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Abstract

A group of agents needs to divide a divisible common resource
(such as a monetary budget) among several uses or projects.
We assume that agents have approval preferences over projects,
and their utility is the fraction of the budget spent on approved
projects. If we maximize utilitarian social welfare, the entire
budget will be spent on a single popular project, even if a
substantial fraction of the agents disapprove it. This violates
the individual fair share axiom (IFS) which requires that for
each agent, at least 1/n of the budget is spent on approved
projects. We study the price of imposing such fairness axioms
on utilitarian social welfare. We show that no division rule sat-
isfying IFS can guarantee to achieve more than an O(1/

√
m)

fraction of maximum utilitarian welfare, in the worst case.
However, imposing stronger group fairness conditions (such
as the core) does not come with an increased price, since both
the conditional utilitarian rule and the Nash rule match this
bound and guarantee an Ω(1/

√
m) fraction. The same guar-

antee is attained by the rule under which the spending on a
project is proportional to its approval score. We also study a
family of rules interpolating between the utilitarian and the
Nash rule, quantifying a trade-off between welfare and group
fairness. An experimental analysis by sampling using several
probabilistic models shows that the conditional utilitarian rule
achieves very high welfare on average.

1 Introduction

Suppose a group of agents needs to divide a common budget
among different projects, and we wish to vote over this divi-
sion. For example, a city might wish to allocate a part of its
spending according to the preferences of its residents over
different uses (“participatory budgeting”; Cabannes, 2004).
Or participants of a workshop might decide how to divide
the workshop time among different discussion topics. We
are interested in settings where the common budget is per-
fectly divisible, and each project can receive an arbitrary
fraction of the resource. Thus, an outcome of the voting pro-
cess can be seen as a vector of non-negative numbers, one
for each project, summing up to 1. Each agent is assumed
to have preferences over these distributions. This framing
suggests that we can use probabilistic social choice functions
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(Brandt 2017) to guide the voting process: a probabilistic
social choice function takes as input a profile of preferences,
and returns a probability distribution over projects, which we
interpret as a division of the budget.

Arbitrary preferences over the set of distributions can be
complicated and difficult to elicit, so the literature usually
assumes that preferences come from some restricted class,
such as von Neumann–Morgenstern preferences (i.e., additive
and linear), or given by ordinal rankings over the projects
which are then extended to preferences over distributions
in some natural way. We will use approval voting: agents
indicate, for each project, whether they approve or disapprove
it, and we assume that the utility of an agent is equal to
the fraction of the budget spent on approved projects.1 This
setting has been introduced by Bogomolnaia, Moulin, and
Stong (2005). Approval ballots make it easy for agents to
express their preferences, and they are easy to elicit. The
approval-based setup is well-studied and many rules and
fairness notions have been proposed.

Given agents’ approval preferences, a natural approach is
to pick the budget division that maximizes utilitarian social
welfare (i.e., the sum of agents’ utilities). Suppose there are
ten agents, six of which approve {a}, and four approve {b}.
Then spending 100% of the budget on a maximizes social
welfare, since shifting spending from b to a increases welfare.
In general, the utilitarian rule will always spend the entire
budget on projects with the highest approval score. While
this behavior may be desirable in some contexts, often it is
undesirable to completely ignore minority interests. In the
kinds of settings mentioned in the beginning, it seems more
appropriate to spend 60% on a and 40% on b.

The focus of several early papers about aggregation rules
for participatory budgeting was social welfare maximization
(e.g., Goel et al., 2019; Benade et al., 2017). Indeed, it seems
desirable for the budget division to have high utilitarian so-
cial welfare, so that voters have, on average, high satisfaction.
But this may not be the only goal, and several recent papers
have worked on formalizing notions of fairness and propor-
tionality in this setting (e.g., Aziz, Lee, and Talmon, 2018;
Fain, Munagala, and Shah, 2018; Talmon and Faliszewski,

1Thus, we do not allow decreasing or increasing returns, nor do
we consider substitutes and complements.
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Figure 1: The voting rules we study evaluated on the profile I = (ab, ac, ad, bcd), with the output distribution drawn as a pie
chart. For each distribution, the green bar indicates its utilitarian social welfare as a fraction of the optimum. For m = 4, our
theoretical guarantees predict that (b), (c), and (e) achieve at least 50%, and that (d) achieves at least 25% on every profile.

2019; Airiau et al., 2019). In our divisible approval-based
setting, fairness notions have been proposed by Bogomolnaia,
Moulin, and Stong (2005), Duddy (2015), Fain, Goel, and
Munagala (2016), Aziz, Bogomolnaia, and Moulin (2019)
and Brandl et al. (2019). One example is individual fair share,
which requires that every agent’s utility is at least 1/n, where
n is the number of agents. Other notions require that groups
are fairly represented: intuitively, a group of α% of the voters
should control how an α fraction of the budget is spent.

Clearly, if a rule is to satisfy such fairness axioms, it cannot
simultaneously maximize utilitarian welfare. But we can
hope that there are rules which are fair while not losing too
much in welfare terms. Figure 1 illustrates the outputs of five
previously studied voting rules on an example profile with
four voters and four projects, and calculates the utilitarian
welfare achieved on this example as a fraction of the optimum.
Duddy’s (2015) conditional utilitarian rule (CUT) achieves
92%, while maximizing Nash welfare achieves 88%.

Our aim in this paper is to formally quantify the trade-
off between fairness axioms and maximization of utilitarian
social welfare. In particular, we ask what fraction of the opti-
mum utilitarian welfare can be achieved by a rule satisfying,
say, IFS, in the worst case over all profiles (related notions in
other contexts are often referred to as the “price of fairness”;
see, e.g., Bertsimas, Farias, and Trichakis, 2011; Caragiannis
et al., 2012). We also study specific voting rules that have
been proposed for this setting, and likewise ask whether these
rules approximate utilitarian social welfare. In most cases,
we obtain asymptotically tight bounds.

Our first result shows that a rule satisfying IFS can, at most,
guarantee to provide a 2√

m
fraction of optimum utilitarian

welfare, where m is the total number of projects under con-
sideration. This bound is obtained from analyzing a simple
family of examples. Naively, one would expect that imposing
stronger fairness axioms (such as group fair share, or the core)
would further limit the obtainable utilitarian welfare, but this
is not the case: We show that both the CUT rule and the Nash
rule asymptotically match the bound, and provide at least
a 2√

m
− 2

m fraction of the optimum on every profile, even
though both rules satisfy fairness axioms much stronger than
IFS. For the Nash rule, the proof of our positive result in fact
uses its fairness properties: we show that any rule satisfying
either the core or the average fair share axiom (Aziz, Bogo-

molnaia, and Moulin 2019) guarantees an Ω( 1√
m
) fraction of

optimum welfare. To obtain our positive result for the CUT
rule, we use Brandl et al.’s (2019) notion of implementability
to prove that, on every profile, the utilitarian welfare of the
CUT rule exceeds that of the Nash rule.

We also study some other rules. For two rules (the egalitar-
ian rule and the uncoordinated equal shares rule) we find that
their guarantees are worse than that of CUT and the Nash
rule. For the rule that funds each project in proportion to its
approval score, we again obtain a guarantee of 2√

m
, which is

somewhat surprising since this rule, in contrast to the others,
does not attempt to be fair to voters. Instead, it can be seen
as being fair to candidates.

We then study a family of rules that interpolate between
the utilitarian rule and the Nash rule. Members of this family
can guarantee a higher fraction of the optimum social welfare.
While Nash satisfies the strongest fairness properties, there
are other rules in the family which guarantee high average
welfare to large groups. Thus, in this family, we quantify a
trade-off between utilitarian welfare and group fairness.

We complement our theoretical results with an experi-
mental analysis, using random preference models based on
impartial culture, mixtures of Mallow’s models, and on a spa-
tial (Euclidean) model. We find that, in the average case, all
rules outperform their worst-case guarantee. The CUT rule
achieves a remarkably high utilitarian welfare, exceeding
95% for many parameter values.

2 Preliminaries

An instance or profile is a triple I = (N,O,A), where N =
{1, . . . , n} is a set of voters, O = {o1, . . . , om} is a set of
projects, and A = (A1, . . . , An) is a list of approval sets,
i.e., subsets of O, one for each voter. The approval set Ai

of voter i ∈ N contains those projects that i approves or
finds acceptable; we assume it is non-empty. Let Im denote
the set of all instances with |O| = m. For a project oj , we
write N(oj) = {i ∈ N : oj ∈ Ai} for the set of voters who
approve oj . The approval score of oj is |N(oj)|.

A distribution over O is a vector x ∈ [0, 1]m with∑m
j=1 xj = 1. We write Δ(O) for the set of distribu-

tions. We can interpret x as either a lottery or as a divi-
sion of a fixed-size budget among the projects. Given an
instance I and a distribution x, the utility of voter i ∈ N
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for x is ui(x) =
∑

oj∈Ai
xj , i.e., the total fraction that x

spends on projects approved by i. The (utilitarian) social
welfare of x is sw(I,x) =

∑
i∈N ui(I,x). It is useful to

note that the maximum feasible social welfare sw∗(I) =
maxx∈Δ(O) sw(I,x) is attained by the distribution placing
100% on the project with highest approval score, so that
sw∗(I) = maxoj∈O |N(Oj)|. Finally, let us define the nor-
malized social welfare of x as ŝw(I,x) = sw(I,x)/sw∗(I),
the fraction of the optimum social welfare achieved by x.

Voting rules A (probabilistic) voting rule f is a function
which assigns to every instance I a set of distributions over O
(usually the output contains only one distribution, but several
could be tied). The voting rules discussed in this paper are:
• The utilitarian rule (UTIL) which selects all distributions

x maximizing sw(I,x).
• The conditional utilitarian rule (CUT) which selects the

distribution 1
n

∑
i∈N xi, where for each i ∈ N , xi is the

uniform distribution over the projects in Ai that have the
highest approval score.

• The Nash rule (NASH) which selects all distri-
butions x maximizing

∏
i∈N ui(x), or equivalently∑

i∈N log ui(x).
• The egalitarian rule (EGAL) which selects all x maximiz-

ing mini∈N ui(x) (possibly breaking ties using leximin).
• The point voting rule (PV) which selects x where xj

is proportional to the approval score |N(oj)|, for each
oj ∈ O.

• The uncoordinated equal shares rule (ES) which selects
the distribution 1

n

∑
i∈N xi, where for each i ∈ N , xi is

the uniform distribution over Ai.
These rules were introduced and studied previously (Aziz,
Bogomolnaia, and Moulin 2019; Duddy 2015; Brandl et al.
2019). Figure 1 shows the rules evaluated on an example.

3 Fairness Axioms

Let us begin our study of the impact of imposing fairness
axioms on utilitarian welfare by stating several axioms that
have been proposed. Fix an instance I with n voters and a
distribution x ∈ Δ(O). Then x satisfies
• individual fair share (IFS) if ui(x) � 1/n for all i ∈ N ;
• group fair share (GFS) if for every S ⊆ N , we have∑

oj∈
⋃

i∈S Ai
xj � |S|/n;

• implementability if we can write x = 1
n

∑
i∈N xi for some

distributions (xi)i∈N such that xi,j > 0 only if oj ∈ Ai;
• average fair share (AFS) if for every S ⊆ N such that⋂

i∈S Ai �= ∅, we have 1
|S|

∑
i∈S ui(x) � |S|/n;

• the core if for every S ⊆ N , there is no vector z ∈ [0, 1]m

with
∑m

j=1 zj = |S|/n such that ui(z) > ui(x) for all
i ∈ S.

Intuitively, an implementable distribution is obtained by split-
ting the budget into pieces of size 1/n, and letting each voter
spend their piece on approved projects. AFS requires that

UTIL CUT NASH EGAL PV ES

IFS + + + +
GFS + + +
impl. + + +
AFS +
core +

Table 1: Voting rules, and the fairness axioms they satisfy

cohesive coalitions (whose members approve at least one
project in common) have high average welfare. The core re-
quires that no group could spend their fair share of the budget
in a way that each group member prefers to x.

A voting rule f satisfies one of these notions if f(I) satis-
fies it for all instances I . Table 1 shows the rules introduced
in Section 2 and which of these fairness axioms are satisfied
by them. The lower three axioms are pairwise logically in-
dependent; each of them implies GFS, and GFS implies IFS.
For proofs and further discussion, see Aziz, Bogomolnaia,
and Moulin (2019). For a discussion of implementability see
Brandl et al. (2019) and Guerdjikova and Nehring (2014);
CUT and ES satisfy implementability by definition, and the
first-order conditions for NASH show it satisfies it too.

Our first result shows that imposing the weakest of the
above fairness axioms leads, in the worst case over profiles,
to a substantial loss of utilitarian social welfare.

Theorem 1. For each m � 2, there exists an instance I on
m projects such that for every distribution x that satisfies
IFS, we have ŝw(I,x) � 2√

m
.

Proof. Fix some m � 2. Write m = k2 + r for some k � 1
and 1 � r � k + 1. Construct an instance I as follows. Take
n = k2 + k voters. Voters i = 1, 2, . . . , k approve only o1;
for each i ∈ {k + 1, k + 2, . . . , k + k2} voter i approves
only oi−k+1. Thus, o1 is approved by k voters and k2 other
projects are each approved by a single voter.

Suppose x satisfies IFS for this instance. Then for each
j = 1, . . . , k2 + 1, we must have xj � 1

n . It follows that
x1 = 1−∑m

j=2 xj � 1− k2

n . Thus,

sw(I,x) =
∑
i∈N

ui(I,x) � k ·
(
1− k2

n

)
+ k2 · 1

n
=

2

1 + 1
k

.

Now, sw∗(I) = k since o1 is approved by k voters. Noting
that

√
m =

√
k2 + r �

√
(k + 1)2 = k + 1, we have

ŝw(I,x) =
sw(I,x)

k
� 2

k + 1
� 2√

m
.

This completes the proof.

Note that in the hard instance constructed in Theorem 1,
every voter’s approval set is a singleton. Intuitively, if voters
are inflexible and single-minded, then the conflict between
individual fairness and utilitarian welfare is strongest.

A priori, one would expect that imposing stronger fairness
notions than IFS (such as GFS, AFS, or the core) would come
at a greater cost to utilitarian welfare than imposing only IFS.
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As we will see, this need not be the case: there are rules (such
as the Nash rule) which achieve the bound of Theorem 1
while satisfying those stronger properties.

Several of the fairness axioms we mentioned have the form
of imposing lower bounds on the utility of individuals or of
groups of agents. AFS, in particular, requires that cohesive
groups of agents have a high level of utility on average. Thus,
imposing AFS does not only impose a cost on welfare, but
might also give a guarantee: the welfare of an AFS distribu-
tion cannot be too low. Remarkably, the guarantee provided
by AFS asymptotically matches the lower bound for IFS.
Theorem 2. Let I be an instance, and let x be a distribution
satisfying AFS. Then ŝw(I,x) � 2√

m
− 2

m .

Proof. Consider the project in O with the highest approval
score. Without loss of generality, assume it is o1; let a1 =
|N(o1)|. Applying AFS to the coalition S = N(o1), we see
that the total utility

∑
i∈S ui(x) of members of N(o1) is

at least (a1)2/n. Now, remove the voters from N(o1) from
our further reasoning, and consider the project approved by
the most voters from N \N(o1); without loss of generality
assume it is o2. Let a2 denote the number of voters from
N \N(o1) who approve o2. By the same reasoning as before,
we get that the total utility of the voters from N(o2) \N(o1)
equals at least (a2)2/n. By applying the same reasoning
recursively we get that that the total utility of the voters
equals at least:

sw(I,x) �
m∑
i=1

(ai)
2

n
.

Further, since
∑m

i=1 ai = n, we get that:

sw(I,x) �
∑m

i=1(ai)
2∑m

i=1 ai
, and hence ŝw(I,x) �

∑m
i=1(ai)

2

a1
∑m

i=1 ai
.

Let us set bj = aj/a1 for each j = 1, . . . ,m, and s =∑m
j=2 bj . From the Cauchy-Schwarz inequality we know

that
m∑
j=2

b2j � s2

m− 1
.

Thus, we have that:

ŝw(I,x) �
∑m

i=1 a
2
i

a1
∑m

i=1 ai
=

1 +
∑m

j=2 b
2
j

1 +
∑m

j=2 bj
� m− 1 + s2

(m− 1)(s+ 1)
.

When we consider the function g(s) = m−1+s2

(m−1)(s+1) for
s ∈ [0,m − 1], we see that it has value 1 on both ends.
Let us compare the derivative of the function to 0 to find the
extremum (omiting the denominator to simplify the proof):

2s(m− 1)(s+ 1)− (m− 1)(m− 1 + s2) = 0

⇐⇒ s2 + 2s− (m− 1) = 0

This gives s =
√
m− 1 (the second root is negative). Now,

g(
√
m− 1) =

m− 1 +m+ 1− 2
√
m√

m(m− 1)
=

2 + 2−2
√
m

m−1√
m

�
2− 2

√
m

m√
m

=
2√
m

− 2

m
.

Hence, ŝw(I,x) � infs g(s) � 2√
m

− 2
m , as required.

The core similarly guarantees a minimum welfare level,
though our bound is weaker by a factor of 2. The proof is
similar to the proof of Theorem 2, using an idea also used
in the context of committee elections and extended justified
representation (Sánchez-Fernández et al., 2017, Thm. 6).

Theorem 3. Let I be an instance, and let x be a distribution
satisfying the core. Then ŝw(I,x) � 1√

m
− 1

m .

4 Guarantees for Voting Rules

In this section, we analyze the voting rules introduced in
Section 2, to obtain guarantees on their normalized social
welfare. Formally, for each number m of alternatives, we cal-
culate the rules’ efficiency guarantee (Lackner and Skowron
2019)

κeff(f,m) = min
I∈Im

ŝw(I, f(I)).

Efficiency of NASH

Based on Section 3, the efficiency guarantee of NASH
is easy to determine. Since NASH satisfies IFS, by The-
orem 1, we have κeff(NASH,m) � 2√

m
. On the other

hand, since NASH satisfies AFS, by Theorem 2, we have
κeff(NASH,m) � 2√

m
− 2

m . Thus, we have proved the fol-
lowing:

Theorem 4. The efficiency guarantee for NASH is between
2√
m

− 2
m and 2√

m
.

Efficiency of CUT

Just as for NASH, we obtain an upper bound on the efficiency
guarantee of CUT from Theorem 1, since CUT satisfies IFS.
However, CUT fails AFS and the core, so we cannot use the
results in Section 3 to obtain a lower bound. However, we can
use them indirectly, by comparing the CUT rule to NASH:

Lemma 1. For every instance I , we have sw(I,CUT(I)) �
sw(I,NASH(I)).

Proof. As suggested by Brandl et al. (2019), the CUT
rule maximizes utilitarian welfare among implementable
distributions: For every implementable x, we have
sw(I,CUT(I)) � sw(I,x). This is because, writing x =
1
n

∑
i∈N xi like in the definition of implementability, maxi-

mization of social welfare requires that each xi maximizes
welfare, subject to the requirement that the support of xi is
contained in Ai. This is precisely what the CUT rule does.
The result of the lemma follows if we choose x = NASH(I),
noting that NASH(I) is implementable (Brandl et al. 2019;
Guerdjikova and Nehring 2014).

Thus, the lower bound for NASH also applies to CUT.

Theorem 5. The efficiency guarantee for CUT is between
2√
m

− 2
m and 2√

m
.

Efficiency of EGAL

A notable feature of the egalitarian rule EGAL is that it does
not attempt to be fair to groups. The egalitarian objective
even treats different voters with the same approval set as if
they were a single voter; thus, if we copy a voter many times,
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the output of EGAL does not change. This is in contrast
to the behavior of (for example) NASH and CUT, where a
voter gets more influence when copied.

Our proofs of the welfare guarantees of NASH and CUT
were based on guarantees for groups. A similar argument
cannot work for EGAL. Supporting this intuition, we find
that the efficiency guarantee of EGAL is substantially worse.

Theorem 6. The efficiency guarantee of EGAL is 1
m .

Proof. Let I be an instance. Observe that for x =
( 1
m , . . . , 1

m ), we have ui(I,x) � 1
m for each voter i ∈ N .

So the egalitarian welfare of x is at least 1
m . Let xegal be a

distribution returned by EGAL for I . Its egalitarian welfare
must also be at least 1

m , so ui(I,xegal) � 1
m for each i ∈ N .

Hence,

sw(I,xegal) =
∑

i∈N ui(I,x) � n
m .

Since for every distribution x we have sw(I, x) � n, we get:

ŝw(I,xegal) � n
mn = 1

m .

It follows that κeff(EGAL,m) � 1
m .

For the lower bound, let us fix k > 0, and consider
an instance with m projects and k + m − 1 voters, con-
structed as follows. The first k voters approve {o1}. For
each i = 1, . . . ,m − 1, voter k + i approves {oi+1}. Let
x be a distribution. Then there exists some project oi with
xi � 1

m , and thus there exists a voter i ∈ N with ui(x) � 1
m .

Thus, the egalitarian welfare of x is at most 1
m , and this

value is achieved only when x = xegal = ( 1
m , 1

m , . . . , 1
m ).

We have sw(I,xegal) =
∑

i∈N ui(I,x) = k+m−1
m . On

the other hand, sw∗(I) = k (which is achieved for x∗ =
(1, 0, 0, . . . , 0)). This leads us to:

κeff(EGAL,m) � k +m− 1

mk
=

1

m
+

1

k
− 1

mk

k→∞−−−−→ 1

m
.

Combining both directions, we obtain κeff(EGAL) = 1
m .

Efficiency of PV

Inspecting Table 1, we see that point voting (PV) does not
satisfy any of our fairness axioms. A simple example is the
profile I = (abc, d, e) with three voters. PV returns the uni-
form distribution over {a, b, c, d, e}. This violates individual
fair share (IFS) for the voter approving {d}, since d gets
1
5 < 1

3 . One interpretation of the rule PV is that it aims to be
fair to projects, not voters: a project a receives more funding
than b if and only if more voters approve a than approve b.

Interestingly, we find that despite the different philosophy
behind PV, its worst-case efficiency guarantee matches the
one we found for NASH and CUT.

Theorem 7. The efficiency guarantee for PV is between
2√
m

− 2
m and 2√

m
.

Proof. We first prove the lower bound. Let I be an instance
with O = {o1, . . . , om}. For j = 1, . . . ,m, we write nj =
|N(oj)| for the approval score of oj . Label the projects so
that n1 � n2 � . . . � nm. Then, the maximum social

welfare is sw∗(I) = n1. Now, PV chooses the distribution
x = 1∑m

j=1 nj
(n1, n2, . . . , nm). Then we have

sw(I,x) =
∑
i∈N

∑
oj∈Ai

nj∑m
k=1 nk

=
∑
oj∈O

∑
i∈N(oj)

nj∑m
k=1 nk

=
∑
oj∈O

(nj)
2∑m

k=1 nk

Hence, using the estimation from the second part of the proof
of Theorem 2,

ŝw(I,x) =
∑
oj∈O

(nj)
2

n1

∑m
k=1 nk

� 2√
m

− 2

m
.

For the upper bound, we observe that while PV fails IFS
in general, it satisfies IFS on profiles in which every approval
set is a singleton. Since the hard instance in the proof of
Theorem 1 only contains singleton approval sets, the upper
bound of Theorem 1 applies to PV.

Efficiency of ES
The rule ES gives each voter a 1/n share of the resource to
spend on approved projects. The same is true for CUT, where
each voter uses their share in a utilitarian way, taking other
voters’ preferences into account. In contrast, under ES, there
is no coordination, and voters ignore others’ preferences.

While we do not give a tight estimate of the utilitarian
efficiency of ES, we separate it from that of CUT: In the
worst case, the normalized social welfare under ES is worse
than under CUT. This underscores the value of coordination,
and it shows that implementability alone is not enough to
obtain the positive results we obtained for NASH and CUT.
Theorem 8. The efficiency guarantee of ES is O

(
1

m2/3

)
.

Proof. Let us fix two integers, c and � such that c+� � m−1,
and let us consider the following instance. The first (m −
1)
(
m−1
c

)
voters are divided into m − 1 groups, and within

each group, the voters are indexed with c-element subsets
of {2, . . .m}. For each such a subset S = {i1, . . . , ic}, the
voter with index S approves projects oi1 , . . . , oic and o1.
Thus, each of the first (m− 1)

(
m−1
c

)
voters approves exactly

c+ 1 projects, and each project other than o1 is approved by(
m−1
c

)
c such voters. The remaining voters are divided into

m− 1 groups, each consisting of �
(
m−1
c

)
voters; the voters

from the i-th group approve project oi+1. Thus, altogether
o1 is approved by (m − 1)

(
m−1
c

)
voters, and each other

candidate is approved by
(
m−1
c

)
c+ �

(
m−1
c

)
voters. Clearly,

we have

n = (m− 1)
(
m−1
c

)
+ (m− 1)�

(
m−1
c

)
= (m− 1)(�+ 1)

(
m−1
c

)
.

ES chooses the distribution x = (p1, p2, p2, . . . , p2), where

p1 =
(m− 1)

(
m−1
c

)
(c+ 1)n

=
1

(c+ 1)(�+ 1)
,

p2 =
�
(
m−1
c

)
+ c

c+1

(
m−1
c

)
n

=
�+ 1− 1

c+1

(m− 1)(�+ 1)
.
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Then the total utility achieved by this distribution equals:

(m− 1)
(m− 1

c

)
p1 + (m− 1)p2

((m− 1

c

)
c+ �

(m− 1

c

))
=

(m− 1

c

)( m− 1

(c+ 1)(�+ 1)
+

(�+ c)(�+ 1− 1
c+1

)

(�+ 1)

)
.

The highest possible utilitarian score is (m − 1)
(
m−1
c

)
, so

the guarantee is at most:

1

(c+ 1)(�+ 1)
+

(�+ c)(�+ 1− 1
c+1

)

(m− 1)(�+ 1)
<

1

c�
+

�+ c

m− 1

� 1

c�
+ (1 + ε)

�+ c

m
,

for ε = 1
m−1 > 0, which is close to 0 when m → ∞. When

we set c = � = m(1/3), we get the upper bound

1

m(2/3)
+ (1 + ε)

2

m(2/3)
=

3 + 2ε

m(2/3)

for our guarantee. This completes the proof.

5 A Trade-Off Between

Group Fairness and Utilitarian Efficiency

In this section, we consider a family of rules. Let f : [0, 1] →
R be a non-decreasing function. The f -UTIL rule selects
the distributions x that maximize

∑
i∈N f(ui(x)). Thus, the

rule transforms voter utilities using f and then maximizes the
sum. If f is the identity, this is UTIL; if f = log then it is
NASH. Bogomolnaia, Moulin, and Stong (2002) considered
this family and showed that UTIL is its only member satis-
fying strategyproofness, and that NASH is its only member
satisfying GFS (or the stronger AFS). Here, for well-behaved
f , we will show that f -UTIL satisfies a weakening of AFS,
and give a lower bound for its utilitarian efficiency.

Our first result gives a guarantee for the average welfare of
groups of voters who approve at least one project in common.
Theorem 9. Let f be a continuous non-decreasing function
with a convex derivative. Let x be a lottery returned by f -
UTIL. For every S ⊆ N with

⋂
i∈S Ai �= ∅, we have:

1

|S|
∑
i∈S

ui(x) � (f ′)−1
(nM
|S|

)
,

where M = maxx∈[0,1](f
′(x)x).

If we plug in f = log into this theorem, we confirm that
NASH satisfies AFS. For another example, if we plug in
f(x) =

√
x, we find that a cohesive group S will obtain an

average welfare of at least (|S|/n)2. Note that this is strictly
weaker than the guarantee implied by AFS (except when
|S| = n). Note also that larger groups S obtain a relatively
stronger guarantee than smaller groups. More generally, for
f(x) = xα with 0 < α < 1, we get that a cohesive group S
obtains average welfare of at least (|S|/n)1/(1−α). As α → 0,
this guarantee converges to full AFS.

Proof of Theorem 9. Let x and S be as in the theorem. For a
contradiction, assume that 1

|S|
∑

i∈S ui(x) < (f ′)−1
(

nM
|S|

)
.

The Lagrangian for the optimization of
∑

i∈N f(ui(x)) is

L(x, λ) =
∑
i∈N

f(ui(x))− λ
(
1−

∑
j∈[m]

xj

)
.

From the KKT conditions, ∂L
∂xj

� 0 for each j ∈ [m], and so∑
i∈N(oj)

f ′(ui(x)) − λ � 0, which holds with equality if
xj > 0. Thus, for each xj we get

∑
i∈N(oj)

f ′(ui(x))xj =

λxj . Summing up over all j ∈ [m], we get:

λ = λ
∑
j∈[m]

xj =
∑
i∈N

∑
oj∈Ai

f ′(ui(x))xj

=
∑
i∈N

f ′(ui(x))ui(x) � nM .

Thus for each oj ∈ O, we have nM �
∑

i∈N(oj)
f ′(ui(x)).

Since there exists a project approved by all the members of
S, it must be the case that

∑
i∈S f ′(ui(x)) � nM . Using

Jensen’s inequality, we find that

∑
i∈S

f ′(ui(x)) � |S|f ′
(∑

i∈S ui(x)

|S|
)

> |S|f ′
(
(f ′)−1

(nM
|S|

))
= nM .

This gives a contradiction and completes the proof.

Theorem 9 gives us examples of rules that provide well-
defined group fairness guarantees, weaker than AFS. In par-
ticular, these guarantees do not in general imply IFS, so that
the bound on utilitarian welfare given by Theorem 1 does
not apply. Hence, we might hope that the weakening of AFS
allows for asymptotically higher utilitarian welfare. The next
theorem gives a lower bound on the utilitarian efficiency of
f -UTIL for well-behaved f .

Theorem 10. Let f be a continuous non-decreasing function
with a convex derivative. Suppose κ∗ ∈ [0, 1] is such that

2κ∗ · f ′( 1
2m ) = f ′(κ∗). (1)

Then the efficiency guarantee of f -UTIL is at least κ∗.

If we plug in f = log, then κ∗ = 1
2
√
m

solves (1), which
matches the guarantee of Theorem 4 up to a factor of 4.
If we plug in f(x) =

√
x, we find that κ∗ must satisfy

κ∗√2m = 1/(2
√
κ∗), which gives κ∗ = Ω(m−1/3). Thus,

the sqrt-UTIL rule provides a substantially stronger utili-
tarian guarantee than the NASH rule. More generally, for
f(x) = xα with 0 < α < 1, we obtain a utilitarian efficiency
of Ω(m1/(2−α)−1).

Proof of Theorem 10. Let ow be the most popular project,
and let x be a lottery returned by f -UTIL.

If
∑

i∈N(ow) ui(x) � |N(ow)|κ∗, then we already obtain
our guarantee. Thus, from now on we will assume that∑

i∈N(ow)

ui(x) < |N(ow)|κ∗.
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Consider a project oj such that |N(oj)| < 2|N(ow)|κ∗.
We will first show that xj � 1

2m . For the sake of contradic-
tion, let us assume that xj >

1
2m . Then, we have that:∑

i∈N(ow)

f ′(ui(x)) �
∑

i∈N(oj)

f ′(ui(x))

<
∑

i∈N(oj)

f ′( 1
2m

)
= f ′( 1

2m

) · |N(oj)|.

We continue the analysis using the Jensen’s inequality:

f ′( 1
2m

)|N(oj)| >
∑

i∈N(ow)

f ′(ui(x))

� |N(ow)|f ′
(∑

i∈N(ow) ui(x)

|N(ow)|
)

� |N(ow)|f ′(κ∗).

This would however imply that:

|N(oj)|
|N(ow)| >

f ′(κ∗)
f ′( 1

2m )
= 2κ∗,

a contradiction. Consequently, the projects oj with |N(oj)| �
2|N(ow)|κ∗ get a total probability mass of at most 1

2 . As a
result, a mass of at least 1

2 is distributed among projects
which are approved by at least 2|N(ow)|κ∗ voters. Thus, the
total utility of the voters is at least equal to 1

2 · 2|N(ow)|κ∗,
which yields the guarantee from the theorem statement.

6 Average Guarantees: Experiments

In this section we extend our approach beyond the worst-case
analysis. In a series of computer simulations we assess the
average efficiency and egalitarian fairness of randomized
rules assuming that voters’ preferences come from certain
distributions. We checked the following three distributions:

Euclidean Model. The voters and projects are associated
with points in two-dimensional Euclidean space. The
points are drawn uniformly at random from a square. Then,
for each voter i ∈ N , we select ki ∈ {1, . . . ,m} uniformly
at random. The voter approves the ki closest projects. (We
also considered the same models where ki is the same for
all voters, or where voters approve all projects within a
random radius. These models show a similar behavior.)

Impartial Culture. For each i ∈ N , choose ki ∈
{1, . . . ,m} uniformly at random, and independently for
each project o, voter i approves o with probability k

m . If,
in the end, no project is approved, the voter approves one
random project.

Mallow’s (1957) Model. We first sample three reference
rankings of the projects. Then, for each voter i ∈ N we
randomly choose one of these rankings, say π, and sample
a ranking πi from the Mallow’s model with parameter π.
Finally, we assume i approves the first k projects from πi,
where k is drawn uniformly at random from {1, . . . ,m}.

For each distribution we consider 224 configurations for the
values of n and m: we take m = 2, 3, 4, 5, 10, 30, 50, 100,

(a) m = 10

(b) m = 50

Figure 2: The average normalized social welfare of our voting
rules, with preferences drawn from the Mallow’s model.

and n = 10, 20, . . . , 90, 100, 150, 200, . . . , 950, 1000. For
each configuration we draw 500 instances, and for each in-
stance I and each rule f we calculate the normalized welfare
ŝw(I, f(I)).

We present our results in Figure 2 and in Table 2. The
figure shows plots for the Mallow’s Model for m = 10, 50.
The table shows numerical values for different distributions,
for the average and the worst case over the sampled instances.

The most striking feature of the plots in Figure 2 is the very
high utilitarian welfare achieved by CUT, both in absolute
terms and compared to the other rules. As shown in Table 2,
CUT achieves 96%+ on average for all three probabilistic
models. This suggests that, in practice, the utilitarian loss
of CUT may be tiny. While NASH and PV have the same
asymptotic worst-case utilitarian efficiency as CUT, we see
that in our experiments, PV does much worse than NASH,
and NASH does worse than CUT. However, the NASH rule
still has high welfare, achieving 86%+ on average, suggest-
ing that the extra utilitarian loss from the stronger fairness
guarantees of NASH is moderate. While in the worst case,
EGAL and ES have a worse utilitarian efficiency than PV,
these three rules appear to have a similar performance on
average.

We found that the differences between probabilistic models
are small in terms of the price of fairness. Thus, we expect
that our conclusions are fairly robust.
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Rule
Euclidean Model Impartial Culture Mallow’s Model

avg worst avg worst avg worst
m = 10 50 10 50 10 50 10 50 10 50 10 50

CUT 0.92 0.93 0.73 0.7 0.99 0.99 0.96 0.98 0.97 0.98 0.94 0.95
NASH 0.86 0.85 0.67 0.66 0.97 0.96 0.91 0.93 0.91 0.92 0.86 0.86
PV 0.76 0.74 0.59 0.55 0.97 0.95 0.91 0.91 0.84 0.78 0.67 0.61
ES 0.76 0.73 0.59 0.55 0.97 0.95 0.91 0.91 0.85 0.79 0.71 0.64
EGAL 0.72 0.72 0.49 0.57 0.97 0.95 0.9 0.92 0.82 0.78 0.57 0.54

Table 2: The average efficiency guarantees for selected rules and distributions of voters’ preferences, with n = 1000. The column
“worst” gives the lowest value that was obtained over 500 samples.

7 Conclusion

We have studied the effect of imposing fairness constraints
on the utilitarian social welfare in a simple model of budget
division problems. Our surprisingly universal answer is that
sensible rules in this context are guaranteed to provide a
roughly 2√

m
fraction of the optimum social welfare. This

bound is obtained for the rule which maximizes Nash welfare,
and for the simple conditional utilitarian rule. In each case,
we can show that the guarantee is asymptotically tight.

While there is no asymptotic worst-case separation be-
tween these rules on the criterion we have studied, differ-
ences do emerge in an empirical analysis. Using a variety of
probabilistic models, we find that the conditional utilitarian
rule significantly outperforms all other fair rules proposed in
the literature. In situations where high utilitarian welfare is
particularly desired, this can provide a compelling reason to
use the conditional utilitarian rule over, say, the Nash rule.
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