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Abstract

Bike sharing systems have been widely deployed around the
world in recent years. A core problem in such systems is
to reposition the bikes so that the distribution of bike sup-
ply is reshaped to better match the dynamic bike demand.
When the bike-sharing company or platform is able to pre-
dict the revenue of each reposition task based on historic
data, an additional constraint is to cap the payment for each
task below its predicted revenue. In this paper, we propose
an incentive mechanism called TruPreTar to incentivize users
to park bicycles at locations desired by the platform toward
rebalancing supply and demand. TruPreTar possesses four
important economic and computational properties such as
truthfulness and budget feasibility. Furthermore, we prove
that even when the payment budget is tight, the total rev-
enue still exceeds or equals the budget. Otherwise, TruPre-
Tar achieves 2-approximation as compared to the optimal
(revenue-maximizing) solution, which is close to the lower
bound of at least

√
2 that we also prove. Using an industrial

dataset obtained from a large bike-sharing company, our ex-
periments show that TruPreTar is effective in rebalancing bike
supply and demand and, as a result, generates high revenue
that outperforms several benchmark mechanisms.

Introduction

Bike sharing is a new transportation mode with many ben-
efits in offering convenience and flexibility as well as low-
ering economic cost. By 2015, more than 7000 bike shar-
ing systems have been deployed around the world (Laporte,
Meunier, and Calvo 2015). However, the flexibility of bike
sharing systems, in particular the “anywhere-parking” con-
venience, brings forth a serious issue of imbalance between
the distribution of bike supply and demand. This leads to
many users being unable to find a bicycle nearby when they
need it, and ultimately affects company revenue adversely.
Hence, there is an urgent need to rebalance the supply and
demand by repositioning the bicycles, which we refer to as
a bike rebalancing problem.

There are two approaches to solving this problem. One
is to relocate bicycles by the staff of the bike-sharing com-
pany or platform, for example using trucks. This involves
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route planning and typically uses linear programming tech-
niques, as has been extensively studied under static mod-
els (Maggioni et al. 2019; Schuijbroek, Hampshire, and
Van Hoeve 2017) and dynamic models (Kek et al. 2009;
Angeloudis, Hu, and Bell 2014). However, this approach is
costly and not eco-friendly in terms of carbon footprint.

Another approach is to design incentive mechanisms to
motivate users to reposition bicycles at platform-desired lo-
cations for rebalancing supply and demand. This falls un-
der the research area of crowdsourcing (Fricker and Gast
2016) which takes advantage of the power of crowd to com-
plete tasks that are otherwise difficult (Luo et al. 2016). With
this idea, Ghosh and Varakantham (2017) proposed a solu-
tion that generates repositioning tasks together with the use
of bike trailers, and pays users using the Vickrey-Clarke-
Groves (VCG) mechanism. Singla et al. (2015) introduced a
crowdsourcing method that offers users monetary incentive
for parking their bikes at recommended locations.

However, most of existing mechanisms for this problem
have not considered the predicted revenue (or value) of a
repositioning task. Such predicted values are made avail-
able in recent years, due to the prosperity of deep learn-
ing technique which can well predict the bike demand
in such systems (Yang et al. 2016; Li and Zheng 2019;
Zhang et al. 2016). With this predictive power, the expected
revenue or value of a repositioning task can be easily ob-
tained. Therefore, the platform would assign a task to a user
only if the payment to the user does not exceed the predicted
revenue. This constraint is akin to the “reserve price” in for-
ward auctions which are used to promote revenue. In our
problem, it is used to better control the payments and thereby
increase the profit of the platform. This constraint is gener-
ally overlooked in prior work on bike sharing or crowdsourc-
ing (Angelopoulos et al. 2018; Gagan Goel and Singla 2013;
Vaze 2017). For instance with classic budget feasible mech-
anisms such as (Singer 2010), the payment to a winning user
is determined by the bids of other users and/or the budget.
But in our case, this payment is invalid if it is above the value
of the task assigned to the winning user.

In this paper, we propose a solution called Truthful
and budget-feasible incentive mechanism with Predicted
Task revenue (TruPreTar) for the bike rebalancing problem,
which we model as a reverse auction. In this auction, users
bid for repositioning tasks and the platform determines task
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allocation and user payments. We first show that several
widely used auctions and pricing mechanisms do not apply
to this problem. Then we present the design of TruPreTar
and show that it is an effective solution that satisfies several
desired economic and computational properties. In addition,
we prove two important theoretical guarantees backed by
our mechanism on revenue. Finally, we evaluate the perfor-
mance of TruPreTar via simulations using a real industrial
dataset obtained from a large bike-sharing company.

Our main contributions are summarized as follows:
• We model the bike rebalancing problem under a crowd-

sourcing framework using a reverse auction model. Im-
portantly, we incorporate a bipartite graph into the
auction—with a payment constraint—to determine the al-
location rule and the payment rule for the auction. The
payment constraint also implies the establishment of a
connection between (bike) demand prediction and incen-
tive mechanism design.
• We propose a mechanism TruPreTar which satisfies de-

sired properties including incentive compatibility, bud-
get feasibility, individual rationality, and computational
efficiency. Notably, we achieve this by novelly combin-
ing Myerson’s Lemma and a greedy weighted maximum
matching technique.
• We prove two important theoretical guarantees for

TruPreTar: When the budget is tight, it ensures that the
platform revenue is no less than its budget, under a prac-
tical large-market assumption. When the budget is suffi-
cient, TruPreTar achieves a 2-approximation ratio as com-
pared to the optimal solution which maximizes revenue.
We show that the lower bound of the approximation ra-
tio is at least

√
2 which means our ratio is rather close.

Putting in practice perspectives, we provide a guideline
of how to use this result to set company budget in real
dynamic systems.
• We evaluate the effectiveness of our mechanism via exten-

sive experiments using a real dataset from a large bike-
sharing company. The results show that our mechanism
outperforms other benchmark mechanisms in terms of
revenue and profit.

Model

Consider a dynamic bike sharing system in which a batch
of n users N = {1, 2, . . . , n} have hired their bicycles and
not parked them yet. There is also a set of m discrete bicycle
parking lots or locations1 L = {1, 2, . . . ,m}, where each lo-
cation can accommodate multiple bicycles but is conceptu-
ally considered a point on a map. We assume that each user’s
destination is known to the platform when she hires a bicy-
cle, since it can be either reported by the user, as is the prac-
tice adopted by some companies (e.g., HelloBike in China),
or predicted using historic information (Liu et al. 2018). The
platform aims to incentivize the users to park their bicycles

1We do not consider continuous locations because many coun-
tries such as Singapore and China have nowadays stipulated munic-
ipal regulations to restrict shared bikes to be parked at designated
locations rather than arbitrarily.

at system-desired locations for rebalancing the supply and
demand of bicycles. Each user has a maximum relocation
range h, out of which they would not accept a repositioning
task; in other words, h is the maximum “extra mile” they are
willing to relocate.

Similar to the concept of first come first served flow in
(Waserhole, Jost, and Brauner 2013), we assume that a bi-
cycle that is parked earlier will have a higher probability to
be hired than a bicycle parked later at the same location. As
such, each bicycle has a different probability of being hired.
Accordingly, we define a repositioning task tlx as “park your
bicycle at location l as the x-th bicycle”, and it is associ-
ated with an expected revenue rlx. As mentioned earlier, rlx
can be derived from bike demand predication at the location
(Yang et al. 2016; Li and Zheng 2019).

To assign the tasks to users, we construct a bipartite graph
G = {N,T,E}, where the left nodes are the set of users
N , and the right nodes are the set of tasks T . Since there
are maximum n possible tasks at each location, there are
totally m × n tasks in T . The set E is the edges between
users and tasks indicating the feasibility of assignment: an
edge between i and tlx means that location l is within the
maximum relocation range of user i. For notation simplicity,
henceforth we use j to denote a task tlx when there is no
ambiguity.

Each user i has a relocation cost ci which is a private value
known to user i only. She bids for a task and claims a cost
bi which is not necessarily equal to ci. Each task j has an
expected revenue (or “value” as we use interchangeably) rj
for the platform. We aim to design an incentive mechanism
that consists of an allocation rule and a payment rule, where
the allocation rule specifies which task is allocated to which
user, i.e., the matched pairs (i, j), and the payment rule spec-
ifies a payment pi for each matched user i. The utility of a
user is defined as pi−ci. In addition, the platform has a bud-
get B for all the rebalancing tasks. We want our mechanism
to satisfy the following desirable properties:

• Incentive Compatibility: a user can maximize her utility
only by bidding truthfully, i.e., bi = ci. This property is
also known as truthfulness or strategy-proofness.

• Individual Rationality for both users and platform: the
payment to each winning (i.e., matched) user should be
no less than her cost, i.e., pi ≥ ci; the payment for each
matched task should also be no more than its value, i.e.,
pi ≤ rj (rj is similar to the reserve price in the mecha-
nism design theory).

• Budget Feasibility: the overall payment should be no more
than the budget, i.e.,

∑
(i,j)∈M pi ≤ B.

• Computational Efficiency: the mechanism should termi-
nate in polynomial time.

Our objective is to maximize the platform revenue R =∑
(i,j)∈M rj , where M = {(i, j)} is the set of matched user-

task pairs. Thus, the problem of revenue maximization via
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task allocation can be formulated as

max R =
∑

(i,j)∈M

rj (1)

s.t. pi ≤rj , ∀(i, j) ∈M

pi ≥bi, ∀(i, j) ∈M
∑

(i,j)∈M

pi ≤ B

In addition to revenue, we also evaluate platform profit
which is defined as

Pr =
∑

(i,j)∈M

rj −
∑

(i,j)∈M

pi.

Infeasibility of Existing Mechanisms

In this section, we show that some widely used mechanisms
are not feasible for the bike rebalancing problem.

VCG mechnism. This is a classical mechnism that is
strategy-proof and maximizes social welfare. However, it
does not guarantee budget feasibility as required in our case.
Proof by counter-example: see Figure 1 (a), where the plat-
form has budget 1 and there are two users {a, b} both with
a small cost ε; the two tasks {1, 2} both have value 1 and
there are two edges {(a, 1), (b, 2)}. The VCG mechanism
will output matching M = {(a, 1), (b, 2)} and the payment
for each user is 1. Thus, the overall payment exceeds the
budget and hence the mechanism is not budget feasible.

(a) B = 1 (b) B � 5

(c) B � 6

Figure 1: Counter examples for existing mechanisms.

Singer’s mechanism. Proposed in (Singer 2010), this is
another well-known mechanism yet is budget feasible. It
greedily allocates user-task pairs with the highest ratio of
rj/bi, but does not consider the individual rationality of
the platform (i.e., pi ≤ rj). If we adapt the mechanism
by adding the constraint into the payment rule, it will no
longer guarantee incentive compatibility. To illustrate this,
see Figure 1 (b), the platform has sufficient budget, and
there are two users {a, b} with costs ca = 2, cb = 1,
two tasks {1, 2} with values r1 = 2, r2 = 3, and three

edges {(a, 1), (a, 2), (b, 2)}. The adapted mechanism out-
puts match M = {(a, 1), (b, 2)}, and pa = 2. However,
if user a misreports her cost to be a small number ε, she will
be allocated task 2 and her payment becomes 3, making her
better off.

Optimal matching. The third method is to choose a sub-
graph with

∑
rj ≤ B and then use the optimal (i.e., max-

imum) matching (that maximizes platform revenue) to al-
locate tasks, where the payments to winners are set to the
values of their matched tasks. Not only does this mech-
anism has zero profit for the platform, but more impor-
tantly, it is also not truthful. To see this, consider Figure 1
(c), where the budget is sufficient, and there are two users
{a, b} with costs ca = 1, cb = 1, three tasks {1, 2, 3}
with values r1 = 1, r2 = 3, r3 = 2, and four edges
{(a, 1), (a, 2), (b, 2), (b, 3)}. The optimal matching will out-
put match M = {(a, 2), (b, 3)} since it achieves maximized
revenue and the payments are pa = 3 and pb = 2. How-
ever, if user b untruthfully bids a cost of 3 instead of 1, then
she will be assigned task 2 instead of 3 because task value
must be no less than the cost. Therefore, she will receive a
higher payment than bidding truthfully. Therefore, incentive
compatibility is violated.

In fact, we will prove in Theorem 4 that there is no opti-
mal mechanism that can satisfy the four properties simulta-
neously. Therefore, inspired by (Zhang, Wu, and Bei 2018),
we propose an approximate mechanism (i.e., TruPreTar) in
this paper.

Mechanism Design of TruPreTar
In this section, we present our proposed mechanism TruPre-
Tar for the bike rebalancing problem. We first introduce a
notion called right-perfect matching in a bipartite graph.
Definition 1 A right-perfect matching in a bipartite graph
G is a matching with size |T |, where T is the set of right
nodes in graph G.

In other words, we say a bipartite graph has a right-perfect
matching if all tasks in the graph on the right can be matched
to a user on the left. It is easy to see that a right-perfect
matching is also a maximum matching of a bipartite graph.

The key idea of TruPreTar is to maintain a subgraph G′
that always has a right-perfect matching. TruPreTar sorts all
the tasks and users together in decreasing order of their val-
ues (costs), and then iterates over this sorted list. The mech-
anism tries to include more tasks with high values in G′ and
delete more users with high costs from it until the budget is
exhausted or all elements are processed.

The complete pseudo-code of the mechanism TruPreTar
is presented in Algorithm 1. In the mechanism, we maintain
a variable of the remaining budget B′ which is initially set
as B. Once a user i is matched with payment pi, we update
B′ as B′ − pi. In addition, we update a decreasing global
price P during the algorithm process. Intuitively, for each
element in the iteration of the sorted list, if it is a task j, the
task and its affiliated edges (the connected user should be
unmatched) will be added to G′ if two conditions are satis-
fied after adding them: 1) G′ still has a right-perfect match-
ing and 2) the upper bound of the payment for all tasks in
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Algorithm 1: TruPreTar: a truthful and budget feasible
incentive mechanism with predicted task revenue

Input: Bipartite graph G = (N,T,E), budget B, cost
ci, value rj , ∀i ∈ N, ∀j ∈ T .

Output: Task allocation M = {(i, j)} and payment pi
for each winning user i.

1 Let F = N ∪ T . For an element e ∈ F , if e is a user i,
the value ve is defined as her bid bi; if e is a task j, the
value ve is defined as the expected revenue rj .

2 Delete all edges (i, j) with bi > rj in G.
3 M ← ∅, B′ ← B, T ′ ← ∅, N ′ ← ∅, E′ ← ∅,

G′ = (N ′, T ′, E′);
4 Sort elements in F in decreasing order of ve, breaking

ties randomly, but if the tie is between a task and a
user, let the task go first.

5 for each element e in the above order do
6 if e is a task j then
7 Let Nj be the set of unmatched users connected

to j, Ej be the set of edges between j and Nj .
8 if G′ ∪ Ej has a right-perfect matching and
9 (|T ′|+ 1) · rj ≤ B′ then

10 G′ ← G′ ∪ (Nj , j, Ej).
11 P ← rj .
12 else
13 Skip to next element.

14 if e is a user i in G′ then
15 if G′\i has a right-perfect matching then
16 G′ ← G′\i.
17 P ← bi.

18 for Each user i ∈ G′ do
19 if G′\i doesn’t have a right-perfect matching

then
20 for Each edge (i, j) of i in G′ do
21 if G′\i ∪ (i, j) has a right-perfect

matching then
22 M ←M ∪ (i, j), pi ← P .
23 B′ ← B′ − pi.
24 G′ ← G′\{i, j}.
25 Skip to next user.
26 else
27 Skip to next edge.

G′ (i.e., (|T ′| + 1) · rj) is below the remaining budget. If
task j is added to G′, we update the global price P as rj .
If the element is a user i, then if G′ can maintain a right-
perfect matching after discarding i (i.e., i is not critical for
the right-perfect matching of G′), we then remove her from
G′, in this case, we also update the global price P as bi.
Once the subgraph G′ is changed (either a task is added or a
user is removed), we check if there are critical users for the
right-perfect matching of G′, if so, for a critical user i, we
allocate task j in G′ to i if G′\i ∪ (i, j) has a right-perfect
matching. The payment is set as the global price P at this

Figure 2: A walk-through example for our mechanism
TruPreTar. Let the budget be B = 14. Tasks 1 and 2 are
first considered, and they are added to G′ with their affiliated
edges since the budget is enough for them. So G′ has three
users a, b and c and none of them is critical for the right-
perfect matching of G′. In addition, the global price P ← 6,
and the remaining budget B′ is still 14. Then, user a is re-
moved from G′ while updating the price P ← 5. Next, users
b and c become critical for the right-perfect matching of G′
now, and assume they are matched with task 1 and 2, respec-
tively. The payment to each of b and c is P = 5, and hence
we update B′ ← 4. After that, task 3 will be added to G′
with edge (d, 3), we have P ← 3, and obviously d is critical
and she will be allocated task 3 with payment 3. The remain-
ing budget is also updated as B′ ← 1. Finally, task 4 is con-
sidered but not added to G′ because of the budget constraint,
and tasks 5 and 6 are skipped because they have no edges.
Therefore, the output matching is {(b, 1), (c, 2), (d, 3)}, and
the revenue is 16 while the profit is 3.

step, and then we update the remaining budget B′.
A walk-through example of TruPreTar is given in Figure

2.

Analysis of TruPreTar

Lemma 1 The mechanism TruPreTar satisfies incentive
compatibility.

Proof Since each user has only one private value (i.e., cost),
this is a single-parameter problem and hence we can use the
Myerson’s lemma:

Lemma 2 ((Myerson 1981)) In single parameter auctions,
for a normalized mechanism M = (f, p), where f is the
allocation rule and p is the payment rule, M is incentive
compatible iff it satisfies:

1. Monotone allocation rule: ∀i ∈ N , if b′i ≤ bi, then i ∈
f(bi, b−i) implies i ∈ f(b′i, b−i) for every c−i;

2. Threshold payment rule: payment to each winning bid-
der is inf {bi : i /∈ f(bi, b−i)}.

First, we prove the monotone allocation rule, i.e., once user
i is matched by bidding bi, she must be matched by bidding
b′i < bi. Let e be the element that updates the global price
P as pi. When bidding bi, we use G1

i to denote the graph G′
after e is processed (i.e., the step that P is updated as pi),
and G2

i has same definition while in the case of bidding b′i.
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It’s obvious that the algorithm process before P is updated
as pi is not affected by the bid of i. Therefore, we have G1

i =
G2

i , and user i is also critical for the right-perfect matching
of G2

i , hence the monotone allocation rule is satisfied.
Next, we prove the threshold payment rule, that is, if user

i bids any cost larger than the payment pi, she will not
be matched, otherwise, she will be matched with a task. If
b′i < pi, it can be observed that the value of all tasks in
G2

i is higher than b′i, thus the edges of i will not be deleted
because b′i > rj . Therefore, similar to the proof of the mono-
tone allocation rule, we have that G1

i = G2
i , and user i is

still critical, so she will be matched. If b′i > pi, user i will be
considered before the element e. However, we can observe
that, in the steps before element e is processed, user i is ei-
ther not added to G′ or is not critical for the right-perfect
matching of G′, otherwise she will be matched before ele-
ment e. As a result, we have that user i will be discarded if
b′i > pi, and the threshold payment rule is satisfied.

Lemma 3 The mechanism TruPreTar is budget feasible.

Proof We can observe that once a task j with value rj is
added to G′, the payment to any user in G′ is no more than
rj , since the global price P is non-increasing. Let j′ be the
last task added to G′, B′

j′ the remaining budget before j′ is
added, and |Tj′ | the number of tasks in G′ before adding j′.
We have that

∑

(i,j)∈M

pi ≤ B −B′
j′ + rj′ · (|Tj′ |+ 1) ≤ B

which concludes the proof.

We omit the proofs of the following two lemmas due to
space constraint, please refer to our full paper2.
Lemma 4 The mechanism TruPreTar is individually ratio-
nal for both users and platform.

Lemma 5 The mechanism TruPreTar satisfies computa-
tional efficiency.

Theorem 1 Our proposed mechanism TruPreTar is an in-
centive compatible, budget feasible, individually rational,
and computational efficient mechanism.

Theoretical Guarantee on Revenue

To show the theoretical guarantee of TruPreTar on revenue,
we first introduce the large market assumption.
Assumption 1 (Large Market Assumption) We assume
ci 
 B and rj 
 B for each user i and each task j.

Intuitively, it’s assumed that each individual user or task
is negligible compared with the budget. This assumption is
widely adopted in previous work (Vaze 2017; Anari, Goel,
and Nikzad 2014) and it is practical in real world as the rev-
enue of a single ride is indeed very small.

Next, we prove the theoretical guarantee under tight bud-
get.
Theorem 2 Under the large market assumption, we have∑

(i,j)∈M rj ≥ B if the budget is tight.
2https://arxiv.org/abs/1911.07706

Proof Let j1 be the first task that is discarded because of
budget constraint, j0 the last task added to G′ before j1, and
|Tj0| (|Tj1|) the number of tasks in G′ before considering j0
(j1). Assume that the set of tasks allocated between consid-
ering j0 and j1 is AT , and the total payment for them is PA.
We have rj0 · (|Tj0|+1) ≤ B′

j0 and rj1 · (|Tj1|+1) > B′
j1.

Since the payments to users in AT are all between rj0 and
rj1, we can get that

|Tj1| · rj1 ≤ |Tj1| · rj0
= (|Tj0|+ 1) · rj0 − |AT | · rj0
≤ (|Tj0|+ 1) · rj0 − PA

≤ B′
j0 − PA

= B′
j1

Combining the above inequations, we have

B′
j1 − rj1 · |Tj1| < rj1,

and further we obtain
∑

(i,j)∈M

rj ≥ B −B′
j1 + rj1 · |Tj1|

≥ B − rj1

� B

where the first inequation is because of the individual ratio-
nality of both platform and users and the last approximate
equation is due to the large market assumption.

Before we prove the theoretical guarantee under suffi-
cient budget, we first demonstrate that a greedy algorithm
as shown in Algorithm 2 has an approximation ratio of 2,
i.e., it can achieve at least half of the optimal revenue under
sufficient budget.

Algorithm 2: A Greedy Mechanism
1 for each task j in decreasing order of rj do
2 for each edge (i, j) of task j do
3 if user i is not matched then
4 Match i with j.
5 Skip to next task.

Lemma 6 Algorithm 2 is a 2-approximation algorithm if
the budget is sufficient.

The proof is provided in our full paper due to space limi-
tation.

Next, we prove the following lemma by showing that the
allocation of our mechanism coincides with a particular run
of the greedy algorithm.

Theorem 3 The mechanism TruPreTar is a 2-
approximation mechanism if the budget is sufficient.

Proof Since the budget is sufficient, we know that no task is
discarded due to the budget limitation. We denote the match-
ing in our mechanism as M . It’s assumed that this matching
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is produced as following: For each task j in decreasing or-
der of rj , if j ∈M , we allocate task j to its matched user in
M , otherwise the task is skipped. Now we prove that, in the
greedy algorithm, this process can also happen.

It’s obvious that for task j ∈ M , we can assign task j to
its matched user in M in the greedy algorithm, thus we only
need to prove that for each task j �∈ M , when we consider
it in the greedy algorithm, there is no unassigned user that
has an edge to j.

Next, for contradiction, assume that we can find such an
unmatched user i that has an edge to j �∈ M when pro-
cessing j in the greedy algorithm. Then in our mechanism,
when considering j, there will be a right-perfect matching
for graph G′ ∪ {j}, i.e., M ∪ (i, j). Thus, the task will be
added to G′. Note that in our mechanism, any task added
to G′ will end up being matched. This contradicts with our
assumption and hence the lemma is proved.

To understand how “good” the approximation ratio of 2
is, next we prove that the lower bound is at least

√
2.

Theorem 4 There is no mechanism that satisfies incentive
compatibility and individual rationality can achieve better
than

√
2-approximation when the budget is sufficient.

Proof We prove the lemma with a concrete counter exam-
ple. Assume there exists a mechanism F that can achieve an
approximation ratio better than

√
2. Consider case 1 where

there are two users {a, b}, three tasks {1, 2, 3} and 4 edges
{(a, 1), (a, 2), (b, 2), (b, 3)}. In addition, we have that ca =

ε, cb =
√
2 + 1, r1 = 1+ ε, r2 =

√
2 + 1+ ε, r3 =

√
2 + 1,

where ε is a small positive number. We can observe that the
optimal matching should be {(a, 2), (b, 3)} which achieves
revenue of 2

√
2 + 2 + ε, we now prove that any mechanism

that satisfies the above properties can achieve total revenue
of at most 2 +

√
2 + 2ε.

First we consider case 2 where the only difference with
case 1 is that cb =

√
2 + 1 + ε

2 and hence the edge (b, 3)
has to be deleted. In case 2, mechanism F can only output
the matching {(a, 1), (b, 2)}, otherwise, the approximation
can be at least r1+r2

r2
>
√
2. Moreover, due to individual

rationality, pb ≥
√
2 + 1 + ε

2 .
Then we consider case 1, in the output matching of F , if

user b is matched with task 3, the payment is at most 1+
√
2

and the utility of user b is at most 0. If user b misreports
cost of

√
2 + 1 + ε

2 , it becomes case 2, and as stated above,
the utility of user b can be at least ε

2 . Thus, for incentive
compatibility, mechanism F has to allocate task 2 to user
b and pay at least

√
2 + 1 + ε

2 . Hence the output matching
of F can achieve revenue of at most 2 +

√
2 + 2ε, and the

approximation ratio limit is
√
2 when ε→ 0.

Practical Guideline: We provide a guideline as to how
the above theoretical results can be applied to practice. The
platform can initially set a sufficient budget and gain a rev-
enue Rsuf . Based on Theorem 3, we know that the optimal
revenue is at most 2·Rsuf . Hence after that, the platform can
set a tighter budget B = β·Rsuf where 0 < β ≤ 2, and The-
orem 2 guarantees that TruPreTar will achieve at least β/2

of the optimal solution’s revenue. This way, the platform can
control the budget while ensuring a minimum revenue.

Evaluation

We conduct simulation using a real-world dataset obtained
from a large bike-sharing company in China called Mobike.
The bike riding data cover 8×8 regions of Beijing with each
region being 0.6km × 0.6km, and are dated from May 10th
to 14th, 2017. With the same distribution of destinations in
this dataset, we build a simulator which can randomly gener-
ate users’ destinations. In the experiments, we set the num-
ber of users n = 200, and test different location numbers m.
The cost of each user ci is drawn from uniform distribution
over [0, c] where c = 5. The value of a task is calculated
as the difference between the Kullback-Leibler (KL) diver-
gences (Kullback and Leibler 1951) before and after fulfill-
ing the task, similarly to previous work (Pan et al. 2019;
Lv et al. 2019). Because of the space limitation, we refer the
authors to (Lv et al. 2019) for concrete calculation of the task
value. The acceptable range h is set as 300m and 600m, re-
spectively. We also test the budget of 50 and 500 where 500
is sufficient while 50 is not. In addition, we conduct each
experiment 10 times and take the average.

We compare TruPreTar with the following mechanisms:

• APP-OPT: As the budgeted matching problem is an NP-
hard problem (it can be reduced to the knapsack prob-
lem), we cannot give an optimal allocation as benchmark.
However, if the budget is tight and the large market as-
sumption holds simultaneously, the following strategy is
approximately an optimal mechanism: consider edges in
decreasing order of rj/bi, match user i and task j if they
are not ever matched before, and pay user i exactly her
bid. The process stops until the budget is exhausted or
there are no more edges. This mechanism achieves the
maximum revenue under the above two assumptions but
it’s not truthful.

• Greedy: The greedy mechanism considers users in in-
creasing order of their bids and allocates the task with
the highest value as long as it is higher than the bid of
the user. Once a user is matched, the price for all winning
users is updated as the bid of her next user (whose bid is
higher). The mechanism stops once a user cannot find a
feasible task or the overall payment is above the budget,
and pays all the winning users the bid of this unmatched
user. If all users can be matched, we don’t match the last
one, and set her bid as the price for all other users. This
greedy mechanism is incentive compatible but cannot pro-
vide any theoretical guarantee.

• Surge: Surge pricing is widely used in practice and it’s an
effective way to promote the revenue of platform (Guda
and Subramanian 2019). We adopt a simple version of
surge pricing here. Consider users in increasing order of
their bids and allocate the task with the highest value to
them once αrj is higher than the bid of the user, where
α ∈ (0, 1) is a surge factor and rj is the value of the task.
The user is paid αrj . The algorithm also terminates until
the budget is exhausted or there are no feasible users. In
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(a) Revenue for B = 50 (b) Profit for B = 50

(c) Revenue for B = 500 (d) Profit for B = 500

Figure 3: Revenue and profit comparison when h = 300m.

the experiments, we set α = 0.8. It can be easily shown
that the Surge mechanism is not truthful.

Results

The experiment results for different acceptable extra dis-
tance h = 300m and h = 600m are given in Figure 3 and
Figure 4, respectively. In Figure 3, we show the revenue and
profit of platform under different parking location number
m and different budget B. In general, as m increases, rev-
enue and profit both increase, because of more right nodes in
the bipartite graph. When the budget is tight (B = 50), we
make the following specific observations. The revenue and
profit of our mechanism are constantly higher than Surge
and Greedy. When m is less than 30, as the bipartite graph
is small, the budget is enough and our mechanism achieves
nearly the same revenue as APP-OPT. When m is larger
than 30, the budget will be exhausted and the revenue (and
hence profit) of Surge mechanism stops increasing because
it always has a constant ratio between payment and revenue.
However, TruPreTar can output a better matching when the
bipartite graph is larger and it shows much better perfor-
mance over Surge and Greedy on both revenue and profit.
When the budget is sufficient, our mechanism is not as good
as APP-OPT but outperforms the others. As APP-OPT pays
users exactly their costs, the mechanism is budget-saving
but not practical in application because users will bid higher
costs.

In Figure 4, h is larger so more edges appear in the bi-
partite graph. In this case, the performance of APP-OPT,
TruPreTar and Surge are similar to Figure 3, but Greedy

(a) Revenue for B = 50 (b) Profit for B = 50

(c) Revenue for B = 500 (d) Profit for B = 500

Figure 4: Revenue and profit comparison when h = 600m.

shows both much better revenue and profit. This is due
to the fragility of Greedy mechanism as a single user can
determine the termination of the mechanism. Thus, when
B = 300m, the mechanism stops quickly because of the
lack of edges, and when B = 600m, the termination is de-
layed. To show this, we test another 100 rounds of m = 60
for both Greedy and TruPreTar, and the maximum revenue
of Greedy is 161.3, the minimum revenue is 19.7, and the
variance is 648.1, while the data for TruPreTar is 127.2,
98.8 and 32.2 respectively. The profit shows similar results.
Therefore, although Greedy can sometimes be slightly bet-
ter than our mechanism, it is fragile and has much larger
fluctuation.

In summary, our mechanism TruPreTar performs well on
both revenue and profit, on top of its several desirable theo-
retical properties.

Conclusion and Future Work

In this paper, we have proposed an incentive mechanism to
solve the bike rebalancing problem with predicted task value
for bike sharing systems. This mechanism, called TruPreTar,
satisfies incentive compatibility, budget feasibility, individ-
ual rationality, and computational efficiency. It also provides
theoretical guarantees on company revenue under differ-
ent budget constraints. Its performance was evaluated using
simulations based on real-world data, and the results demon-
strate its superiority in terms of both revenue and profit. In
future work, we will extend our algorithm into a real-time
decision-making mechanism, and conduct pilot studies in
real cities.
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M.; and Krause, A. 2015. Incentivizing users for balancing
bike sharing systems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence. AAAI Press.
Vaze, R. 2017. Online knapsack problem and budgeted
truthful bipartite matching. In Proceedings of the IEEE In-
ternational Conference on Computer Communications, 1–9.
IEEE.
Waserhole, A.; Jost, V.; and Brauner, N. 2013. Vehicle shar-
ing system optimization: Scenario-based approach. 2013b.
URL http://hal.archives-ouvertes.fr/hal-00727040.
Yang, Z.; Hu, J.; Shu, Y.; Cheng, P.; Chen, J.; and Mosci-
broda, T. 2016. Mobility modeling and prediction in bike-
sharing systems. In Proceedings of the 14th Annual Inter-
national Conference on Mobile Systems, Applications, and
Services, 165–178. ACM.
Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; and Yi, X. 2016. Dnn-
based prediction model for spatio-temporal data. In Pro-
ceedings of the 24th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems,
92. ACM.
Zhang, C.; Wu, F.; and Bei, X. 2018. An efficient auction
with variable reserve prices for ridesourcing. In Proceedings
of the Pacific Rim International Conference on Artificial In-
telligence, 361–374. Springer.

2151


