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Abstract

We study the problem of fairly allocating a set of indivisible
goods to risk-neutral agents in a stochastic setting. We pro-
pose an (approximation) algorithm to find a stochastic allo-
cation that maximizes the minimum utility among the agents.
The algorithm runs by repeatedly finding an (approximate)
allocation to maximize the total virtual utility of the agents.
This implies that the problem is solvable in polynomial time
when the utilities are gross-substitutes (which is a subclass
of submodular). When the utilities are submodular, we can
find a (1 − 1/e)-approximate solution for the problem and
this is best possible unless P=NP. We also extend the prob-
lem where a stochastic allocation must satisfy the (ex ante)
envy-freeness. Under this condition, we demonstrate that the
problem is NP-hard even when every agent has an additive
utility with a matroid constraint (which is a subclass of gross-
substitutes). Furthermore, we propose a polynomial-time al-
gorithm for the setting with a restriction that the matroid con-
straint is common to all agents.

Introduction

Fair allocation of resources and goods to agents has been
a fundamental problem in economic theory over several
decades. Recently, a means to find a fair allocation of in-
divisible goods has received considerable attention in algo-
rithmic game theory, artificial intelligence, and optimization
theory (Brandt et al. 2016; Rothe 2016). A motivation is that
several practical applications, such as matching courses and
allocating jobs to machines, naturally entail fair allocation of
indivisible goods. Therefore, there is vast literature address-
ing many types of settings. In particular, there exist several
notions of “fairness”; envy-freeness, max-min fairness, pro-
portionality, max-min share guarantee, etc. exist.

Throughout this paper, we denote the sets of indivisible
goods and agents by E and N , respectively. Each agent i ∈
N has a utility function ui : 2E → Z+ that assigns a value
to each set of goods. When each agent i ∈ N wins a set Xi

of goods, the utility of agent i is ui(Xi). An allocation is a
subpartition of goods. Among notions of fairness, we mainly
focus on max-min fairness. A max-min allocation is defined
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as one that maximizes the Egalitarian-Social-Welfare (ESW)
mini∈N ui(Xi) (Golovin 2005). This makes the least happy
agent as happy as possible.

The goal of this study is to solve the problem of finding a
stochastic max-min allocation of indivisible goods. We term
this problem MaxESW. A stochastic allocation is a probabil-
ity distribution on deterministic allocations. In other words,
an allocation algorithm uses a lottery to choose a determin-
istic allocation and distribute the set of goods to each agent.
We say that a stochastic allocation satisfies the max-min fair-
ness when the minimum expected utility is maximized.1

Regarding motivation, many studies have mentioned that
as far as in existing notions, a fair allocation may not exist,
or even if exists, there is still room for consideration as to
whether it is fair in practice. Consider allocating one good
to two agents with positive utilities. As the good is indivisi-
ble, either agent can receive it. For max-min allocations, the
minimum utility is always zero, and hence any allocation
can be fair. However, this is unsatisfactory in practice. Even
in this situation, we would like to select either agent in a fair
manner.

Stochastic allocation may shed light on the aforemen-
tioned difficulty, at least from an ex ante perspective. In the
aforementioned case, an algorithm chooses an allocation to
either agent with some probability. See also Example 1 in
Preliminaries. A lottery can also be interpreted as a fraction
of allocation when we repeatedly allocate goods, such as
time slots for car sharing during one week. We would like to
remark that a stochastic allocation of indivisible goods can-
not be naturally interpreted as a deterministic allocation of
divisible goods in general. For example, suppose that there
are two indivisible goods E = {a, b}, and one agent with
the utility u(S) = min{|S|, 1}. The expected utility of al-
locating {a} or {b} uniformly at random is 1, while the ex-
pected utility of allocating {a, b} or the empty set uniformly
at random is 1/2. When we assume that the goods are divis-
ible, natural interpretations of both allocations are the same,
namely allocating each good in the ratio of the half. From
this fractional allocation, we cannot uniquely determine a
corresponding stochastic allocation.

1The minimum expected utility is not the expectation of the
minimum utility.
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In this study, we assume the following properties, which
are standard in algorithmic game theory and its related ar-
eas. (i) No externalities exists, i.e., an agent’s utility depends
only on the set of goods she wins, not on the identity of
the agents that obtain the goods. (ii) Disposal is free (the
utility functions are monotone), i.e., ui(S) ≤ ui(T ) when-
ever S ⊆ T . (iii) The utility functions are normalized, i.e.,
ui(∅) = 0 for all agent i ∈ N . (iv) Agents are risk neutral,
i.e., the utility of an agent i for a stochastic allocation is nat-
urally defined as the expected utility. (v) We can query the
value ui(S) for any agent i and set S of goods.

Related Work

Many notions of fairness exist, such as envy-freeness (Foley
1967; Varian 1974), proportionality (Steinhaus 1948), and
max-min share guarantee (Budish 2011). In particular, envy-
freeness is one of the most classical fairness criteria. This
guarantees that no agent values any other agent’s bundle
more than her own bundle. It is known that envy-freeness is
a strong condition in a deterministic setting as an envy-free
allocation may not exist in general. Therefore, numerous
recent work has focused on the relaxations, such as envy-
freeness up to one good, denoted by EF1 (Budish 2011), and
envy-freeness up to any good, denoted by EFX (Caragiannis
et al. 2016).

Finding a deterministic max-min allocation, that maxi-
mizes ESW, is quite difficult even when all the utility func-
tions are additive. The additive case is also known as the
Santa Clause problem (Bansal and Sviridenko 2006). It is
known that this is NP-hard (Bezáková and Dani 2005), and
furthermore, it is also NP-hard to approximate it within a
factor better than 1/2 (Golovin 2005). Thus, recent work
(under additive utility functions) has proposed approxima-
tion algorithms. Bansal and Sviridenko (2006) proposed an
approximation algorithm for a restricted case. Asadpour and
Saberi (2010) provided the first polynomial-time approxi-
mation algorithm for the Santa Clause problem, which is
improved by Haeupler, Saha, and Srinivasan (2011).

The sum of all utilities, i.e.,
∑

i∈N ui(Xi), is termed
the Utilitarian Social Welfare (USW). We call the prob-
lem of finding a deterministic allocation that maximizes
USW MaxUSW. This problem has been extensively studied
in the context of combinatorial auction. The optimal alloca-
tion can be found in polynomial time when the utilities are
gross-substitutes (Bertelsen 2005). Note that any additive
function is gross-substitutes, and any gross-substitutes func-
tion is submodular. However, when the utilities are budget-
additive, Chakrabarty and Goel (2010) proved that it is NP-
hard to approximate to a factor better than 15/16. In addi-
tion, when the utilities are submodular, Vondrák (2008) pro-
vided a (1− 1/e)-approximation algorithm (in the value or-
acle model) and Khot et al. (2008) proved that it is NP-hard
to approximate to a factor better than 1 − 1/e even when
all utility functions are the same. For more information, see,
e.g., Nisan et al. (2007).

Our Results

We propose an efficient algorithm for important classes of
MaxESW. More precisely, we establish the following results:

1. We prove the NP-hardness of MaxESW even when each
utility function is budget-additive (Theorem 2). More-
over, MaxESW is NP-hard to approximate within a factor
better than 1−1/e, even when all utility functions are the
same submodular function (Corollary 1).

2. We propose an α-approximation algorithm for MaxESW
provided an α-approximation algorithm for MaxUSW
(Theorem 4). This result enables us to transport exist-
ing fruitful results on MaxUSW to MaxESW. In partic-
ular, we observe that MaxESW can be solved when ev-
ery utility function is gross-substitutes, and is (1− 1/e)-
approximable whenever the utility functions are submod-
ular (Corollaries 2 and 3). This and the aforementioned
hardness result imply that our result is tight for the sub-
modular case.

3. We prove the NP-hardness of the problem of finding
a stochastic max-min allocation that is also envy-free,
even when each utility function is matroid-additive (The-
orem 5). We call this problem the envy-free MaxESW.

4. We propose a polynomial-time algorithm for the envy-
free MaxESW when all utility functions share the same
matroid constraint (Theorem 6).

We will define the aforementioned classes of utility func-
tions in Preliminaries. They are generalizations of additive
functions, and often appear in the context of combinatorial
auction.

Preliminaries

A market is a tuple (N,E, (ui)i∈N ) where each component
is defined as follows. There is a finite set N of n risk neutral
agents, a finite set E of indivisible goods. Let ui : 2E → Z+

denote the utility function of agent i ∈ N . We assume ui
is normalized (i.e., ui(∅) = 0) and monotone (i.e., u(S) ≤
u(T ) for every S ⊆ T ⊆ E). For a set of utility functions
U , we call a market (N,E, (ui)i∈N ) U -market if ui belongs
to U for every i ∈ N . In this paper, we only consider a set
of utility functions that is closed under scaling by a positive
factor, i.e., λ · u ∈ U for any u ∈ U and λ > 0.

A list of sets X = (X1, . . . , Xn) is called allocation if
(i) Xi ⊆ E for all i and (ii) Xi ∩ Xj = ∅ for all distinct
i, j ∈ N . In other words, an allocation X = (X1, . . . , Xn)
is a subpartition of E. When we decide an allocation X , an
agent i ∈ N gets Xi and her utility is ui(Xi). Let X be
the set of all (feasible2) allocations. The cardinality of X is
(|E|+ 1)|N | and hence it is exponential in |N | and |E|.

The egalitarian social welfare (ESW) and the utilitarian
social welfare (USW) of an allocation X are respectively
defined as

ESW(X) = min
i∈N

ui(Xi) and USW(X) =
∑
i∈N

ui(Xi).

A max-min allocation is defined as the one that attains
maxX∈X ESW(X) (Golovin 2005).

2We can handle constraints on allocations (e.g., connectivity
constraint (Bouveret et al. 2017; Bilò et al. 2018)) by restricting
X .
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A stochastic allocation is a probability distribution over
X , which is identical to a vector p ∈ [0, 1]X with∑

X∈X pX = 1. We denote by Δ(X ) the set of stochastic
allocations. The ESW and USW for a stochastic allocation
p ∈ Δ(X ) are respectively defined as

ESW(p) = min
i∈N

EX∼p[ui(Xi)] = min
i∈N

∑
X∈X

pXui(Xi),

USW(p) =
∑
i∈N

EX∼p[ui(Xi)] =
∑
i∈N

∑
X∈X

pXui(Xi).

We say that p ∈ Δ(X ) is a max-min stochastic allocation if
it attains maxp∈Δ(X ) ESW(p).

We define the problems of maximizing the ESW and the
USW, denoted by MaxESW and MaxUSW respectively, as
follows. To find a max-min stochastic allocation, we aim to
solve MaxESW.

MaxESW� �
Instance A market (N,E, (ui)i∈N ).
Goal Find a stochastic allocation p ∈ Δ(X ) that max-

imizes ESW(p).
� �

MaxUSW� �
Instance A market (N,E, (ui)i∈N ).
Goal Find a deterministic allocation X ∈ X that max-

imizes USW(X).
� �
Note that for maximizing USW(p), there always exists a de-
terministic optimal one, because USW(p) =

∑
X∈X pX ·

USW(X) ≤ maxX: pX>0 USW(X). Hence, MaxUSW fo-
cuses on deterministic allocations. If we restrict the input
market to be U -market, we call the problems U -MaxESW
and U -MaxUSW.

We briefly mention the size of an output of MaxESW be-
cause a stochastic allocation has exponentially many vari-
ables. We assume that a stochastic allocation is represented
by a sparse form, which is a list containing the index of
each non-zero entry together with its value. Let supp(p) :=
{X ∈ X : pX > 0} be the set of non-zero entries of p. By
Carathéodory’s theorem, there exists an optimal stochastic
allocation p for MaxESW such that | supp(p)| ≤ |N | + 1.3
We will find a sparse stochastic allocation, and hence the
output of our algorithm has polynomially bounded size.

We also define envy-freeness for stochastic allocations.
Given a stochastic allocation p ∈ Δ(X ), we say that agent i
envies agent j if

EX∼p[ui(Xi)] < EX∼p[ui(Xj)]. (1)

An allocation without envy is called envy-free (from an ex
ante perspective). We will also deal with the problem of find-

3Carathéodory’s theorem states that if a point x in Rn lies in
the convex hull of a set S, then x can be written as the convex
combination of at most n + 1 points in S. In our case, we use
the theorem by setting n = |N |, x = (EX∼p[ui(Xi)])i∈N , and
S = {(ui(Xi))i∈N : X ∈ X}.

ing a max-min allocation that is also envy-free. The envy-
free MaxESW is defined as

max ESW(p) s.t. p ∈ Δ(X ), p is envy-free. (2)

The next example illustrates difference of optimal deter-
ministic and stochastic allocations.

Example 1. Let us consider a market (N,E, (ui)i∈N ),
where N = {1, 2}, E = {a}, u1({a}) = 2, u2({a}) = 3.
Then, for any deterministic allocation, the ESW is 0. For a
stochastic allocation that chooses an allocation ({a}, ∅) with
probability 3/5 and (∅, {a}) with probability 2/5, the ESW
is min{2 · 3/5, 3 · 2/5} = 6/5.

In addition, (∅, ∅) is the unique envy-free deterministic
allocation. On the other hand, allocating {a} to either agent
uniformly at random is envy-free. The ESW of this envy-
free stochastic allocation is 1.

Classes of Utility Functions

We define classes of utility functions in the following, where
each class is closed under scaling by a positive factor. They
are well-studied in algorithmic game theory as utilities of
agents.

Definition 1. A normalized monotone function u : 2E →
R+ is

• additive, if u(S) =
∑

e∈S u({e}) for every S ⊆ E.

• constrained-additive for a constraint F ⊆ 2E , if u(S) =
maxT⊆S:T∈F

∑
e∈T u({e}) for all S ⊆ E. If the

constraint is a matroid4, we call the function matroid-
additive.

• budget-additive, if u(S) = min
{∑

e∈S u({e}), B
}

for
every S ⊆ E.

• gross-substitutes, if for every p, q ∈ RE with p ≤ q and
every S ∈ argmax{u(R) −∑

e∈R pv : R ⊆ E}, there
exists T ∈ argmax{u(R) − ∑

e∈R qe : R ⊆ E} such
that {e ∈ S : pe = qe} ⊆ T (Kelso and Crawford 1982).

• submodular, if u(S) + u(T ) ≥ u(S ∪ T ) + u(S ∩ T ) for
every S, T ⊆ E.

Let us denote by Add, MAdd, BAdd, GS, and SubM
the sets of additive functions, of matroid-additive functions,
of budget-additive functions, of gross-substitutes functions,
and of submodular functions, respectively. It is known that
they have the following relationships:

Add�MAdd�GS�SubM and Add�BAdd�SubM.

In addition, some matroid-additive functions are not budget-
additive and some budget-additive functions are not gross-
substitutes.

4A matroid is a pair (E,F) where F ⊆ 2E with the following
properties: (I1) ∅ ∈ F , (I2) X ⊆ Y ∈ F implies X ∈ F , and (I3)
if X,Y ∈ F and |X| < |Y | then there exists e ∈ Y \X such that
X ∪ {e} ∈ F . For the basics on matroids, we refer the reader to
the book of Oxley (2011).
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Identical-agents Case

In this section, we discuss an easy case in which the util-
ity functions are identical. If the common utility function is
additive, an optimal solution is to just allocate each item to
an agent uniformly at random. For non-additive utility func-
tions, this strategy does not work. However, we show that a
similar strategy works if we can solve MaxUSW.

Let (N = {1, . . . , n}, E, (u)i∈N ) be an arbitrary market
on identical agents. For any deterministic allocation X ∈ X ,
we define a randomization of X as a stochastic allocation,
denoted by p(X), such that (p(X))Xi = 1/n for each i ∈
N , where Xi = (Xi, . . . , Xn, X1, . . . , Xi−1).
Lemma 1. ESW(p(X)) = USW(X)/n for any X ∈ X .

Proof. Under the allocation p(X), every agent receives
Xj with a probability 1/n for each j ∈ N , and hence the
expected utility of each agent is

∑
j∈N u(Xj)/n. Thus,

ESW(p(X)) = mini∈N

∑
j∈N u(Xj)/n = USW(X)/n.

Theorem 1. For any market (N,E, (u)i∈N ) on identical
agents and any positive real α ≤ 1, an α-approximate so-
lution for MaxESW can be constructed in polynomial time
from an α-approximate solution for MaxUSW, and vice
versa.

Proof. Suppose that X ′ ∈ X is an α-approximate solution
for MaxUSW, i.e., USW(X ′) ≥ α·maxX∈X USW(X). Let
p∗ be the optimal solution for MaxESW. We take arbitrarily
X∗ ∈ argmaxX∈supp(p∗) USW(X). Then, by Lemma 1,

ESW(p(X ′)) = USW(X ′)/n ≥ α · max
X∈X

USW(X)/n

≥ α ·USW(X∗)/n ≥ α ·USW(p∗)/n

= α ·
∑
j∈N

(1/n)
∑

X∈supp(p∗)

pXu(Xj)

≥ α · ESW(p∗).

Hence, p(X ′) is an α-approximate solution for MaxESW.
Conversely, suppose that p′ is an α-approximate

solution for MaxESW, i.e., ESW(p′) ≥ α ·
maxp∈Δ(X ) ESW(p). Let X ′ be an allocation such
that X ′ ∈ argmaxX∈supp(p′) USW(X). Let X∗ be an
optimal solution for MaxUSW. Then, by Lemma 1,

USW(X ′) ≥ USW(p′) ≥ n · ESW(p′)
≥ αn · max

p∈Δ(X )
ESW(p)

≥ αn · ESW(p(X∗)) = α ·USW(X∗).

Hence, X ′ is an α-approximate solution for MaxUSW.

It should be noted that the stochastic allocation p(X ′) in
the aforementioned proof is envy-free by the symmetry of
the agents. Hence, the optimal value of MaxESW is equal to
that of the envy-free MaxESW.

Khot et al. (2008) proved that MaxUSW is NP-hard to ap-
proximate within a factor better than 1− 1/e even when all
utility functions are the same submodular function. There-
fore, by Theorem 1, we have the following Corollary.

Corollary 1. MaxESW and the envy-free MaxESW are NP-
hard to approximate within a factor better than 1−1/e, even
when all utility functions are the same submodular function.

Finally, we show NP-hardness of a restricted MaxESW
problem by reducing the partition problem, which is known
to be NP-hard (Garey and Johnson 1979).

Partition problem� �
Instance A list of m positive integers a1, . . . , am.
Question Is there a subset A ⊆ {1, . . . ,m} such that∑

j∈A aj =
∑

j �∈\A aj?

� �
Theorem 2. MaxESW and the envy-free MaxESW are NP-
hard, even when there are only two agents with the same
budget-additive utility function.

Proof. Let (a1, . . . , am) be an instance of the partition prob-
lem. We may assume that

∑m
j=1 aj is even because other-

wise, the answer is No. Let M =
∑m

j=1 aj/2. We construct
a market (N := {1, 2}, E, (u)i∈N ), where E = {1, . . . ,m}
and u : 2E → Z+ satisfies u(X) = min{∑j∈X aj ,M}.
Then, the optimal value is at least M if and only if the given
partition problem instance is a Yes-instance. Indeed, if there
is A∗ ⊆ E such that

∑
j∈A∗ aj =

∑
j∈E\A∗ aj (= M),

then X = (A∗, E \ A∗) satisfies ESW(X) ≥ M and it
is envy-free. Also, assume that there is p∗ ∈ Δ(X ) such
that ESW(p∗) ≥ M . For some X∗ ∈ supp(p∗), we have
ESW(X∗) ≥ M , and hence M ≤ u(X∗

1 ) ≤ ∑
j∈X∗

1
aj

and M ≤ u(X∗
2 ) ≤ u(E \X∗

1 ) ≤
∑

j∈E\X∗
1
aj . Therefore,∑

j∈X∗
1
aj =

∑
j∈E\X∗

1
aj =M .

Dual-based algorithm

In this section, we propose an α-approximation algo-
rithm for MaxESW given an α-approximation algorithm for
MaxUSW. Let (N,E, (ui)i∈N ) be a U -market, where the
utility functions are not necessarily identical. Without loss of
generality, we assume that the optimal value of MaxESW is
positive (this assumption holds if and only if ui(E) > 0 for
all i ∈ N , and hence we can easily check it). Then, MaxESW
for (N,E, (ui)i∈N ) is formulated as follows:

max t
s.t. t ≤ ∑

X∈X ui(Xi)pX (∀i ∈ N),∑
X∈X pX = 1,

pX ≥ 0 (∀X ∈ X ),
t > 0.

(3)

By setting qX := pX/t (X ∈ X ), we transform (3) to
an exponentially-large Linear Programming problem (LP)
whose optimal value is the inverse of the one for (3) as fol-
lows:

min
∑

X∈X qX
s.t.

∑
X∈X ui(Xi)qX ≥ 1 (∀i ∈ N),

qX ≥ 0 (∀X ∈ X ).
(4)

2073



The dual is given by:

max
∑

i∈N zi
s.t.

∑
i∈N ui(Xi)zi ≤ 1 (∀X ∈ X ),

zi ≥ 0 (∀i ∈ N).
(5)

In the following, we aim to solve (4) via solving (5)
by the ellipsoid algorithm. This algorithm works when we
have a separation algorithm to solve the separation prob-
lem (Grötschel, Lovász, and Schrijver 2012). For a poly-
hedron P ⊆ Rn, the separation problem for P receives
a vector y and either asserts y ∈ P or finds a vector d
such that d�x > d�y for all x ∈ P . We need a separa-
tion algorithm for the feasible region on (5). Fortunately, in
our case, checking the feasibility of a given input ẑ ∈ RN

is equivalent to solving MaxUSW for (N,E, (ẑiui)i∈N ).
If ẑi < 0 for some i ∈ N , then ẑ is infeasible and
−ẑi > 0 ≥ −zi for all feasible solutions z ∈ RN . As-
sume that ẑi ≥ 0 for all i ∈ N . If the optimal solution X∗

of MaxUSW for (N,E, (ẑiui)i∈N ) has the objective value
larger than 1, (ui(X∗

i ))i∈N is a desired vector as d, because∑
i∈N ui(X

∗
i )ẑi > 1 ≥ ∑

i∈N ui(X
∗
i )zi for all feasible so-

lutions z ∈ RN . Note that (N,E, (ẑiui)i∈N ) is a U -market.
When every utility function is gross-substitutes, MaxUSW is
polynomially solvable (Bertelsen 2005), and so is the sep-
aration problem. Therefore, MaxESW with gross-substitute
utility functions is solvable in polynomial time. However,
we cannot apply the method when the utility functions are
submodular or more general.

As a remedy, we employ the technique of Jansen (2003)
that uses an approximate separation algorithm to solve the
LP approximately. For a polyhedron P ⊆ Rn and a positive
α ≤ 1, the α-approximate separation algorithm for P re-
ceives a vector y and either asserts αy ∈ P or finds a vector
d such that d�x > d�y for all x ∈ P . Jansen (2003) focused
on the LP of the form:

max c�y
s.t. a�j y ≤ bj (∀j = 1, . . . ,m),

y ∈ B,
(6)

where aj is an n-dimensional rational vector and bj is a pos-
itive rational number for all j, andB is a polytope defined by
some inequalities such that the separation problem for B is
solvable in polynomial time. Let K be the feasible region of
(6). Then, Jansen (2003) showed the following result. Sup-
pose that there is an α-approximation algorithm APP that
finds a row a�� y ≤ b� with

a�� y/b� ≥ α ·maxj∈{1,...,m} a�j y/bj

for each y ∈ B, and we know an integer ψ such that all
the rational inequalities defining K are of size at most ψ.
Then, there is a polynomial-time α-approximate separation
algorithm for (6). Moreover, there is a 1/α-approximation
algorithm for the dual of (6) that runs in polynomial time in
n, ψ and the running time of APP.

We utilize the result of Jansen (2003) as follows. We set
c to be the all-one vector and B = {z : zi ≥ 0 (∀i ∈
N)}. Let μ = maxi∈N ui(E). We set ψ = O(n logμ).
Indeed, each constraint in (5) has at most n coefficients

of size bounded by log(maxi∈N,X∈X ui(Xi)) ≤ logμ
because each ui is monotone. In addition, we use an α-
approximation algorithm APP for the U -MaxUSW: Given
(N,E, (u′i)i∈N ) with u′i ∈ U (∀i ∈ N), the algorithm
APP finds an allocation X̃ ∈ X such that

∑
i∈N u′i(X̃i) ≥

α ·maxX∈X
∑

i∈N u′i(Xi) in polynomial time with respect
to n, logμ, and the time to evaluate the value of u′i (i ∈ N).

According to Jansen (2003), we define an approximate
separation algorithm that receives z, as Algorithm 1.

Algorithm 1: Approximate separation algorithm
1 if zi < 0 for some i ∈ N then
2 return “zi ≥ 0 is violated”

3 Let X̃ be the approximate solution returned by APP for
(N,E, (ziui)i∈N ), which is a U -market;

4 if
∑

i∈N ui(X̃i)zi > 1 then

5 return “
∑

i∈N ui(X̃i)zi ≤ 1 is violated”

6 else return “αz is feasible”;

We can see that Algorithm 1 returns an answer in polyno-
mial time in n and the running time of the value oracle of
ui (i ∈ N). When it says that αz is feasible, this is correct
because 1 ≥ ∑

i∈N ui(X̃i)zi ≥ α · ∑i∈N ui(Xi)zi for all
X ∈ X by the construction.

Then, we solve (4) by Algorithm 2.

Algorithm 2: Approximate algorithm for (4)
1 Solve the dual LP (5) using the ellipsoid algorithm with

Algorithm 1. Let S be the set of X ∈ X corresponding
to the violated constraints in (5) returned at Line 5 of
Algorithm 1. Let z̃ be the obtained solution;

2 Construct a restriction of the primal LP (4) by setting
qX = 0 for all X �∈ S , i.e.,

min
∑

X∈S qX
s.t.

∑
X∈S ui(Xi)qX ≥ 1 (∀i ∈ N),

qX ≥ 0 (∀X ∈ S);
(7)

3 Solve LP (7) with a standard LP algorithm (such as the
algorithm by Khachiyan (1980));

4 return an optimal solution (q̃X)X∈S of LP (7);

We remark that S has polynomial size. The size of S in-
creases by at most one per one call for Algorithm 1. More-
over, by construction of the ellipsoid algorithm, the number
of the calls for Algorithm 1 is bounded by a polynomial (in
n, logμ, and time to evaluate ui’s).

We can rewrite the result of Jansen (2003) as follows.

Theorem 3 (Jansen (2003)). Suppose that there is an α-
approximation algorithm APP for the U -MaxUSW. Then,
Algorithm 1 is a polynomial-time α-approximate separation
algorithm for (5), and Algorithm 2 is a 1/α-approximation
algorithm for (4) that runs in polynomial time in n, logμ and
the running time of APP.
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From (q̃X)X∈S , we construct t̃ = 1/
∑

X∈S q̃X and
p̃X = t̃ · q̃X for X ∈ S . We provide a theoretical guar-
antee on this solution for (3).
Theorem 4. With an α-approximation algorithm APP for
the U -MaxUSW, we can obtain an α-approximation algo-
rithm for the U -MaxESW in polynomial time with respect
to n, logμ, and the time to evaluate the value of ui (i ∈ N).

Proof. We see from Theorem 3 that Algorithm 2 terminates
in polynomial time. The construction of ((p̃X)X∈S , t̃) can
be done also in polynomial time. Since (q̃X)X∈S is fea-
sible for (4), ((p̃X)X∈S , t̃) is feasible for (3). Let OPT
be the optimal value of (3). By construction, the opti-
mal value of (4) is equal to 1/OPT. By Theorem 3, we
have

∑
X∈S q̃X ≤ (1/α) · (1/OPT). Thus, it holds that

α · OPT ≤ 1/
∑

X∈S q̃X = t̃. Therefore, ((p̃X)X∈S , t̃)
is an α-approximate solution for (3).

We apply existing results on MaxUSW to Theorem 4. If U
is the set GS of gross-substitutes functions, then it is known
that the U -MaxUSW is solvable in polynomial time (Ber-
telsen 2005).
Corollary 2. There exists a polynomial-time algorithm for
the GS-MaxESW.

If U is the set SubM of submodular functions, then
there exists a (1− 1/e)-approximation algorithm for the U -
MaxUSW (Vondrák 2008).
Corollary 3. There exists a (1− 1/e)-approximation algo-
rithm for the SubM-MaxESW.

Due to Corollary 1, this is best-possible unless P=NP.

Envy-free Max-min Allocation

In this section, we focus on the envy-free MaxESW (2).
We remark that allocating the entire bundle of goods to an
agent chosen uniformly at random is an n-approximation
solution since it is envy-free and mini∈N ui(E) ≥
maxp∈Δ(X ) ESW(p). We first prove that the envy-free ver-
sion is NP-hard even if each utility is matroid-additive. How-
ever, we also show that the problem is polynomial-time solv-
able if all constraints are the same matroid. This assumption
is critical for polynomial-time solvability under general ma-
troids, due to the hardness result.

Before going to the main part, we mention an interest-
ing property of the envy-free MaxESW. It seems intuitive
that when a utility function of some agent is replaced with
u′i such that u′i(S) ≥ ui(S) for all S, the ESW will be-
come higher. This is true for MaxESW because the optimal
allocation for the original market is also feasible for the in-
creased market. However, it is not the case for the envy-free
MaxESW.
Example 2. Let us consider a market (N := {1, 2}, E :=
{a, b, c}, (u1, u2)) where u1(X) = min{2|X|, 2} and
u2(X) = |X| for X ⊆ E. Then, an optimal solution
to the envy-free MaxESW is an allocation that chooses
({a}, {b, c}) with probability 1, and the optimal ESW value
is 2. Meanwhile, under a market (N,E, (u′1, u2)) with
u′1(X) = 2|X|, an optimal solution is to distribute the goods

independently and uniformly at random, and the optimal
ESW value is 1.5.

NP-hardness for General Constraints

We prove that the envy-free MaxESW is NP-hard, even when
the utility function ui of each agent i ∈ N is matroid-
additive with a matroid (E,Fi).

We give a reduction from the following Partition into
Triangles problem (PT), which is NP-complete (Garey and
Johnson 1979).

Partition into Triangles (PT)� �
Instance A graph G = (V,E), with |V | = 3q for

some integer q.
Question Can the vertices V be partitioned into q

disjoint sets V1, V2, . . . , Vq , each containing ex-
actly 3 vertices, such that for each of these
Vi is the vertex set of a triangle in G (i.e.,
{v1i , v2i }, {v1i , v3i }, {v2i , v3i } ∈ E for all Vi =
{v1i , v2i , v3i } (i = 1, . . . , q))?

� �
Without loss of generality, we may assume that |E| ≥ 3q,
since otherwise the instance must be a No-instance.

We construct a market (N,R, (ui)i∈N ) that has an envy-
free stochastic allocation with ESW at least 6 if and only if
the given PT instance is a Yes-instance. The overview of the
market is illustrated in Figure 1. Formally, the agents and
goods are set as
• N = T ∪ S ∪ {a}, where T := {t1, . . . , tq} and S :=
{s1, . . . , s|E|−3q},

• R = V ∪ E ∪ {�}.

Goods R

�

...

e

...

Agents N

...

v

...

a

...
s

...

...

t

...1

1

6

6
22

V

E

T

S

Figure 1: The construction of a market from a given PT in-
stance.

We define the utility functions for all agents as the following
constrained-additive ones with matroids.
• For ut (t ∈ T ),

– Ft = {X ⊆ V ∪ E : |X ∩ V | ≤ 3, |X ∩ E| ≤ 3},
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– ut({r}) = 1 (∀r ∈ R);
• For us (s ∈ S),

– Fs = {X ⊆ E : |X| ≤ 1},
– us({r}) = 6 (∀r ∈ R);

• For ua,
– ua({�}) = 6, ua({r}) = 2 (∀r ∈ V ∪ E),
– Fa forms a binary matroid represented by vectors χ�,
χv (v ∈ V ), and χe (e ∈ E) in F

{a}∪V
2 , where

∗ χ�,a = 1, χ�,v = 0 (v ∈ V ),
∗ χv,v = 1, χv,w = 0 (w �= v),
∗ χ{v,w},v = χ{v,w},w = 1, χ{v,w},x (x �= v, w).

A set X ⊆ R is in Fa if the corresponding vectors are
linearly independent in F2.
These vectors form a matrix as follows:

1 0 0 · · · · · · 0 · · · · · ·
0 1 0 1

0 0 1 1

0 0 0 0

...
...

... · · · · · · ... · · · · · ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

� v w · · · · · · {v, w} · · · · · ·
a

v

w

x

...

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩ V ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ E

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V

Intuitively, to attain ESW at least 6, each t ∈ T must be
allocated 3 goods of V and of E, respectively. In addition,
each s ∈ S must be allocated one good of RE .

Suppose that the PT instance is a Yes-instance, i.e.,
there exists a partition V ∗

1 . . . , V
∗
q of V such that each

V ∗
i (i ∈ {1, . . . , q}) is a vertex set of a triangle

in G. For i = 1, . . . , q, let V ∗
i = {v1i , v2i , v3i },

E∗
i = {{v1i , v2i }, {v1i , v3i }, {v2i , v3i }}, and E \ ⋃q

i=1E
∗
i =

{e1, . . . , e|E|−3q}. Let X∗ ∈ X be a deterministic alloca-
tion defined as X∗

a = {�}, X∗
ti = V ∗

i ∪E∗
i (i ∈ {1, . . . , q}),

and X∗
si = {ei} (i ∈ {1, . . . , |E| − 3q}). We see that each

agent receives a feasible goods set. Every agent has utility 6,
and hence ESW(X∗) = 6. We claim that X∗ is envy-free.
• For every t ∈ T , ut(Xt′) = 6 (∀t′ ∈ T ) (because Xt′ ∈
Ft), ut(Xs) = 1 (∀s ∈ S) and ut(Xa) = 1.

• For s ∈ S, us(Xt) = 6 (t ∈ T ), us(Xs′) = 6 (∀s′ ∈ S)
and us(Xa) = 0.

• For a, we see that ua(Xt) = 6 (∀t ∈ T ) because the rank
of Xt is 3, and ua(Xs) = 2 (∀s ∈ S).

Thus, the instance has an envy-free (stochastic) allocation
with ESW at least 6.

Conversely, suppose that the PT instance is a No-instance,
i.e., there exists no partition into triangles. Suppose that p∗ ∈
Δ(X ) is a stochastic allocation such that ESW(p∗) ≥ 6. We
claim that p∗ is not envy-free. For any deterministic feasible
allocation X ∈ X , ESW(X) ≤ 6 because ui(Xi) ≤ 6
for any agent i ∈ T ∪ S. Then, ESW(p∗) ≤ 6, and hence
ESW(p∗) = 6. Thus, we have ESW(X) = 6 for any X ∈
supp(p∗). Fix an deterministic allocation X̂ ∈ supp(p∗).
Since ui(X̂i) ≥ 6 for all agents i, we have ui(X̂i) = 6

for any i ∈ T ∪ S. This is attained only if |X̂t ∩ V | = 3,
|X̂t ∩ E| = 3 (t ∈ T ), and |X̂s ∩ E| = 1 (s ∈ S) by
construction. In this case, all goods in V ∪E are allocated to
agents in T ∪ S. To attain ua(X̂a) ≥ 6, we have X̂a = {�}.
Hence,

ua(X̂a) = 6 and ua(X̂i) ≥ 6 (∀i ∈ T ). (8)

Note that this holds for all X ∈ supp(p∗) by the same ar-
gument. As the PT instance is a No-instance, there exists
t∗ ∈ T such that X̂t∗ does not form a triangle, i.e., there
exists {w,w′} ∈ X̂t∗ ∩E such that w′ �∈ X̂t∗ ∩V . Thus, the
four vectors χv (v ∈ X̂t∗ ∩V ) and χ{w,w′} are independent
for Fa. Hence, ua(X̂t∗) is at least 2×4 = 8. Therefore, this
together with (8) implies that∑
X∈X

p∗Xua(Xt∗) = p∗
X̂
ua(X̂t∗) +

∑
X∈X\{X̂}

p∗Xua(Xt∗)

≥ p∗
X̂

· 8 + (1− p∗
X̂
) · 6 > 6 =

∑
X∈X

p∗Xua(Xa),

which means that p∗ is not envy-free. This completes the
proof of the following theorem.

Theorem 5. The envy-free MaxESW problem is NP-hard
even when the utility functions are matroid-additive.

Polynomial-time Algorithm for Identical
Constraints

In this subsection, we show that we can solve the envy-free
MaxESW in polynomial time if all agents have the same ma-
troid, i.e., Fi = F (∀i ∈ N).

Theorem 6. If all utility functions are matroid-additive with
a common matroid, then the envy-free MaxESW is solvable
in polynomial time.

Let us focus on the exponentially-large LP representation
of the envy-free MaxESW:

max t
s.t. t ≤ ∑

X∈X ui(Xi)pX (∀i ∈ N),∑
X∈X (ui(Xi)− ui(Xj))pX ≥ 0 (∀i, j ∈ N),∑
X∈X pX = 1,

pX ≥ 0 (∀X ∈ X ).

Its dual is given by:

min s
s.t. s ≥ ∑

i∈N ui(Xi)zi

+
∑

i,j∈N (ui(Xi)− ui(Xj))yij
(∀X ∈ X ),

∑
i∈N zi = 1,

yij ≥ 0, zi ≥ 0 (∀i, j ∈ N).

In a similar way to the algorithm presented in the previous
section, if we can solve the separation problem for the dual
LP, then we can compute the optimal solution to the envy-
free MaxESW. Thus, we show the polynomial-time solvabil-
ity of the separation problem for the dual LP.

Let (z, y, s) be a given input. If (i) yij < 0 for some i, j,
(ii)

∑
i∈N zi �= 1, or (iii) zi < 0 for some i, then return the
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violated constraint and exit. Then we check whether

s ≥ max
X∈X

∑
i∈N

⎛
⎝ui(Xi)zi +

∑
j �=i

(ui(Xi)− ui(Xj))yij

⎞
⎠ .

(9)

We rewrite the right hand side in (9) as∑
i∈N

ui(Xi)zi +
∑
i,j∈N

(ui(Xi)− ui(Xj))yij

=
∑
i∈N

((
zi +

∑
j �=i

yij

)
ui(Xi)−

∑
j �=i

yjiuj(Xi)

)
. (10)

We claim that the maximum in (9) is attained by an alloca-
tion X such that Xi ∈ F for all i ∈ N . To describe this,
assume Xi �∈ F for some i. There exists X ′

i ⊂ Xi such
that X ′

i ∈ F and ui(X ′
i) = ui(Xi) by the definition of ui.

By the monotonicity of uj , we have uj(X ′
i) ≤ uj(Xi) for

j �= i. These imply(
zi +

∑
j �=i

yij

)
ui(Xi)−

∑
j �=i

yjiuj(Xi)

≤
(
zi +

∑
j �=i

yij

)
ui(X

′
i)−

∑
j �=i

yjiuj(X
′
i).

Therefore, we assume Xi ∈ F (∀i ∈ N) in the following.
Since all the utility functions are matroid-additive, we fur-

ther rewrite (10) as
∑
i∈N

((
zi +

∑
j �=i

yij

) ∑
e∈Xi

ui({e})−
∑
j �=i

yji
∑
e∈Xi

uj({e})
)

=
∑
i∈N

∑
e∈Xi

((
zi +

∑
j �=i

yij

)
ui({e})−

∑
j �=i

yjiuj({e})
)
.

Let γi(e) :=
(
zi +

∑
j �=i yij

)
ui({e}) −

∑
j �=i yjiuj({e})

for all i ∈ N and e ∈ E. Thus, we see that
∑

i∈N

ui(Xi)zi +
∑

i,j∈N

(ui(Xi)− ui(Xj))yij =
∑

i∈N

∑

e∈Xi

γi(e).

Therefore, the maximization problem in (9) is equivalent to
the following problem:

max
∑

i∈N

∑
e∈Xi

γi(e)
s.t. X ∈ X ,

Xi ∈ F (∀i ∈ N).

This is exactly MaxUSW in which every utility function is a
constrained-additive one with the matroid F . This problem
is solved in polynomial time by using Edmonds’ matroid
intersection algorithm (Edmonds 1970). Summarizing these
arguments, we obtain Theorem 6.

Conclusion

In this paper, we addressed fair allocation of indivisible
goods to agents in terms of max-min fairness. Specifically,
we focused on maximizing ESW with and without the envy-
free constraint. Without the envy-free constraint, we pro-
vided a black-box gap-preserving reduction from MaxESW

to MaxUSW by using the ellipsoid algorithm with an approx-
imate separation algorithm. With the envy-free constraint,
we proved that the envy-free MaxESW is NP-hard even when
every agent has an additive utility with a matroid constraint,
and we proposed a polynomial-time algorithm for the case
where the matroid constraint is common to all agents.

Acknowledgments

We would like to thank the AAAI anonymous reviewers for
their suggestions and comments. The first author is sup-
ported by JSPS KAKENHI Grant Number JP16K16005.
The second author is supported by JSPS KAKENHI Grant
Number JP17K12646.

References

Asadpour, A., and Saberi, A. 2010. An approximation algorithm
for max-min fair allocation of indivisible goods. SIAM Journal on
Computing 39(7):2970–2989.

Bansal, N., and Sviridenko, M. 2006. The Santa Claus problem.
In Proceedings of the 38th annual ACM symposium on Theory of
Computing, 31–40.

Bertelsen, A. 2005. Substitutes valuations and M�-concavity.
M.Sc. Thesis, The Hebrew University of Jerusalem.
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