, inspired by Nath
and Sandholm (2018), and find that the optimal reserve price
is v̄/2, where v̄ is the upper bound of the value, i.e., for each
i ∈ N , vi ≤ v̄.

Definition 7. Let v̄ be the upper bound of the value. A mech-
anism (f, t) is α-inefficient if

α =
1

kv̄
sup
θ′∈Θ

[
max
x∈X

∑
i∈N

v′i · xi −
∑
i∈N

v′i · fi(θ′)

]
.

The range of α is [0, 1], and having a smaller α is better.
We first provide a lemma that is useful to provide the worst-
case inefficiency, while its proof appears in the full version
due to space limitations. Given θ′, let � denote the number
of connected buyers whose values are no less than vh, i.e.,
� := #{i ∈ N̂ | vi ≥ vh}.
Lemma 3. Assuming all buyers declare their true values,
min(�, k) units are allocated in the DNA-MU with a reserve
price.

Given the above lemma, we show that the DNA-MU with
vh = v̄/2 satisfies 1/2-inefficiency.

Theorem 4. The DNA-MU with reserve price vh satisfies
1/2-inefficiency by setting vh = v̄/2.

Proof. If � < k, the DNA-MU allocates units to the top �

buyers within N̂ (in terms of values) from Lemma 3. The
remaining k− � units cannot be allocated since the values of
other buyers are less than vh. Thus, the maximum efficiency
loss is bounded by (k − �)vh (if k − � buyers exist whose
values are vh−ε, the efficiency loss becomes (k−�)(vh−ε)).
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In particular, if the value of each buyer is less than vh, �
becomes 0. Thus, the worst case efficiency loss is k · vh. If
� ≥ k, the DNA-MU allocates k units from Lemma 3. The
maximum efficiency loss is bounded by k(v̄−vh), which can
occur, for instance, when there are 2k buyers, forming a path
graph, and those k buyers closer to s have the value of vh,
while the rest have the value of v̄: the DNA-MU allocates k
units to the closest k buyers. From the above, the maximum
efficiency loss is given as max(k · vh, k(v̄ − vh)). This is
bounded from the bottom by k · v̄/2, which is achieved by
setting vh to v̄/2. Thus, the DNA-MU is 1/2-inefficient for
vh = v̄/2.

Observe that there is a tradeoff between achieving non-
wastefulness and guaranteeing a better worst-case perfor-
mance by the mechanism with a reserve price, where the
former is achieved by vh = 0 and the latter by vh = v̄/2.
Obtaining the lower bound of α that a strategy-proof mech-
anism achieves remains an open question. However, since 0-
inefficiency implies Pareto efficiency, the impossibility sug-
gested by Takanashi et al. (2019) implies that no strategy-
proof mechanism that also satisfies non-deficit and individ-
ual rationality achieves 0-inefficiency.

5 Revenue Analysis

The seller’s revenue is also an important evaluation criterion
for auction mechanisms. In this section, we first show that
the seller’s revenue in the DNA-MU is no less than those of
the two naı̈ve ones. We also show that maximizing the rev-
enue by optimally choosing the set of its followers to whom
it sends the information is NP-complete.

5.1 Revenue Domination

We define the domination in terms of the seller’s revenue
analogously. A mechanism (f, p) dominates another mech-
anism (f ′, p′) in terms of the seller’s revenue if for any N
and any θ′, it holds that

∑
i∈N ti(θ

′) ≥∑
i∈N t′i(θ

′).

Proposition 3. The DNA-MU dominates both ND-VCG and
FCFS-F in terms of the seller’s revenue, but not vice versa.

Proof. The DNA-MU obviously dominates ND-VCG when
|rs| ≤ k, since the price for each winner in ND-VCG
is zero. When |rs| > k, each winner in ND-VCG pays
v∗(rs \ {i}, k). On the other hand, the price pi for each win-
ner i in the DNA-MU satisfies pi ≥ v∗(N̂−i, k) by defi-
nition. For every winner i, N̂−i is a superset of rs \ {i}.
Therefore, from the monotonicity of v∗ on the first argu-
ment, pi ≥ v∗(N̂−i, k) ≥ v∗(rs \ {i}, k) holds. Also, there
exists a case where the inequality becomes strict. Thus, the
DNA-MU dominates ND-VCG but not vice versa. Since the
revenue of FCFS-F is always zero, while the revenue of the
DNA-MU is non-negative for any input and can be strictly
positive, the DNA-MU also dominates FCFS-F but not vice
versa.

5.2 Revenue Monotonicity

The seller’s revenue is required to have some specific form
of monotonicity. Several forms of such revenue monotonic-

s 20
i2

5
i1

6
i3

15
i4

Figure 3: Violation of Revenue Monotonicity.

ity have been studied, including bidder revenue monotonic-
ity (Rastegari, Condon, and Leyton-Brown 2011; Todo,
Iwasaki, and Yokoo 2010) and item revenue monotonicity,
a.k.a. destruction-proofness (Muto and Shirata 2017).

The condition studied in this section is weaker than bid-
der revenue monotonicity. A mechanism is follower revenue
monotonic if the seller’s revenue is monotonically increasing
with respect to the number of direct buyers. Let ti(θ′ | r′s)
be the payment from buyer i when θ′ is reported and s sends
the information of the auction to a subset r′s of direct buyers.

Definition 8. A mechanism (f, t) is follower revenue mono-
tonic if for any rs, θ′, and r′s ⊆ rs, it holds that∑

i∈N ti(θ
′ | rs) ≥

∑
i∈N ti(θ

′ | r′s).
For a multi-unit auction without any network among buy-

ers, there are several bidder revenue monotonic mechanisms,
and thus follower revenue monotonic ones. However, the ex-
ample below shows that, for auction via social network, our
mechanism is not even follower revenue monotonic.

Example 3. Consider two units and four buyers i1, i2, i3,
and i4; see Fig. 3. The priority order is i1 � i2 � i3 � i4.

Assume all of the buyers behave sincerely. When the seller
s sends the information to all of its followers, i.e., i1, i2, and
i3, all buyers become connected. The price for each buyer
is given as p1 = 6, p2 = 6, p3 = 15, and p4 = 6, where
i2 and i4 win a unit and the revenue is 12. When s sends
the information only to i1 and i2, i3 becomes unconnected.
The price for each buyer is given as p1 = 0, p2 = 15, and
p4 =∞, where i1 and i2 win a unit and the revenue is 15. As
a result, the revenue is not maximized when the seller sends
the information to all the direct buyers.

Therefore, a question rises to the seller: to which set of
direct buyers should she send the information to maximize
her revenue? We define a simplified form of this problem, so
called OPTIMAL DIFFUSION, from the perspective of com-
putational complexity: Assuming that the seller knows the
exact network among buyers and that all buyers behave sin-
cerely, she tries to find an optimal set of direct buyers to
whom she should send the information.

Definition 9 (OPTIMAL DIFFUSION). Given a number k of
units, a profile θ′, a set rs of direct buyers, and a threshold
K, is there a subset r′s ⊆ rs s.t.

∑
i∈N ti(θ

′ | r′s) ≥ K
holds under the DNA-MU?

We show that OPTIMAL DIFFUSION is NP-complete by
a reduction from PARTITION. Due to space limitations, we
present a proof sketch below; a full proof is in the full ver-
sion.

Definition 10 (PARTITION). Given a set A where each i ∈

2067



s ε

az0

ε

a10

v2

b1

ε
c1

v1
a11

v1
a1v(a1)

v1
az1

v1
azv(az)

v3

b2

ε
c2

v3

bm+1

. . .

. . . ε
cm

v4

bm+2

v5

cm+1

...

...

...

v(a1) buyers

NA

v(az) buyers

NB

NC

Figure 4: Reduction from Partition: Network of Buyers.

A has a value v(i) ∈ Z+, does there exist a subset A′ ⊆ A
such that

∑
i∈A′ v(i) = m, where m =

∑
i∈A v(i)/2?

Theorem 5. OPTIMAL DIFFUSION is NP-complete.

Proof Sketch. First, OPTIMAL DIFFUSION is in NP since we
can compute

∑
i∈N ti(θ

′ |r′s) in polynomial time. Given an
instance of PARTITION, we construct an instance of OPTI-
MAL DIFFUSION as follows, with N = NA ∪NB ∪NC :

• For all i∈A, we create set (aij)0≤j≤v(i) in NA such that
θai

0
=(ε, (aij)1≤j≤v(i)), and θai

j
=(v1, ∅) for 1≤j≤v(i).

• Set NB = (bj)1≤j≤m+2 is such that θb1 = (v2, {b2}),
θbj = (v3, {bj+1}) for 2≤j≤m+1, and θbm+2 = (v4, ∅).
• Set NC = (cj)1≤j≤m+1 is such that θcj = (ε, {cj+1})

for 1≤j≤m, and θcm+1 = (v5, ∅).
• The seller’s direct followers are (ai0)i∈A ∪ {b1, c1}.

The network is illustrated in Fig. 4. Buyers are labelled with
any ascending order of d(·) satisfying bm+1 � cm+1. The
prices satisfy ε < v2 < v1 < v3 << v4 < v5. The number of
units is k=m+ 2 and the threshold is K=ε+m · v1 + v4.

We briefly argue the validity of the reduction. Notice that
buyers b1 and c1 belong to any r′s⊆rs such that

∑
i∈N ti(θ |

r′s) ≥ K, since otherwise price v4 cannot be reached.
If |{a ∈ r′s | va = v1}| = m holds, i.e., exactly m de-

scendants with value v1 can be chosen (thus the original
PARTITION is “yes”), then buyer b1 buys at price ε, buyers
(bi)2≤i≤m+1 at price v1, and buyer cm+1 at price v4. Hence,∑

i∈N ti(θ | r′s) = ε+m ·v1+v4 = K and OPTIMAL DIF-
FUSION is “yes”.

If the original PARTITION is “no”, either (i)
|a ∈ r′s | va = v1| < m or (ii) |a ∈ r′s | va = v1| > m
holds. In the case (i), buyers b1 and b2 buy at price ε. Hence,∑

i∈N ti(θ | r′s) < K and OPTIMAL DIFFUSION is “no”.
In the case (ii), buyer b1 does not buy, and cm+1 buys

at price lower than v4. Hence,
∑

i∈N ti(θ | r′s) < K and
OPTIMAL DIFFUSION is “no”.

6 Incentive Analysis

Now we show that, compared with those two naı̈ve mech-
anisms, our mechanism also has its own strength on buy-
ers incentive; in those mechanisms, hiding the information,
combined with the report of the true value, is also a domi-
nant strategy, while this is not the case in our mechanism for
any k ≥ 2. This indicates that the incentive for each buyer
to report her type truthfully in the DNA-MU is stronger than
that in both of those naı̈ve ones.

Proposition 4. Assume k ≥ 2. For each i, reporting (vi, ∅)
is not a dominant strategy in the DNA-MU.

Proof. Consider k units and k+2 buyers i1, . . . , ik+2, such
that rs = {i1, i3, i5, i6, . . . , ik+2}, θi1 = (15, {i2}), θi2 =
(20, ∅), θi3 = (10, {i4}), θi4 = (9, ∅), and θij = (30, ∅)
for all 5 ≤ j ≤ k + 2. The priority is given as i5 � i6 �
· · · � ik+2 � i3 � i1 � i4 � i2. The first k − 2 units are
sold to {ij}5≤j≤k+2, regardless of i1’s forwarding strategy.
Under i1’s sincere forwarding to i2, i1 wins a unit and pays
9. If i1 does not forward the information to i2, then i1 would
win a unit and pay 10. So not forwarding the information is
dominated by a sincere forwarding in this case.

Proposition 5. For each i, reporting (vi, ∅) is a dominant
strategy in both ND-VCG and FCFS-F.

Proof. In ND-VCG, only the reports from the direct buyers
affect the outcome. Therefore, for each direct buyer i ∈ rs,
any valuation report v′i, and any action by other buyers, the
choice of r′i ⊆ ri does not change the outcome at all.

In FCFS-F, for each i ∈ N , any follower of i who origi-
nally arrives after i under i’s sincere forwarding ri is still ar-
riving after i under any manipulation r′i ⊂ ri. Thus, whether
i wins a unit does not depend on the choice of r′i.

7 Conclusions

The DNA-MU satisfies strategy-proofness, non-
wastefulness, non-deficit, and individual rationality.
The performance is comprehensively analyzed; it dominates
the two naı̈ve mechanisms in terms of both social surplus
and revenue. Several other properties are also revealed.

A more detailed analysis on the complexity of maximiz-
ing the seller’s revenue is required, such as for the case with
a fixed number k of units. Our future work will also in-
clude more general revenue analysis, e.g., revenue equiva-
lence (Heydenreich et al. 2009) and revenue optimality (My-
erson 1981). Extending the DNA-MU for more general do-
mains, such as multi-unit auctions with decreasing marginal
values, is also crucial. Considering an obviously strategy-
proof auction via social network will also be an interesting
direction (Li 2017).
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