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Abstract

In this paper we introduce a new voting formalism to support
long-term collective decision making: perpetual voting rules.
These are voting rules that take the history of previous deci-
sions into account. Due to this additional information, per-
petual voting rules may offer temporal fairness guarantees
that cannot be achieved in singular decisions. In particular,
such rules may enable minorities to have a fair (proportional)
influence on the decision process and thus foster long-term
participation of minorities. This paper explores the proposed
voting rules via an axiomatic analysis as well as a quantitative
evaluation by computer simulations. We identify two perpet-
ual voting rules as particularly recommendable in long-term
collective decision making.

1 Introduction

Consider the following simple scenario: A group of five
friends have a joint dinner every week. Three of them prefer
French food, two of them Indian food. It is apparent that a
fair suggestion would consist of going to French restaurants
60% of the time and to Indian restaurants 40% of the time,
although there is a majority that prefers French food every
single week.

In this simple example it is clear that a majoritarian deci-
sion is not desirable, instead a proportional distribution con-
stitutes a fair solution. But how can this form of fairness
be achieved when preferences change over time? Moreover,
is such fairness possible if the available alternatives change
or even if subsequent decisions concern different topics? For
example, consider a company, club, or university department
where collective decisions are repeatedly made on varying
topics. In this paper, we develop voting methods that can
deal with such complex scenarios of perpetual voting. The
central emphasis of this paper is the long-term aspect: in-
stead of considering singular decisions to be made, we view
the current decision in the context of previously taken deci-
sions, the decision history.

The goal of this paper is to introduce a new form of voting
rules—perpetual voting rules—that are suitable in a long-
term decision making process and can guide such a pro-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cess in a mathematically principled and fair way. Their main
strength is that they can ensure fairness across a sequence of
decisions, even if the individual decisions are contested and
no compromise alternatives are available. Ideally, perpetual
voting rules guarantee each voter a fair amount of influence
on the decision process. In this way, also minorities are in-
centivized to participate and we obtain a sustainable (stable)
process of collective decision making. The inclusion of mi-
norities can be important both from a social perspective (for
the social cohesion of the collective) and from a technical
perspective (to be able to base decisions on more represen-
tative and detailed preference data). In summary, perpetual
voting rules can be beneficial in all repeated collective deci-
sion making scenarios where particular emphasis is given to
fairness towards minorities and individual agents1.

The main contribution of our paper is the introduction of
perpetual voting as a formalism, together with axioms and
metrics to evaluate perpetual voting rules. Our research re-
sults in the recommendation of two specific perpetual voting
rules: Perpetual Consensus and Perpetual Quota (defined in
Section 3). The former achieves the best results in the ax-
iomatic analysis, the latter proves to be particularly strong
in the experimental evaluation (while also enjoying good ax-
iomatic properties).

In more detail, the contributions of this paper are as fol-
lows. In Section 2 we introduce the perpetual voting formal-
ism based on approval ballots. Then, in Section 3, we sug-
gest eight voting rules suitable for perpetual voting, some
of which are inspired by the literature on multiwinner vot-
ing (Kilgour 2010; Faliszewski et al. 2017).

We analyze the proposed rules based on three axiomatic
properties (Section 4). All three express a certain form of
fairness in the perpetual voting setting. The first, simple pro-
portionality, requires that perpetual voting rules behave pro-
portionally on certain simple instances related to the appor-
tionment setting (apportionment being the task of assign-
ing seats to parties in a parliamentary assembly (Balinski
and Young 1982; Brill, Laslier, and Skowron 2018)). Even
though simple proportionality is a rather weak proportional-

1This assumption does not necessarily hold for political, high-
stake decision making, in particular in the presence of extremist
opinions that are harmful to society.
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ity axiom, it is sufficiently strong to reveal several perpetual
voting rules as being non-proportional. The second axiom,
independence of unanimous decisions, states that decisions
with an alternative that everyone agrees with should not im-
pact future decisions. This axiom is founded in the idea that
the decision process should not be manipulable by putting
”fake” (uncontroversial) decisions on the agenda. The third
axiom, bounded dry spells, gives voters an individual guar-
antee that they will be satisfied with at least one decision in
every interval of a certain (bounded) length. With this fair-
ness guarantee we can provide voters a reason to participate
in the decision process as—at least from time to time—their
preference is going to be reflected in the choices.

Our second analysis is based on numerical simulations.
To this end, we introduce two performance metrics in Sec-
tion 5. The first metric, perpetual lower quota compliance,
can be seen as the likelihood for a voter to be satisfied with at
least a proportional fraction of the made choices. The second
metric, the Gini influence coefficient, measures inequality in
the degree of influence that voters have on the decision pro-
cess. For example, a decision process with a dictator has a
high Gini influence coefficient. In our experimental analysis
(Section 6) these two metrics yield a numerical evaluation
of our proposed methods, and by that refine the picture re-
sulting from the axiomatic analysis.

Furthermore, we include a probabilistic voting rule, Ran-
dom Serial Dictatorship (RSD), in our experimental setup
for comparison (see (Brandt 2017) for a survey on this
topic). While probabilistic rules do not explicitly include
a mechanism for sequences of decisions, repeated applica-
tions do yield fairness properties that can be seen as propor-
tionality in the long run. However, in our experiments RSD
achieves a worse performance than most perpetual voting
rules, which we take as an indication that non-randomized
rules have a clear advantage in our envisioned setting. Fi-
nally, we discuss research directions and practical issues
concerning perpetual voting in Section 7.

Related work

While the specific goal and model of perpetual voting is new,
there are related approaches that consider temporal aspects
of voting or sequences of decisions. We provide a brief sum-
mary:

A particularly relevant formalism is that of Freeman, Za-
hedi, and Conitzer (2017). They consider the problem of
choosing an alternative each round according to reported
utility functions. Their goal is to maximize long-term Nash
welfare. In its motivation this paper is similar to ours, as
it has the same temporal component. However, it differs in
the essential aspect that decisions can be based on utility
functions, which greatly simplifies the challenge of defining
fairness over time (and thus choosing an optimization ob-
jective). The connection between perpetual voting and the
utility-based methods in this paper can thus be seen as sim-
ilar to the relation of classic preferential voting rules and
collective utility functions, cf. (Moulin 1991).

A preference-based voting rule that incorporates the
temporal aspect of perpetual voting is the storable votes
method (Casella 2005; 2012), which is based on plurality

voting. However, this voting rule does not directly fit into
the framework of perpetual voting, as minorities are required
to strategically store and spend votes to obtain a fair share
of power. In contrast, perpetual voting rules aim to provide
such guarantees without the need of strategic voting.

Dynamic voting or dynamic social choice considers vot-
ing with changing preference profiles (Tennenholtz 2004;
Oren and Lucier 2014; Hemaspaandra, Hemaspaandra, and
Rothe 2017; Parkes and Procaccia 2013; Boutilier and Pro-
caccia 2012). These models essentially evolve around a sin-
gle decision (in contrast to perpetual voting), although the
outcome may change over time due to the dynamic setting.
In a similar vein, dynamic preferences have also been con-
sidered in matching and resource allocation (Dickerson, Pro-
caccia, and Sandholm 2012; Hosseini, Larson, and Cohen
2015; Freeman et al. 2018).

Sequential voting rules (Lang and Xia 2009) are voting
rules over combinatorial domains (Lang and Xia 2016) that
are based on the assumption that there exists a natural or-
der of issues (issues correspond to decisions in our setting).
The key assumption is that preferences concerning an issue
are only influenced by issues appearing earlier in the order.
Perpetual voting fundamentally differs from sequential vot-
ing in several ways: (i) In perpetual voting the number and
content of issues/decisions is not known up front. (ii) Per-
petual voting rules depend on the history of previous deci-
sions; only due to this dependency we can achieve fairness
over time. In sequential voting only the preferences of vot-
ers depend on previous choices. (iii) Sequential voting was
introduced to tackle a different problem: the representation
of preferences in combinatorial domains.

2 Perpetual Voting

We will now introduce our proposed formalism, alongside
necessary basic definitions. Let N = {1, . . . , n} be a set of
voters (agents). Given a set of alternatives C, we assume that
each voter v ∈ N approves some non-empty subset of C. An
approval profile A = (A(1), . . . , A(n)) for C is an n-tuple
of subsets of C, i.e., A(v) ⊆ C for v ∈ N . We call the triple
(N,A,C) a decision instance.

A k-decision sequence (N, Ā, C̄) is a triple consisting
of a set of voters N , a k-tuple of approval profiles Ā =
(A1, A2, . . . , Ak) and an associated k-tuple of alternatives
C̄ = (C1, . . . , Ck). Thus, for each i ≤ k, the triple
(N,Ai, Ci) is a decision instance and can be seen as a in-
dividual decision to be made; we refer to (N,Ai, Ci) as de-
cision in round i. Furthermore, note that we assume that the
set of voters remains the same in all rounds; we discuss how
to weaken this assumption in Section 7.

We write w̄ ∈ C̄ to denote a k-tuple w̄ = (w1, . . . , wk)
with wi ∈ Ci for i ∈ {1, . . . , k}; we refer to w̄ as a k-
choice sequence. This tuple represents the chosen alterna-
tives in rounds 1 to k. If we combine a k-decision sequence
(N, Ā, C̄) and a k-choice sequence w̄ ∈ C̄, we speak of a
k-decision history (N, Ā, C̄, w̄), which can be seen as the
history of past decisions alongside the made choices. We
thus know, for any i ≤ k, that in case of decision instance
(N,Ai, Ci) alternative wi was chosen.
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Assume that a group of voters N wants to take a deci-
sion and looks back at k decisions already taken. That is,
we are presented with a k-decision history (N, Ā, C̄, w̄) and
a decision instance (N,Ak+1, Ck+1). The question is now
which alternative in Ck+1 should be chosen, subject to the
preferences in Ak+1 and under consideration of the deci-
sion history. An (approval-based) perpetual voting rule R
is a function that maps a pair of a k-decision instance
(N,Ak+1, Ck+1) and a decision history (N, Ā, C̄, w̄) to an
alternative in Ck+1. We write R(N, Ā, C̄) to denote the k-
choice sequence w̄ ∈ C̄ as selected by the perpetual voting
rule R, that is, R(N, Ā, C̄) = w̄ is inductively defined by
wi = R(N, (A1, . . . , Ai), (C1, . . . , Ci), (w1, . . . , wi−1))
for i ≤ k. Let us now describe some basic statistics of k-
decision histories.
Definition 1. Let (N, Ā, C̄, w̄) be a k-decision history, and
j ≤ k. The satisfaction of voter v ∈ N in round j is

satj(v, w̄) = |{i ≤ j : wi ∈ Ai(v)}|.
The support of a voter v ∈ N in round j is defined as

suppj(v) =
1

n
· max
c∈Aj(v)

|{u ∈ V : Aj(u) = c}| .

The quota of voter v ∈ N in round j is

quj(v) =
∑
i≤j

suppi(v).

Thus, the satisfaction of a voter is the number of past deci-
sions that have satisfied this voter. The support of a voter in
round j is the proportion of voters that can collectively agree
on some alternative that v approves. The quota of voter v in
round j is v’s cumulative support from round 1 to j. Note
that although satisfaction, support, and quota clearly depend
on (N, Ā, C̄), we do not explicitly mention that in the nota-
tion (and other definitions throughout the paper).

3 Perpetual Voting Rules

In this section we define several approval-based perpetual
voting rules. As we assume that perpetual voting rules are
resolute, i.e., return exactly one winning alternative, we re-
quire a tie-breaking order to resolve ties. Thus, we assume
throughout the paper that there exists some arbitrary and
fixed order for each set of alternatives that settles ties.

We start by introducing the class of perpetual weighted
approval methods, which contains many of our proposed
rules. These approval-based perpetual voting rules are de-
fined as follows: Each voter has an assigned positive weight,
which may change each round; a larger weight corresponds
to being assigned a higher importance. Let αk(v) denote
voter v’s weight in round k. Weights are initialized with
α1(v) = 1 for all v ∈ N . Given a k-decision history
(N, Ā, C̄) and a decision instance (N,Ak+1, Ck+1), the
rule selects an alternative wk+1 ∈ Ck+1 with maximum
weighted approval score. That is, the score of an alternative
c is defined as

sck+1(c) =
∑

v∈N with c∈Ak+1(v)

αk+1(v).

To compute the weights of voters after round 1, there exist
functions f, g such that for all v ∈ N ,

αk+1(v) =

{
f(αk(v)) if wk /∈ Ak(v),

g(αk(v)) if wk ∈ Ak(v).

The following five rules are perpetual weighted approval
methods. It is thus sufficient to define the weight function α.

AV. The simplest example of a perpetual weighted approval
method is approval voting (AV) itself. As it completely ig-
nores the history of past decisions, we mention it mainly
for the sake of comparison. AV corresponds to the perpet-
ual weighted approval method with αk+1(v) = 1.

Perpetual PAV. This method is inspired by Proportional
Approval Voting (Thiele 1895; Faliszewski et al. 2017),
or more specifically by its sequential counterpart, and is
thus based on the harmonic series. The weight of voters is
defined by2

αk+1(v) =
1

satk(v, w̄) + 1
.

Perpetual Unit-Cost. This rule is based on the idea that sat-
isfied voters “pay” a cost of winning (which is 1), and—
after a decision is taken—the weight of all voters is in-
creased by 1.

αk+1(v) =

{
αk(v) + 1 if wk /∈ Ak(v),

αk(v) if wk ∈ Ak(v).

Perpetual Reset. This rule is similar to Perpetual Unit-
Cost, but the weight of satisfied voters is reset to 1, i.e.,

αk+1(v) =

{
αk(v) + 1 if wk /∈ Ak(v),

1 if wk ∈ Ak(v).

Perpetual Equality. Perpetual Equality is inspired by
the Chamberlin–Courant rule (Chamberlin and Courant
1983). Let s = minv∈N satk(v, w̄) be the minimum sat-
isfaction after round k. The goal of this rule is to make a
choice that satisfies as many voters with a satisfaction of s
as possible. In case two choices satisfy the same number
of voters with a satisfaction of s, it chooses the alternative
that further satisfies as many voters with a satisfaction of
s+ 1 as possible, etc. Formally3,

αk+1(v) = n−satk(v,w̄),

i.e., one voter with satisfaction s has a larger weight than
n− 1 voters with satisfaction s+ 1.
2To see that Perpetual PAV is indeed a perpetual weighted ap-

proval method note that

αk+1(v) =
1

satk(v, w̄) + 1
=

{
αk(v) if wk /∈ Ak(v),
αk(v)

αk(v)+1
if wk ∈ Ak(v).

3Perpetual Equality is indeed a perpetual weighted approval

method as n−satk(v,w̄) =

{
αk(v) if wk /∈ Ak(v),

nlogn(αk(v))−1 if wk ∈ Ak(v).
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The final three rules do not fall into the class of perpetual
weighted approval methods.
Perpetual Quota. Perpetual Quota aims at granting each

voter a satisfaction as close as possible to their quota. This
rule is defined analogously to a perpetual weighted ap-
proval method with weights defined as α1(v) = qu1(v)
and

αk+1(v) = max(0, quk+1(v)− satk(v, w̄)).

Since αk+1(v) requires knowledge about Ak+1 (due to
quk+1(v)), Perpetual Quota is not a perpetual weighted
approval method. Note that the dependency on Ak+1 im-
plies that the weights of voters cannot be calculated before
voters’ preferences are known.

Perpetual Consensus. This rule is based on the idea of a
“virtual” consensus: in total, the weight of all satisfied
voters is decreased by n. In the ideal case of an actual
consensus, 1 is subtracted from each voter. Otherwise,
more than 1 is subtracted from the satisfied voters, pos-
sibly leading to negative weights. After each decision, the
weight of all voters is increased by 1. Formally, let

N+
k (c) = {v ∈ N : c ∈ Ak(v) and αk(v) > 0} ,

and for all v ∈ N , α1(v) = 1 and

αk+1(v) =

{
αk(v) + 1 if v /∈ N+

k (wk),

αk(v) + 1− n
|N+

k (wk)| if v ∈ N+
k (wk).

The preferences of voters with non-positive weights are
not taken into account. Thus, the score of an alternative c
is defined as

sck+1(c) =
∑

v∈N+
k+1(c)

αk+1(v).

Perpetual Nash. This rule can be seen as an adaption
of the GREEDY algorithm from Freeman, Zahedi, and
Conitzer (2017) to our setting. It maximizes Nash wel-
fare, i.e., the product of voters’ utilities. We assume that
the voters’ utility is their satisfaction if their satisfaction is
larger than 0; voters with a satisfaction of 0 have a utility
of some small constant ε, e.g., ε = n−n. Let

uk+1(v, c) =

{
max(satk(v, w̄), ε) if c /∈ Ak+1(v),

satk(v, w̄) + 1 if c ∈ Ak+1(v).

be the utility of voter v if c is chosen. The Nash score of
an alternative c is nashk+1(c) =

∏
v∈N uk+1(v, c). The

alternative with maximum Nash score is chosen.
Due to their sequential nature, all aforementioned rules

can be computed in polynomial time.

4 Axiomatic Properties

As a first approach to understand the differences between
perpetual voting rules, we introduce three axioms that relate
to aspects of fairness: simple proportionality, independence
of uncontroversial decisions, and bounded dry spells. The
first, simple proportionality, is a classic proportionality ax-
iom translated to our setting of perpetual voting.

Definition 2 (Simple proportionality). We say that a k-
decision sequence (N, Ā, C̄) is simple if A1 = · · · = Ak,
C1 = · · · = Ck, and |A1(v)| = 1 for all v ∈ N . For any
simple n-decision sequence (N, Ā, C̄) with |N | = n, we
say that w̄ ∈ C̄ is proportional if satn(v, w̄) = qun(v) for
every voter v ∈ N . A perpetual voting rule R satisfies sim-
ple proportionality if for any simple |N |-decision sequence
(N, Ā, C̄), it holds that R(N, Ā, C̄) is proportional.

Although it is a rather weak proportionality requirement
(similar to weak proportionality in the apportionment set-
ting (Balinski and Young 1982)), it is sufficiently strong to
reveal that some perpetual voting rules are not proportional.
Proposition 1. AV, Perpetual Equality, Perpetual Reset, and
Perpetual Unit-Cost fail simple proportionality.
Theorem 1. Perpetual PAV, Perpetual Consensus, Perpetual
Nash, and Perpetual Quota satisfy simple proportionality.

The second axiom concerns the impact of uncontrover-
sial decisions, i.e., decisions where a choice can be made
with unanimous agreement. Such uncontroversial decisions
should not have an impact on other decisions, as otherwise
the inclusion of such decisions could be used to manipulate
the outcome of the decision process. Formally, an approval
profile A is uncontroversial due to c if

⋂
v∈N A(v) = {c}.

Furthermore, given a k-tuple L = (l1, . . . , lk) and i ∈
{0, . . . , k}, we write L ⊕i x to denote the (k + 1)-tuple
L = (l1, . . . , li, x, li+1, . . . , lk).
Definition 3 (Independence of uncontroversial decisions).
A perpetual voting rule R satisfies independence of unan-
imous decisions if for any k-decision sequence (N, Ā, C̄),
approval profile A for C that is uncontroversial due to c,
and i ∈ {0, . . . , k} it holds that

R(N, Ā⊕i A, C̄ ⊕i C) = R(N, Ā, C̄)⊕i c.

Proposition 2. Perpetual PAV, Perpetual Nash, and Perpet-
ual Reset fail independence of unanimous decisions.
Theorem 2. AV, Perpetual Equality, Perpetual Quota, Per-
petual Unit-Cost, and Perpetual Consensus satisfy indepen-
dence of unanimous decisions

The third axiomatic property is called bounded dry spells.
This property guarantees that every voter agrees with at least
some choice in a bounded number of rounds.
Definition 4 (Dry spells). Given a k-decision history
(N, Ā, C̄, w̄), we say that a voter v ∈ N has a dry spell
of length � if there exists t ≤ k − � such that sat t(v, w̄) =
sat t+�(v, w̄), i.e., voter v is not satisfied by any choice in
rounds t+ 1, . . . , t+ �.

Let d be function from N to N. A perpetual voting rule R
has a dry spell guarantee of d if for any decision sequence
(N, Ā, C̄) and w̄ = R(N, Ā, C̄), no voter has a dry spell of
length d(|N |). A perpetual voting rule R has bounded dry
spells if R has a dry spell guarantee for some function d.

Equivalently, we can say that a perpetual voting rule has
unbounded dry spells if for some fixed N dry spells of arbi-
trary length can occur.
Proposition 3. AV, Perpetual PAV, Perpetual Equality, Per-
petual Quota, Perpetual Nash, and Perpetual Unit-Cost
have unbounded dry spells.
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Simple Indep. of Bounded
Proport. Unanim. Dec. Dry Spells

AV × � ×
Per. PAV � × ×
Per. Equality × � ×
Per. Quota � � ×
Per. Nash � × ×
Per. Reset × × �
Per. Unit-Cost × � ×
Per. Consensus � � �

Table 1: Overview of the axiomatic analysis

Two of the considered rules have bounded dry spells. The
first is Perpetual Reset, for which we can show a guarantee
that is linear in n.

Theorem 3. Perpetual Reset has a dry spell guarantee of
2n−2. This guarantee is tight, i.e., dry spells of length 2n−3
may occur.

For Perpetual Consensus we show a quadratic bound.
It remains an open question whether the statement can be
strengthened to show a linear dry spell guarantee.

Theorem 4. Perpetual Consensus has a dry spell guarantee
of at least n2+3n

4 .

A summary of our axiomatic analysis can be found in Ta-
ble 1. Note that Perpetual Consensus is the only rule that
satisfies all three properties, and Perpetual Quota the only
that satisfies two.

5 Quantitative Properties

We now introduce two metrics that capture certain aspects
of desirable behavior of perpetual voting rules. The first
one, perpetual lower quota compliance, measures to which
degree voters receive at least a “fair share” of favorable
choices, and thus have a fair say in the decision process. The
second one, the Gini influence coefficient, takes the opposite
perspective: it measures whether some voters have a dispro-
portionally large influence on decisions, and thus exert more
power than can be justified.

Let us first define perpetual lower quota as a property of
choice sequences. The main idea is the following: a voter
whose preferences are shared on average by an α fraction of
the population should be satisfied on average by an α frac-
tion of the choices.

Definition 5 (Perpetual lower quota). Let (N, Ā, C̄) be a
k-decision sequence. A k-choice sequence w̄ ∈ C̄ satisfies
perpetual lower quota if for every voter v ∈ N it holds that

satk(v, w̄) ≥ �quk(v)� .
As it turns out, this property is too strong to be used as an

axiomatic property, i.e., to require that perpetual voting rules
produce choice sequences satisfying perpetual lower quota.

Proposition 4. There are decision sequences for which no
choice sequence exists that satisfies perpetual lower quota.

Proof. Let (N, Ā, C̄) be a k-decision sequence with N =
{1, . . . , 2k} and C1 = · · · = Ck = {a, b}. We construct
Ā as follows: Each voter v ∈ N corresponds to a length-k
string sv over the alphabet {a, b}. For each round j ∈ [k],
we define Aj(v) = {sv(j)}. Let w̄ be an arbitrary k-choice
sequence. Then there exists a voter u ∈ N with wj /∈ Aj(u)
for every j ∈ [k], i.e., satk(u, w̄) = 0. However, quk(u) =
k/2 and hence perpetual lower quota is not satisfied (by an
arbitrarily large margin).

As the underlying idea of perpetual lower quota nonethe-
less appears desirable, we frame it as a quantitative metric
that should be guaranteed for as many voters as possible.
Definition 6. Let (N, Ā, C̄, w̄) be a k-decision history. The
perpetual lower quota compliance of w̄, compl(w̄), is the
average proportion of voters in each round that have their
perpetual lower quota satisfied, i.e.,

compl(w̄) =
1

nk

k∑
i=1

|{v ∈ N : sat i(v, w̄) ≥ �qui(v)�}| .

A perpetual lower quota compliance of 1 means that each
initial segment of w̄, i.e., (w1), (w1, w2), (w1, w2, w3), etc.,
satisfies perpetual lower quota.

The second metric is the Gini influence coefficient. It is
derived from the Gini coefficient of discrete probability dis-
tributions, see e.g. (Moulin 1991). The Gini coefficient is a
metric of inequality (often used for income distributions); it
is 0 for completely equal distributions and 1 for maximally
unequal distributions. We use the Gini coefficient to capture
inequality in voters’ influence on the decision process.

We define the influence of a voter on a given choice as 1
divided by the number of voters supporting this choice. For
example, if a voter has an influence of 1 on a choice that
everyone but her disagrees with; if a choice is supported by
all n agents, then their (individual) influence is 1

n . In the fol-
lowing definition, Iwj∈Aj(v) is 1 if choice wj satisfies voter
v, and 0 otherwise.
Definition 7. Let (N, Ā, C̄, w̄) be a k-decision history. The
influence of voter v ∈ N on the choice sequence w̄ is

inflk(v, w̄) =
∑
j∈[k]

Iwj∈Aj(v)

|{u ∈ V : Aj(u) = wj}| .

Let a be the average influence, i.e., a = 1
|N |

∑
v∈N inflk(v).

The Gini influence coefficient of w̄, ginik(w̄), is defined as
the Gini coefficient of the sequence (inflk(v, w̄))v∈N , i.e.,

ginik(w̄) =
1

2a|N |2
∑
u∈N

∑
v∈N

|inflk(u, w̄)− inflk(v, w̄)| .

We have claimed that perpetual lower quota compliance
and the Gini influence coefficient capture two different per-
spectives. Indeed, the following examples show that there
are instances where the Gini influence coefficient is small
(that is, an equal distribution of influence), but almost all
voters have lower quota violations. Conversely, there are in-
stances where the Gini influence coefficient is large, but all
voters have their perpetual lower quota satisfied.
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Figure 1: Perpetual lower quota compliance (values on top of the diagram are medians)

Example 1. Let (N, Ā, C̄) be a n-decision sequence with
N = {1, . . . , n}, C = {c1, c2}, and Ai(v) = {c1} if
v = i and Ai(v) = {c2} otherwise. The n-choice sequence
w̄ = (c1, . . . , c1) achieves a perfect Gini influence coeffi-
cient of 0, since every voter has an influence of 1. The quota
of each voter v is qun(v) = (n− 1) · n−1

n + 1
n ≥ n− 2, but

satn(v, w̄) = 1 for all voters v.
Example 2. Let (N, Ā, C̄) be a n-decision sequence with
N = {1, . . . , n} and C = {c1, . . . , cn}. For v ∈ N , we
set A1(v) = · · · = An−1(v) = {cv} and An(v) = {c1}.
Consider the n-choice sequence w̄ = (c1, . . . , c1). Its Gini
influence coefficient is (n−1)2

n2 ≥ 1 − 2
n (i.e., we have

an unequal distribution of influence), but perpetual lower
quota is satisfied for all voters: the quota of each voter v is
qun(v) =

n−1
n + 1, and satn(v, w̄) ≥ 1.

For simple n-decision sequences, however, these two met-
rics coincide.
Proposition 5. Let (N, Ā, C̄) be a simple n-decision se-
quence with n = |N |. An n-choice sequence w̄ ∈ C̄ satisfies
perpetual lower quota if and only if ginik(w̄) = 0.

As we will see in the following experiments, these two
metrics indeed highlight different aspects and yield different
evaluations of rules.

6 Experiments

The goal of our experiments is to test the proposed rules
against the two performance metrics introduced in the pre-
vious section. In contrast to the binary statements of an
axiomatic analysis, an experimental analysis via numerical
simulations gives us an understanding about the average-
case behavior. Numerical experiments have to be based on
sensibly chosen distributions that model the envisioned ap-
plication. In our setting these are small- to medium-sized
groups with conflicting preferences. For the sake of concise-
ness, we only present one distribution (other distributions
yielded mostly similar results, as described later). We con-
sider a set of 20 voters which decide upon 20 decision in-
stances, i.e., we have 20-decision sequences. For each de-
cision 5 alternatives are available—these differ from round
to round. We generate voters and alternatives in a two-
dimensional Euclidean space, similar to the setup used by

Elkind et al. (2017). Voters are split in two groups and are
placed on the 2d plane by a bivariate normal distribution. For
the first group (6 voters) both x- and y-coordinates are inde-
pendently drawn from N (−0.5, 0.2); for the second group
(14 voters) x- and y-coordinates are from N (0.5, 0.2). That
is, the first, smaller group is centered around (−0.5,−0.5),
the second, larger group around (0.5, 0.5).

Alternatives are distributed uniformly in the rectangle
[−1, 1] × [−1, 1]. Voters approve all alternatives that have
a distance of at most 1.5 times the distance to the closest al-
ternative. This yields approval sets of size 1.8 on average. It
is important to note that alternatives change in every round
and thus even voters that are close to each other do not nec-
essarily have the same approval sets each round.

In addition to the perpetual voting rules proposed in Sec-
tion 3, we also include a probabilistic voting rule: Random
Serial Dictatorship (RSD). This rule works as follows. In
each round, a permutation of voters is selected uniformly at
random. We maintain a set X that starts as the set of all alter-
natives (in this round). One voter after the other can shrink
X further to include only approved alternatives; the set X re-
mains unchanged by voters whose approval set has an empty
intersection with X . As soon as X has cardinality 1, this al-
ternative is chosen. If |X| > 1 after all voters are considered,
one alternative in X is chosen at random.

Our results are based on 10,000 instances. For each in-
stance and each voting rule, we compute the perpetual
lower quota compliance and the Gini influence coefficient4.
The corresponding distributions are visualized in Figures 1
and 2. These box plots show as boxes the first (bottom), sec-
ond (middle), and third quartile (top), as well as the mini-
mum and maximum values (bottom and top whiskers). Note
that for perpetual lower quota compliance values close to 1
are desirable, for the Gini influence coefficient values close
to 0. All apparent differences between rules (Figs. 1 and 2)
are statistically significant (paired t-test, p = 0.01).

Let us first consider perpetual lower quota compliance
(Figure 1). We see that three rules perform significantly
worse than the others: AV, Perpetual Equality, and RSD. It
is unsurprising that AV and Perpetual Equality do not per-

4The Python code used for these experiments can be found at
https://github.com/martinlackner/perpetual.
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Figure 2: Gini influence coefficient (values on top of the diagram are medians)

form well, as both—by definition—do not aim to be pro-
portional. For RSD, however, it is noteworthy that perpetual
voting rules have significantly better proportionality guaran-
tees. This might be due to the rather short decision sequence
(which we believe is a realistic assumption). Among the
well-performing rules, Perpetual Quota and Perpetual Unit-
Cost stand out as granting the most voters their lower quota.

Now let us look at the Gini influence coefficient (Fig-
ure 2). Here, again, AV, Perpetual Equality, and RSD yield
unsatisfactory results. But also, perhaps surprisingly, Perpet-
ual PAV and Perpetual Nash do not fare well with regard to
this metric. In contrast, Perpetual Consensus and Perpetual
Quota achieve the best results.

As mentioned before, we have repeated these experiments
also for other distributions (more than two groups, differ-
ing variance, larger approval sets, other probability distri-
butions, more voters, longer decision sequences, etc.). The
general outcome was that Perpetual Quota performed best
for most distributions. The subpar performance of AV, Per-
petual Equality, and RSD could also be observed in almost
all experiments. Only the exact comparison between the
other perpetual rules differed significantly. The main con-
clusion stands, however, that Perpetual Quota is most rec-
ommendable from the perspective of both metrics.

7 Discussion

In this paper we presented the idea of perpetual voting
and introduced several perpetual voting rules. In our analy-
sis, two rules stood out as particularly promising: Perpetual
Consensus (as the only considered rule that satisfies all three
properties studied in Section 4) and Perpetual Quota (with
a particularly strong performance in the experiments, Sec-
tion 6, and satisfying two of three axiomatic properties). Fur-
ther work is required to explore the design space of perpetual
voting rules and obtain a clear understanding of the rules’
properties and behavior. The literature of multiwinner vot-
ing can offer inspiration for further perpetual voting rules,
e.g., rules could be designed based on the implicit utilities
approach by Boutilier et al. (2015) or based on Phragmén’s
sequential rule (Brill et al. 2017).

In our numerical simulations, we came to the conclusion
that Random Serial Dictatorship (RSD), a probabilistic vot-

ing rule, cannot be recommended in the considered settings.
We furthermore note that out of the three axioms studied in
Section 4, RSD satisfies only independence of unanimous
decisions. RSD does not satisfy simple proportionality due
to its probabilistic nature, but it converges to proportional
outcomes. Similarly, RSD does not provide a strict guaran-
tee for dry spells. Thus, for settings with short decision se-
quences, we believe that probabilistic voting rules are not a
suitable alternative to perpetual voting rules.

We used two notions of proportionality: simple propor-
tionality (Definition 2) and perpetual lower quota (Defini-
tion 5). The former is a rather weak axiom, whereas the latter
is too strong to be satisfiable in general. It thus of interest to
explore the middle ground and pinpoint which degree of pro-
portionality is achievable by perpetual voting rules. Inspira-
tion for this line of work can come from concepts such as
extended or proportional justified representation (Aziz et al.
2017; Sánchez-Fernández et al. 2017), both of which have
been developed as simpler, seemingly more natural notions
of proportionality proved to be unattainable.

Let us end this paper with a discussion of practical chal-
lenges pertaining to perpetual voting. First, we have not
yet addressed the issue of fluctuating voters. How should
weights be adapted if voters abstain some decisions or en-
ter the decision process at a later stage? This question has
to be answered individually for each rule and more than one
reasonable answer may exist for each rule. It is important to
ensure that fairness guarantees also hold for newcomers, but
that abstainers do not have an unfair advantage neither.

This leads us immediately to the issue of strategic behav-
ior. In perpetual voting one may encounter the freerider ef-
fect: if an alternative is guaranteed to be chosen, it is benefi-
cial for voters to misrepresent their preferences (or abstain)
so as not to pay the “price of winning”. This is a problem
inherent in the idea of guaranteeing fairness over time (cf.
Freeman, Zahedi, and Conitzer (2017)). However, its sever-
ity may differ between perpetual voting rules. For exam-
ple, Perpetual Reset is an extreme case where the price of
winning is very high, whereas Perpetual Quota has a small
price of winning if an alternative with strong support is cho-
sen. It requires further work to understand the impact of the
freerider effect on different rules and find strategies to com-
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bat its negative consequences.
Finally, to find and agree on a compromise is a central

feature of human interaction and negotiation. Compromise
is also sought in classical voting scenarios, although the pos-
sibilities are limited. In a long-term decision process, com-
promise becomes a powerful concept. For example, if agents
assign different importance to individual decisions, compro-
mise can be found by deciding in favor of agents that con-
sider the issue at hand critical, while assigning a higher pri-
ority for future decisions to agents that “yielded”. The goal
is here to augment perpetual voting rules with methods of
compromise and thus increase their ability to aid in a real-
world decision process.
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