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Abstract

In distortion-based analysis of social choice rules over metric
spaces, voters and candidates are jointly embedded in a met-
ric space. Voters rank candidates by non-decreasing distance.
The mechanism, receiving only this ordinal (comparison) in-
formation, must select a candidate approximately minimizing
the sum of distances from all voters to the chosen candidate.
It is known that while the Copeland rule and related rules
guarantee distortion at most 5, the distortion of many other
standard voting rules, such as Plurality, Veto, or k-approval,
grows unboundedly in the number n of candidates.
An advantage of Plurality, Veto, or k-approval with small k
is that they require less communication from the voters; all
deterministic social choice rules known to achieve constant
distortion require voters to transmit their complete rankings
of all candidates. This motivates our study of the tradeoff be-
tween the distortion and the amount of communication in de-
terministic social choice rules.
We show that any one-round deterministic voting mecha-
nism in which each voter communicates only the candidates
she ranks in a given set of k positions must have distor-
tion at least 2n−k

k
; we give a mechanism achieving an up-

per bound of O(n/k), which matches the lower bound up to
a constant. For more general communication-bounded voting
mechanisms, in which each voter communicates b bits of in-
formation about her ranking, we show a slightly weaker lower
bound of Ω(n/b) on the distortion.
For randomized mechanisms, Random Dictatorship achieves
expected distortion strictly smaller than 3, almost matching a
lower bound of 3 − 2

n
for any randomized mechanism that

only receives each voter’s top choice. We close this gap, by
giving a simple randomized social choice rule which only
uses each voter’s first choice, and achieves expected distor-
tion 3− 2

n
.

1 Introduction

In voting or social choice, there is a set of n alternatives
(such as political candidates or courses of action) from
which a group (such as a country or an organization) wants
to select a winner. Each voter submits a ranking (or pref-
erence order) of the candidates, and the mechanism (or so-
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cial choice rule) chooses a winner based on these submitted
rankings.

Contrasting and complementing the traditional “ax-
iomatic” approach of comparing social choice rules, an ap-
proach that has recently gained in popularity is to consider
social choice as an optimization problem with the goal of se-
lecting the “best” candidate for the population (Boutilier et
al. 2015; Caragiannis and Procaccia 2011; Procaccia 2010;
Procaccia and Rosenschein 2006). Each voter has a util-
ity (or cost) for each candidate, and the mechanism’s goal
is to optimize the aggregate utility or cost of all voters.
However, as articulated in (Boutilier and Rosenschein 2016;
Anshelevich, Bhardwaj, and Postl 2015), the social choice
rule has to optimize with crucial information missing: a
voter can only communicate her1 ranking according to the
utility/cost. In other words, the mechanism receives only
ordinal information — which candidate is preferred over
which other candidate — even though it needs to optimize a
cardinal objective function. From an optimization perspec-
tive, this means that the mechanism should simultaneously
optimize over all utility/cost functions that are consistent
with the reported rankings, in that they would give rise to the
observed rankings. The worst-case ratio (over all cost/utility
functions) between the mechanism’s cost/utility and that of
the optimum candidate for the specific function is called the
mechanism’s distortion. (Formal definitions of all concepts
and terms are given in Section 2.)

In applying this general framework, an important question
is what class of cost/utility functions to consider. A natu-
ral approach was suggested in (Anshelevich, Bhardwaj, and
Postl 2015) (see also the expanded/improved journal version
(Anshelevich et al. 2018) and general overview (Anshele-
vich 2016)): all candidates and voters are jointly embedded
in a metric space, and the cost of voter v for candidate x
is their metric distance d(v, x). The assumption that vot-
ers rank candidates by non-decreasing distance in a latent
space2 dates back to earlier work on so-called single-peaked

1For consistency and clarity, we will always refer to voters us-
ing female and candidates using male pronouns.

2It is an interesting “philosophical” question whether these dis-
tances are “real,” e.g., in the sense that voters could articulate or
quantify them. Whether this is the case will clearly depend on
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preferences (see, e.g., (Black 1948; Moulin 1980)), though
much of the earlier work focuses on the special case when
the metric is the line. Using the framework of distortion
and metric costs, (Anshelevich, Bhardwaj, and Postl 2015;
Anshelevich et al. 2018) showed a remarkable separation.
While many commonly used voting rules (such as Plurality,
Veto, k-approval, Borda count) have either unbounded dis-
tortion or distortion linear in the number n of candidates, and
indeed all score-based rules have distortion ω(1) (in terms
of the number of candidates), uncovered-set rules have dis-
tortion at most 5. To describe uncovered-set rules, consider
a tournament graph G on the n candidates which contains
the directed edge (x, y) iff at least as many voters prefer x
to y as vice versa. The uncovered set of G is the set of all
candidates with paths of length at most 2 to all other candi-
dates (Moulin 1986); an example of such a candidate is the
candidate x with maximum outdegree, which is selected by
the Copeland rule. (Anshelevich et al. 2018) show that any
candidate in the uncovered set of G has distortion at most 5,
and also show a lower bound of 3 on the distortion of every
deterministic voting mechanism.

One advantage of some of the mechanisms with large dis-
tortion — such as Plurality, Veto, or k-approval with small k
— is that they require little communication from the voters.
A voter under Plurality only needs to share her first choice;
similarly, a voter under Veto only needs to share her last
choice. This observation raises the question of whether high
distortion is inherently a consequence of limited communi-
cation between voters and the mechanism.

The answer to the preceding question is clearly “No:”
there are simple randomized mechanisms achieving con-
stant distortion. Perhaps the simplest is Random Dictator-
ship: “Return the first choice of a uniformly random voter.”
This mechanism is known to have distortion strictly smaller
than 3 (Anshelevich and Postl 2016), a smaller distortion
than any deterministic mechanism can achieve. However,
despite the frequent mathematical appeal and elegance of
randomized algorithms and mechanisms, most organizations
are leery of using randomization for making important de-
cisions;3 hence, we consider determinism a very desirable
property in the design of voting mechanisms. Considering
the following three properties: (1) low distortion, (2) low
communication, (3) determinism, it is known that any two
can be achieved simultaneously:

• Random Dictatorship satisfies (1), (2).

the application, and will impact which models and types of mech-
anisms are the “right” ones. A more in-depth discussion can be
found in the full version of this paper.

3A reader taking issue with this statement may want to think
about his/her own academic or industry research department. Even
though these are likely among the most savvy organizations in
terms of understanding randomization, decision making proce-
dures practically never involve randomization, except the occa-
sional coin flip to break a tie.

The reasons for such a preference in most organization likely
include an aversion to variance or to low-probability undesirable
events; naturally, one can envision guarantees between determin-
istic and expectation bounds, such as the bounds on the squared
distortion in (Fain et al. 2019).

• Uncovered-set mechanisms satisfy (1), (3).
• Plurality and many other mechanisms satisfy (2), (3).

The big-picture question we investigate in this article is
the tradeoff between all three of these desirable properties.

1.1 Our Models and Results

We only consider the goal of minimizing the average (or
total) metric distance of all voters from the winning candi-
date.4 Our main result, proved in Section 4, is essentially a
negative answer to the question of whether any voting mech-
anisms can simultaneously have all three desirable proper-
ties. We consider a model in which each voter communicates
b bits of information about her ranking to the mechanism,
in a single round.5 Associated with each b-bit string μ is a
subset Πμ of rankings. The Πμ form a disjoint cover of all
possible rankings. If they did not form a cover, some voters
might not have any message to send, making the mechanism
ill-defined. And if the Πμ were not disjoint, then it is not
clear how a voter with multiple possible messages μ would
make the (non-deterministic) choice which one to send; in
particular, this choice could depend on the actual metric dis-
tances, and it might require much more subtle definitions to
place meaningful restrictions on a mechanism to not exploit
such information. Each voter communicates the (unique) μ
such that her permutation is in Πμ. Under this model, in Sec-
tion 4, we prove the following lower bound:

Theorem 1.1 Every one-round deterministic voting mech-
anism in which each voter sends only a b-bit string to the
mechanism has distortion at least 2n−4

b − 1.

Most mechanisms with limited communication are of
a fairly specific form: voters can communicate only their
choices in a (small) set K of k positions of their ranking,
typically at the top or bottom of their ballots. (Either giv-
ing the candidate for each such position, or specifying them
as a set, as in k-approval.) For such restricted mechanisms,
a simpler proof (in Section 3) gives a lower bound that is
stronger by a factor Θ(log n):

Theorem 1.2 Any deterministic one-round social choice
rule which receives, from each voter, no information about
candidates outside positions K in her ranking, has distor-
tion at least 2n−|K|

|K| .

The proof of Theorem 1.2 is significantly easier and
cleaner than the proof of Theorem 1.1, while still contain-
ing some of the key ideas. Therefore, we present the proof
of Theorem 1.2 before that of Theorem 1.1.

Theorem 1.2 provides a slight generalization of Theo-
rem 1 of the recent work (Fain et al. 2019), who prove lin-
ear distortion for the special case when K consists of the
top k positions. In fact, (Fain et al. 2019) show linear lower

4(Anshelevich, Bhardwaj, and Postl 2015) and several follow-
up articles studied both the average and median distance.

5Analyzing the distortion of multi-round deterministic mecha-
nisms with limited communication is a very interesting direction
for future work.
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bounds on the expected squared distortion of randomized
mechanisms; this directly implies the same bounds for de-
terministic mechanisms.

The fact that the lower bound of Theorem 1.2 is stronger
than that of Theorem 1.1 by a factor of Θ(log n) is discussed
in more detail in Section 4. Closing this Θ(log n) gap is an
interesting direction for future work, discussed in Section 7.

The reason we consider Theorem 1.1 our main contribu-
tion is that it helps us pinpoint the source of high distortion.
Several recent works have shown lower bounds on the distor-
tion of different specific classes of social choice rules, such
as score-based rules (Anshelevich et al. 2018) or the above-
mentioned top-k ballots (Fain et al. 2019). Our result im-
plies that regardless of the intricacy of the mechanism, low
communication (within the context studied here) and deter-
minism are enough to force high distortion. Communication
as a measure of complexity is fairly natural, as evidenced
by the mechanisms typically used in practice for large num-
bers of alternatives. Communication can also be regarded as
a proxy for cognitive effort imposed on the voters, although
admittedly, the computation of a message μ in a general b-
bit bounded mechanism may still require the voter to first
determine her full ranking of all candidates.

The results of Theorems 1.1 and 1.2 are lower bounds,
raising the question of how small one can make a mecha-
nism’s distortion when communication is limited. In Sec-
tion 5, we address this question, proving the following theo-
rem.

Theorem 1.3 There is a one-round deterministic social
choice rule which, given only each voter’s top k candidates
(in order), selects a candidate with distortion at most 79n

k .

The deterministic social choice rule of Theorem 1.3 is
a generalization of the Copeland rule to top-k ballots. Up
to constant factors,6 the bounds of Theorems 1.2 and 1.3
match. Closing the gap between the upper and lower bound
is likely difficult, as even for k = n, the best known lower
bound of 3 does not match the best current upper bound of
2 +

√
5 ≈ 4.23 due to (Munagala and Wang 2019); whether

there is a deterministic mechanism with metric distortion 3
is a well-known open question. Notice also that Theorem 1.3
implies that knowing each voter’s ranking for a constant
fraction of candidates is sufficient to achieve constant dis-
tortion, a fact that may not be a priori obvious.

The main focus in this article is on deterministic mecha-
nisms: as discussed earlier, the Random Dictatorship mecha-
nism has distortion (slightly) smaller than 3, achieving small
distortion and low communication simultaneously. (Gross,
Anshelevich, and Xia 2017) prove a nearly matching lower
bound: they show that every randomized social choice rule
in which each voter only communicates her top k < n/2
candidates must have distortion at least 3 − 2

�n/k� . How-
ever, even for k = 1, this leaves a gap between the up-
per bound of essentially 3 for Random Dictatorship and the

6An application of Corollary 5.3 of (Kempe 2020) gives an up-
per bound of 12n

k
, which, however, is still far from matching the

lower bound.

lower bound of 3− 2
n . Recently, (Fain et al. 2019) shrunk this

gap: they proved that the Random Oligarchy mechanism —
which samples three voters and outputs a majority of first-
place votes if it exists, and otherwise the choice of a random
voter among the three — achieves expected distortion close
to 3 − 2

n , though there still remains a small gap between
the upper and lower bounds. As an additional result, in Sec-
tion 6, we close this remaining gap:

Theorem 1.4 There is a simple randomized social choice
rule in which each voter only communicates her first-choice
candidate, and which achieves distortion at most 3− 2

n .

Due to space constraints, the proofs of several results, as
well as a more in-depth discussion of related work, are omit-
ted from this version. They can be found in the full version
on the arXiv (Kempe 2019).

1.2 Related Work

The impact of communication on social choice rules has
been an area of active research; see, for instance, (Boutilier
and Rosenschein 2016) for an overview, and the classic pa-
per (Conitzer and Sandholm 2002) on vote elicitation. Most
of the focus in this line of past work has been on the num-
ber of bits that need to be communicated in order to compute
the outcome of a particular social choice rule, rather than on
proving lower bounds arising due to limited communication
when the social choice rule is not pre-specified.

Several very recent papers have explicitly considered the
tradeoff between communication and distortion in social
choice, both in deterministic and randomized settings.

Most immediately related is the recent paper (Fain et al.
2019). Their focus is on mechanisms with extremely low
communication which achieve low expected squared distor-
tion, a measure somewhere between expected distortion and
deterministic distortion. They prove that the Random Ref-
eree mechanism, which asks two randomly chosen voters for
their top choices, and asks a third voter to choose between
these two choices, achieves constant expected squared dis-
tortion. Notice that this mechanism elicits different informa-
tion from different voters. Theorem 1 of (Fain et al. 2019)
shows that this is unavoidable, in that any mechanism that
only obtains top-k lists (for constant k), even from all voters,
must have linear expected squared distortion, implying the
same result for the distortion of deterministic mechanisms.

Another very related recent paper is (Mandal et al. 2019),
studying the communication-distortion tradeoff in a setting
where the voters have utilities (instead of costs) for the
candidates, and these utilities are only assumed to be non-
negative and normalized, but do not need to satisfy any other
properties (such as being derived from a metric). The other
major modeling difference between our work and (Mandal
et al. 2019) is that they assume that agents compute their
message μ to the mechanism directly from their utility vec-
tor, rather than the ranking. In particular, the mechanism can
be designed to allow voters to express the strength of their
preferences, albeit in possibly coarse form. As a result, their
results are not directly comparable to ours, although some of
the techniques and preliminary results are similar.
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Another related recent piece of work is on approval-based
voting, due to (Pierczyński and Skowron 2019), who —
among other results — analyze the distortion of approval-
based voting. They consider mechanisms in which voters ap-
prove all candidates within a given distance of themselves,
not bounded by a number of candidates. They show that un-
der certain technical assumptions (which are fairly restric-
tive), this mechanism gives constant distortion, as low as 3
depending on exact parameter values.

Low communication complexity of voter preferences is
also the focus of the recent paper (Bentert and Skowron
2019). They study the more “traditional” goal of implement-
ing given voting rules with low communication (Boutilier
and Rosenschein 2016), but are interested in approximate
implementation of these rules. To make approximation
meaningful, they focus on score-based rules, which naturally
assign each candidate a score (such as Borda Count, Plural-
ity, or MiniMax). Then, the quality of approximation is the
ratio between the score of the winner under full information
vs. the score of the winner under limited communication.
They focus on mechanisms in which each voter is asked to
rank a small subset of candidates; this subset is either the
voter’s top k candidates (a deterministic mechanism) or a
random subset of k candidates (a randomized mechanism).
Given that the goal in (Bentert and Skowron 2019) is the ap-
proximate implementation of specific scoring-based voting
rules rather than achieving low distortion, the results are not
directly comparable.

2 Preliminaries

2.1 Voters, Candidates, and Social Choice Rules

There are n candidates, which we always denote by lower-
case letters at the end of the alphabet. Sets of candidates are
denoted by uppercase letters, and X is the set of all can-
didates. The preference order (or ranking) of voter v over
the candidates is a bijection πv : {1, . . . , n} → X , map-
ping positions i to the candidate x = πv(i) which voter
v ranks in position i. We say that v (strictly) prefers x to
y iff π−1

v (x) < π−1
v (y). The set of all voters is denoted

by V . We write Sn for the set of all possible rankings
π : {1, . . . , n} → X , and P = (πv(i))v∈V,i∈{1,...,n} for
the rankings of all voters, which we call the vote profile.

In the traditional full-information view, a social choice
rule (we use the terms mechanism or voting mechanism in-
terchangeably) f : SV

n → X is given the rankings of all
voters, i.e., P , and produces as output one winning candi-
date w = f(P). For most of this article, we are interested
only in deterministic social choice rules f .

2.2 Communication-bounded mechanisms

Our main contribution is to consider communication-
bounded social choice rules. As in the standard model de-
scribed above, we still only consider deterministic single-
round mechanisms, i.e., each voter can only send a single
message to the mechanism. However, this message is now
also restricted to be at most b bits long.

This induces M = 2b sets Π1,Π2, . . . ,ΠM of rankings;
when the mechanism receives a message μ from voter v,

all it learns is that πv ∈ Πμ. As discussed in the intro-
duction, we assume that the Πμ form a disjoint partition of
Sn, i.e., they are pairwise disjoint and cover all rankings:⋃M

μ=1 Πμ = Sn. The fact that M is a power of 2 is not
relevant anywhere in our proofs, so we also consider mech-
anisms with arbitrary numbers M of sets.

Definition 2.1 An M -communication bounded so-
cial choice rule consists of pairwise disjoint sets
Π1,Π2, . . . ,ΠM ⊆ Sn with

⋃M
μ=1 Πμ = Sn, and a

deterministic mapping f : {1, . . . ,M}V → X .

Communication-bounded social choice rules that are used
in practice, such as Plurality, Veto, k-approval, and combi-
nations thereof, are of a specific form: there is a set K of
k positions, and voters can communicate the set of candi-
dates they have in positions in K, possibly with an ordering,
but cannot communicate any additional information about
their ranking of candidates in positions outside K. For such
mechanisms, we will be able to prove stronger lower bounds
on the distortion, and with a significantly simpler proof. We
define them formally as follows:

Definition 2.2 A k-entry social choice rule is an M -
communication bounded social choice rule with the follow-
ing additional restriction on the sets Π1,Π2, . . . ,ΠM : there
exists a set K ⊆ {1, . . . , n} of at most k positions such that
if π, π′ agree for all positions in K, i.e., π(i) = π′(i) for all
i ∈ K, then π ∈ Πμ if and only if π′ ∈ Πμ.

2.3 Metric Space and Distortion

The key modeling contribution of the metric-based distor-
tion (Anshelevich, Bhardwaj, and Postl 2015) objective is
to assume that all voters and candidates are embedded in
a pseudo-metric space d. d(v, x) denotes the distance be-
tween voter v and candidate x. Being a pseudo-metric, it
satisfies non-negativity and the triangle inequality d(v, x) ≤
d(v, y)+d(v′, y)+d(v′, x) for all voters v, v′ and candidates
x, y. For our upper bounds, we explicitly allow the distance
between candidates and voters (and thus also between pairs
of candidates or pairs of voters) to be 0; however, for im-
proved flow, we still refer to d as a metric. In our lower-
bound constructions, all distances will be strictly positive;
that is, we do not exploit the increased generality for nega-
tive results.

We say that a vote profile P is consistent with the metric
d, and write d ∼ P , if πv(x) < πv(y) whenever d(v, x) <
d(v, y). That is, P is consistent with d iff all voters rank can-
didates by non-decreasing distance from themselves. In case
of ties among distances, i.e., d(v, x) = d(v, y), several vote
profiles are consistent with d. None of our results depend on
any tie breaking assumptions.

The cost of candidate x is C(x) =
∑

v d(v, x), i.e., the
sum of distances of x to all voters.

The social choice rule is handicapped by not knowing the
metric d, instead only observing the consistent vote profile
P (or some limited information about it, when communica-
tion is restricted). Due to this handicap, and possibly other

2090



suboptimal choices, it will typically not choose the candi-
date of smallest cost. The distortion of f is the worst-case
ratio between the cost of the candidate chosen by f , and the
minimum cost of any candidate (determined with knowledge
of the actual distances d). Formally,

ρ(f) = max
P

sup
d:d∼P

C(f(P))

minx C(x)
.

We can think of the distortion in terms of a game between
the social choice rule and an adversary. First, the adversary
chooses the vote profile P . Then, the social choice rule,
knowing only P (or part of that information, in case of com-
munication restrictions), chooses a winning candidate w =
f(P). Then, the adversary chooses a metric d consistent
with P that maximizes the ratio between the cost of the can-
didate chosen by f and the optimum candidate for d.

3 The Restricted Lower Bound

In this section, we establish the lower bound of Theorem 1.2,
restated here formally.

Theorem 3.1 Every one-round deterministic k-entry social
choice rule has distortion at least 2n−k

k .

Proof. Let K = {κ1 < κ2 < · · · < κk}. Because ev-
ery deterministic social choice rule has distortion at least 3
(Anshelevich, Bhardwaj, and Postl 2015), we only need to
consider the case where 2n − k > 3k, i.e., k < n/2. We
will prove the theorem by induction on n, with the base case
n = 2 holding because the only such case with k < n/2
is k = 0, where the mechanism receives no information
about any voter’s preferences, and hence has unbounded dis-
tortion.

First, we consider the case n ∈ K. We designate one
candidate x̂ who is “infinitely” far from all voters, and thus
ranked last by all of them. The mechanism clearly cannot
choose x̂ as a winner. This reduces the problem to one of
n− 1 candidates, and a set K ′ = K \ {n} of k− 1 positions
at which voters specify their ranking. By induction hypothe-
sis, applied to this instance, the distortion is lower-bounded
by 2(n−1)−(k−1)

k−1 = 2n−k−1
k−1 > 2n−k

k ; the inequality holds
because k < n.

For the remainder of the proof, we can assume that n /∈
K, i.e., voters do not specify their least favorite candidate.
In this case, we will not need to use the induction hypothesis
for n− 1. For each subset S ⊆ X, |S| = k of k candidates,
and each ordering σ : {1, . . . , k} → S, we say that a voter v
has type (S, σ) if she puts the candidates from S in the posi-
tions K, in the order given by σ. That is, v has type (S, σ) iff
πv(κi) = σ(i) for i = 1, . . . , k. There are t =

(
n
k

) · k! types
of voters. We define a vote profile which has exactly a 1/t
fraction of voters of type (S, σ), for each type. Throughout,
we will talk about fractions, rather than numbers, of voters,
so that the total adds up to 1.

Let w be the candidate chosen by the social choice rule
for this input. w is well-defined as a function of all voters’
types, because (1) for each voter v, the message sent by v

is uniquely determined by her ranking of candidates in posi-
tions in K, and (2) the mechanism’s output is a deterministic
function of only the messages sent by the voters.

We now define a metric space. Let ε be a very small con-
stant (we will let ε → 0), and 0 < ε1 < ε2 < · · · < εn < ε.
Consider a voter v of type (S, σ). We distinguish two cases:

1. In the first case, w /∈ S. Let πv be any ordering that puts
the candidates in S in positions K in the order σ, and
which additionally has πv(n) = w, i.e., candidate w is
in the last position in v’s ranking. Apart from this, πv

is arbitrary. By construction, a voter v with ranking πv

has type (S, σ). We now set the distance between v and
the candidate w to 1, and the distance from v to every
candidate πv(i) (for i < n) to ε+ εi. These distances are
consistent with the ranking πv .

2. In the second case, w ∈ S. Again, let πv be any permu-
tation that puts the candidates in S in positions K in the
order σ (ensuring that πv is consistent with v having type
(S, σ)). This time, the position of w in π is prescribed by
S, σ, and we let the remaining positions of πv be arbi-
trary. Voter v has distance exactly 1

2 + ε + εi from each
candidate πv(i), including the case when πv(i) = w.
Again, v ranks the candidates in the order given by πv .

We now verify that these distances satisfy the triangle in-
equality. Consider voters v, v′ and candidates x, y. We will
show that d(v, y) ≤ d(v, x) + d(v′, x) + d(v′, y), by distin-
guishing two cases for y:

1. In the first case, y = w. Then, 1
2 + ε ≤ d(v, y) ≤ 1. Ei-

ther the distance d(v′, y) = 1, in which case the triangle
inequality holds obviously, or d(v′, y) ≥ 1

2 + ε, in which
case our definition ensures that d(v′, x) ≥ 1

2 + ε as well.
In either case, the triangle inequality holds.

2. In the second case, y 
= w, so either ε < d(v, y) < 2ε or
1
2 + ε < d(v, y) < 1

2 + 2ε, depending on the case of the
definition. Because all distances are lower-bounded by ε,
the triangle inequality clearly holds if d(v, y) < 2ε. In the
other case 1

2 + ε < d(v, y), we have that 1
2 + ε < d(v, x),

which together with ε < d(v′, x) again ensures that the
triangle inequality holds.

Recall that w is selected by the social choice rule under
the given rankings. Each voter of type (S, σ) with w /∈ S has
cost 1 for w, and cost at most 2ε for any candidate x 
= w.
Each voter of type (S, σ) with w ∈ S has cost at least 1

2 for
w, and cost at most 1

2 + 2ε for each candidate x 
= w.
Of the t types (S, σ), exactly

(
n−1
k−1

) · k! have w ∈ S.
Thus, the cost of candidate w is at least 1

t · ( 12 · (n−1
k−1

) · k! +
1 · (t− (

n−1
k−1

) · k!)), while the cost of any other candidate is
at most 1

t · (2ε+ 1
2 ·

(
n−1
k−1

) ·k!). Letting ε → 0, the distortion

approaches 1 +
2( n!

(n−k)!
− k·(n−1)!

(n−k)!
)

k·(n−1)!
(n−k)!

= 2n−k
k .

4 The General Lower Bound

In this section, we prove the more general lower bound of
Theorem 1.1. The bound applies to all M -communication
bounded social choice rules, but is slightly weaker than
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that of Theorem 3.1. To gain some insight into general
communication-bounded social choice rules, we begin with
an easy proposition, independently obtained as Lemma 4.1
in (Mandal et al. 2019).

Proposition 4.1 Assume that there exists a set Πμ contain-
ing two rankings π, π′ with π(1) 
= π′(1), i.e., there is a μ
which does not uniquely specify the voter’s top-ranked can-
didate. Then, the corresponding social choice rule has un-
bounded distortion.

Theorem 4.2 Let f be any one-round M -communication
bounded social choice rule on n candidates. Then, f must
have distortion at least 2n−4

lnM − 1.

Proof. The high-level idea of the proof is to use induction on
the number of candidates, to show that when communication
is “sufficiently bounded,” any social choice rule must have
high distortion. After completing the proof by induction, we
would like to apply the result to n candidates, and “suf-
ficiently bounded” must then include M -communication
bounded. Therefore, the relationship between the number of
candidates in the induction proof and the bound on commu-
nication depends on n,M , and to avoid notational ambigu-
ity, we will use different variable names for the induction.
Specifically, we use ν for the number of candidates within
the induction proof, and Mν for the upper bound on com-
munication.

Let γ = 1 −M−1/(n−2). We will prove by induction on
ν that every Mν-communication bounded social choice rule
on ν candidates with Mν ≤ 1

(1−γ)ν−2 has distortion at least
2
γ − 1.

The base case ν = 2 is easy: the communication bound is
M2 ≤ 1

(1−γ)2−2 = 1, so the voters cannot communicate any
preference. By Proposition 4.1, the social choice rule has
unbounded distortion. For the induction step, we distinguish
two cases:
1. In the first case, we assume that for each candidate x, at

least a 1 − γ fraction of all sets Πμ contain a ranking
πμ ∈ Πμ that ranks x last, i.e., πμ(ν) = x. Then, we
consider a vote profile with Mν voters in which for each
μ = 1, . . . ,Mν , exactly one voter submits μ.
Let w be the candidate chosen by f . Consider the follow-
ing metric space: For every voter v who submitted μ such
that there is a ranking πμ ∈ Πμ ranking w last, we define
the distance between v and w to be 1, and the distance
from all other candidates7 to be 0. For all other voters,
the distance to all candidates is 1

2 . Said differently, all
candidates x 
= w are at distance 0 from each other, and
at distance 1 from w. All voters who could possibly rank
w last are in the same location as the candidates different
from w, while all other voters are halfway between w and
the other candidates.
Then, the cost of w is at least γ · 12 +(1− γ) · 1 = 1− γ

2 ,
while the cost of each other candidate is at most γ · 1

2 +

7Ties could be broken by using small εi → 0 without affecting
the final result.

(1− γ) · 0 = γ
2 . Thus, the distortion of the mechanism is

at least 2
γ − 1, completing the proof directly.

2. Otherwise, let x be a candidate such that at most a
1 − γ fraction of all sets Πμ contain a ranking πμ ∈
Πμ that ranks x last. Define Mν−1 to be the num-
ber of such sets, and assume w.l.o.g. (by renumbering)
that Π1,Π2, . . . ,ΠMν−1 are all the sets which contain
at least one ranking with x in the last position. By
the assumption in this part of the proof, we have that
Mν−1 ≤ �(1− γ) ·Mν�. We will only construct in-
stances in which all voters rank x last; thus, no voter
communicates any message μ > Mν−1.
No mechanism with finite distortion can select x as a
winner, by the same argument as in the preceding case.
(That is, the metric puts x at distance 1 from all voters,
and all other candidates at distance 0 from all voters.) As
a result, we obtain an instance with ν−1 candidates, only
(ν − 1)! remaining possible rankings, and — crucially
— only Mν−1 ≤ (1 − γ) · Mν remaining sets of rank-
ings. We can therefore apply the induction hypothesis for
ν − 1, and conclude that the mechanism’s distortion is at
least 2

γ − 1.

To show that we can apply the inductive claim with ν =
n in the end, observe that Mn = M = M (n−2)/(n−2) =

1
(1−γ)n−2 .

It remains to show that 2
γ − 1 ≥ 2n−4

lnM − 1. To do so, we
rewrite γ by using the Taylor expansion of t1/(n−2) around
t = 1, then apply straightforward bounds:

γ = 1−M−1/(n−2)

=
1

n− 2

∞∑
k=1

1

k
· (1− 1/M)k ·

k−1∏
j=1

(
1− 1

j · (n− 2)

)

≤ 1

n− 2

∞∑
k=1

1

k
· (1− 1/M)k =

1

n− 2
· lnM.

Substituting this bound for γ into the distortion completes
the proof.

To compare the bound of Theorem 4.2 with that of The-
orem 3.1, observe that when voters get to specify the candi-
dates in each of k (given) positions in a ranking, this gener-
ates a partition of Sn into M =

(
n
k

) · k! = n!
(n−k)! sets: one

for each subset and order within that subset. These sets of
rankings do in fact form a disjoint cover. For the “interest-
ing” range k ≤ n/2, we can simply bound (n/2)k ≤ M ≤
nk, so we get that lnM ≈ k lnn. This shows that the lower
bound of Theorem 4.2 is weaker than that of Theorem 3.1
by a factor of Θ(log n).

5 A Near-Matching Upper Bound

In this section, we give a k-entry social choice rule whose
distortion — up to constants — matches the lower bound
of Theorem 3.1. This shows that the lower bound of Theo-
rem 3.1 is essentially tight. Not surprisingly, the mechanism
is a variation on uncovered set mechanisms, which are the
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only type of mechanism known to achieve constant distor-
tion even with access to the full vote profile.

In our mechanism, each voter communicates her top k
choices. We say that voter v prefers x over y if either: (1)
both x and y are among her top k, and she ranks x higher
than y, or (2) x is among her top k, and y is not.

As in uncovered set mechanisms like Copeland, we con-
struct a comparison graph G among the n candidates. Define
α = k

3n . For each ordered pair x, y, the graph G contains a
directed edge (x, y) if and only if at least an α fraction of all
voters prefer x over y. Notice that because α ≤ 1

2 , it is pos-
sible that G contains both (x, y) and (y, x). Similarly, it is
possible that for a pair {x, y}, G contains neither (x, y) nor
(y, x); for instance, this will happen if no voter ranks either
x or y among her top k candidates.

Let S2 be the set of candidates x such that at least a 2α
fraction of voters rank x among their top k candidates. (We
will show in the proof of Lemma 5.2 that S2 is not empty.)
The winner w returned by M is a candidate in the induced
graph G[S2] with largest outdegree; notice that edges leav-
ing S2 are not counted.

Theorem 5.1 M has distortion at most 79n
k .

We begin with a lemma showing the key structural prop-
erty of the winning candidate w.

Lemma 5.2 In G, for every candidate x, there is a directed
path of length at most 3 from w to x.

Proof. Similar to the definition of S2, let S3 be the set of
candidates x such that at least a 3α fraction of the voters
ranks x somewhere among their top k candidates. By the
Pigeon Hole Principle, because each voter ranks a k

n fraction
of candidates in her top k, and α = k

3n , at least one candidate
occurs in a 3α fraction of top-k lists. In particular, S3 (and
thus S2) is non-empty.

Each candidate x ∈ S3 has a directed edge to each can-
didate y /∈ S2.This is because x appears in at least a 3α
fraction of top-k lists, while y appears in at most a 2α frac-
tion. In particular, at least an α fraction of voters rank x, but
not y, in their top-k lists, and thus prefer x to y.

The induced graph G[S2] contains, for each pair x, y ∈
S2, at least one of the edges (x, y) or (y, x). This is because
of the (at least) 2α fraction of voters with x in their lists, at
least an α fraction rank y higher in their lists, or at least an
α fraction rank y lower (or not in their lists). Hence, G[S2]
is a supergraph of a tournament graph.

Because w has maximum degree in G[S2], it also has
maximum degree in at least one tournament subgraph of
G[S2]. It is well known (see, e.g., (Moulin 1986; Anshele-
vich, Bhardwaj, and Postl 2015)) that the maximum-degree
node in a tournament graph is in the uncovered set, i.e., it
has a path of length at most 2 to every other node. Those
paths still exist in the supergraphs G[S2] and G. Thus, w has
a directed path of length 2 in G to every candidate x ∈ S2.

Let y ∈ S3 be arbitrary. By the preceding two paragraphs,
y has a directed edge to each x /∈ S2, and w has a directed

path of length at most 2 to y. In summary, w has a directed
path of length at most 3 to each candidate x.

Lemma 5.3, upper-bounds the cost ratio of two candidates
x, y when x has a directed path of length at most � to y.

Lemma 5.3 Let w, z be two candidates such that there is a
directed path of length at most � edges from w to z in G.
Then, C(w) ≤ (1 + 3�−1

α ) · C(z).

Remark 5.4 By using Lemma 6 of (Anshelevich, Bhard-
waj, and Postl 2015) repeatedly, one can immediately obtain
an upper bound of (1 + O(1/α))�. However, since we are
typically interested in the case α = o(1), the resulting bound
is asymptotically weaker than that of Lemma 5.3.

The exponential dependence on � is an artifact of our rel-
atively simple proof. Applying Corollary 5.3 from (Kempe
2020) instead would yield an improved bound of �

α + 1 or
�+1
α − 1, depending on whether � is even or odd.

Proof of Theorem 5.1. By Lemma 5.2, w has a path of
length at most 3 in G to every candidate x; in particular, to
the optimum candidate x = x∗. Thus, by Lemma 5.3 with
� = 3, C(w) ≤ (1 + 26

α ) · C(x∗). Substituting α = k
3n and

bounding 1 ≤ n
k now completes the proof.

6 An Optimal Randomized Algorithm

In this section, we give a simple randomized mechanism
which achieves an expected distortion of 3− 2

n . This closes
the remaining gap between the distortion bound for the Ran-
dom Oligarchy mechanism (Fain et al. 2019) and the lower
bound of 3− 2

n on the distortion of every randomized mech-
anism which only knows each voter’s first choice, proved by
(Gross, Anshelevich, and Xia 2017). The mechanism M is
as follows:
• With probability 1

n−1 , select a candidate using the Pro-
portional to Squares mechanism. That is, for each candi-
date x, let νx be the fraction of voters who rank x first.
Select candidate x with probability ν2

x∑
y ν2

y
.

• With the remaining probability n−2
n−1 , select a candidate us-

ing the Random Dictatorship mechanism. That is, choose
a voter uniformly at random, and return her first choice.
Notice that this mechanism selects candidate x with prob-
ability exactly νx.

Theorem 6.1 The expected distortion of M is at most 3− 2
n .

7 Conclusions

As we already discussed in the introduction and Section 4,
there is a gap of Θ(log n) in the lower bound on distor-
tion we achieve for k-entry social choice rules and more
general M -communication bounded social choice rules. If
the stronger lower bound holds more generally, a proof will
likely require a deeper understanding of the combinatorial
structure of partitions of Sn. An intriguing alternative is
that there may be a mechanism in which voters communi-
cate only Θ(1) bits of information per candidate, but which
nonetheless achieves constant distortion.
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Throughout, we assumed that all voters use the same “en-
coding” in communicating with the mechanism. For both k-
entry social choice rules and M -communication bounded
rules, one could consider relaxing this uniformity — al-
though voting mechanisms which treat voters differently a
priori are typically not widely accepted. For k-entry social
choice rules, our lower-bound proof can be directly adapted
to give the same lower bound so long as only few voters get
to specify which candidate they rank last. The proof does not
carry over directly when many, but not all, voters can spec-
ify their bottom-ranked candidate. For M -communication
bounded rules, it is much less clear how to deal with arbi-
trarily differing encodings.

A further generalization would be to let voters choose
which encoding to use, or which subset of positions to fill
in. Mechanisms allowing such a choice by the voters would
be “non-deterministic,” because there is not a unique mes-
sage any more for each ranking. This raises the issue of how
a voter would determine which of many possible messages
to send. The specific choice of message may encode addi-
tional (e.g., cardinal) information about the voter’s ranking.
It would require some subtlety to define a model to rule out
the revelation of a lot of cardinal information, while still al-
lowing voters non-trivial choices.

Here, we only considered single-round mechanisms. In
many settings, including the implementation of social choice
rules (Boutilier and Rosenschein 2016; Segal 2010), mul-
tiple rounds of communication can lead to significantly
(including exponentially) lower overall communication.
(Gross, Anshelevich, and Xia 2017; Fain et al. 2019) stud-
ied randomized multi-round voting mechanisms with the ex-
plicit goal of reducing the required communication, while
achieving low distortion. In the case of randomized mecha-
nisms, receiving log2 n bits of information from each voter
is enough to achieve distortion 3 − 2

n , so the room for
improvement with multiple rounds is limited. However,
for deterministic mechanisms, there is potential for signif-
icant improvement: a natural question is whether one might
even achieve constant distortion with only O(log n) (or
O(polylog(n))) communication from each voter.
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