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Abstract

The Iterated Prisoner’s Dilemma (IPD) is a well-known
benchmark for studying the long term behaviours of rational
agents. Many well-known strategies have been studied, from
the simple tit-for-tat (TFT) to more involved ones like zero
determinant and extortionate strategies studied recently by
Press and Dyson. In this paper, we consider what we call in-
vincible strategies. These are ones that will never lose against
any other strategy in terms of average payoff in the limit. We
provide a simple characterization of this class of strategies,
and show that invincible strategies can also be nice. We dis-
cuss its relationship with some important strategies and gen-
eralize our results to some typical repeated 2x2 games. It’s
known that experimentally, nice strategies like the TFT and
extortionate ones can act as catalysts for the evolution of co-
operation. Our experiments show that this is also the case for
some invincible strategies that are neither nice nor extortion-
ate.

Introduction
The Iterated Prisoner’s Dilemma is a classic benchmark used
to study rational agents’ long term behavior. It involves two
agents playing repeatedly the Prisoner’s Dilemma (PD). In
the PD, each player can choose between Cooperate (C) and
Defect (D). If both choose C, they receive a payoff of R
(rewards); If both choose D, they receive a payoff of P
(penalty); If one chooses C and the other D, the defector
receives a payoff of T (temptation to defect) and the coop-
erator receives a payoff of S (sucker’s payoff). The assump-
tions are T > R > P > S and 2R > T + S > 2P . Table 1
gives a normal form representation of this game (Rapoport
and Chammah 1965).

Table 1: Prisoner’s Dilemma

C D
C (R,R) (S,T)
D (T,S) (P,P)

The profile (D,D) is the dominant Nash equilibrium of
this game. But both players receive a higher payoff of R
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if they decide to cooperate, hence the dilemma. There is
no controversy about what a rational agent should do when
playing the PD. However, if the game is repeated indefinitely
or infinitely, it is not clear which if any strategy is the best. In
fact, it is easy to see that there is no one best strategy against
all other possible ones (Axelrod and Hamilton 1981).

Researchers from diverse disciplines have used the IPD to
study the emergence of cooperation among unrelated agents.
Robert Axelrod (Axelrod and Hamilton 1981) was the first
to run some computer tournaments on iterated prisoner’s
dilemma. Remarkably the simple Tit-For-Tat (TFT) strat-
egy was the winner. In 2012 (Press and Dyson 2012) dra-
matically changed people’s understanding of this game by
deriving what they called zero determinant (ZD) strategies.
Among them, of particular interests are what they called ex-
tortionate strategies that can enforce an extortionate linear
relation between the players’ scores. We will show that ex-
tortionate strategies are invincible, in the sense that no strate-
gies can have a higher average payoff when they play against
them for infinite rounds.

In this paper we define the class of invincible strate-
gies, and show that they can be characterized by three sim-
ple conditions. Such invincible strategies can also be nice,
which is never the first to defect. This result is then used
to discuss its relationship with extortionate strategy (Press
and Dyson 2012), Akin’s good strategy (Akin 2016) and
other related works (Hilbe, Traulsen, and Sigmund 2015;
Hao, Li, and Zhou 2018).

The rest of this paper is organized as follows. We first in-
troduce iterated prisoner’s dilemma and briefly review some
known results about it, especially the ones about memory-
one strategies. We then formally define the class of invin-
cible strategies, proving that they can be characterized by
three simple conditions. We then relate them to Press and
Dyson’s extortionate and ZD strategies, as well as Akin’s
good strategies. We next consider generalizing our results to
some other repeated 2x2 games, report some experimental
results about invincible strategies and finally conclude the
paper with some concluding remarks.
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Table 2: Outcome and Strategy

Outcome∗ CC CD DC DD
Stationary Distribution v1 v2 v3 v4

Strategy of p p1 p2 p3 p4
Strategy of q q1 q3 q2 q4

* Outcome is defined from p’s perspective

Iterated Prisoner’s Dilemma

The IPD is the repeated PD given in Table 1 under the con-
straint that T > R > P > S and 2R > T +S > 2P so that
cooperation pays off in the long run. An often used example
of the PD that satisfies these constraints is (R,S, T, P ) =
(3, 0, 5, 1).

In a repeated game like the IPD, a player’s strategy is
a function from histories of interactions to actions. Of-
ten one restricts strategies to some specific forms, such as
Turing machines (Chen and Tang 2015; Knoblauch 1994;
Megiddo and Wigderson 1986), finite automata (Rubinstein
1986; Ben-Porath 1990; Gilboa 1988; Zuo and Tang 2015),
ones with limited memories (Hauert and Schuster 1997;
Lindgren 1992; Chen et al. 2017), and other forms of
bounded rationality (e.g. (Osborne and Rubinstein 1994;
Shoham and Leyton-Brown 2008)).

For the IPD, (Press and Dyson 2012) proved that the
player with the shortest memory sets the rule of the game,
and that the co-player cannot evade memory-one strategy by
changing his own strategy on a short timescale, even arbi-
trarily on every move of the game. Thus one needs only con-
sider memory-one mixed strategies, which also win against
more complex and human-like strategies, such as intention
recognition (Anh, Moniz Pereira, and Santos 2011), the-
ory of mind (Devaine, Hollard, and Daunizeau 2014) and
neural-network based strategies (McNally, Brown, and Jack-
son 2012).

A memory-one (mixed) strategy decides with certain
probabilty what action to do based on the outcome of the
previous round. Thus it can be defined by the probabilities
pCC , pCD, pDC , and pDD of playing C when the previous
outcomes are CC, CD, DC, and DD, respectively. In the
following, we write X’s (player 1’s) strategy p as a tuple in
the following order:

p = (p1, p2, p3, p4) = (pCC , pCD, pDC , pDD),

and Y’s strategy as a tuple in the following order:

q = (q1, q2, q3, q4) = (qCC , qDC , qCD, qDD).

Notice that the orders for X and Y are the same when they
are viewed from the player’s own perspective.

A probability distribution v on the set of outcomes
is a non-negative vector v = (v1, v2, v3, v4) =
(vCC , vCD, vDC , vDD) with unit sum: v1+v2+v3+v4 = 1.
Given an initial distribution, the probability distribution af-
ter the r-th iteration is noted by vr. The relationship between
outcome and strategies is shown in Table 2.

An effective way to study memory-one strategies is to
view their interactions as Markov chains. Our following pre-

sentation follows mostly after (Press and Dyson 2012) and
(Akin 2016).

If X uses initial probability p0 (for playing C) and strat-
egy p = (p1, p2, p3, p4), Y uses initial probability q0 and
memory-one strategy q = (q1, q2, q3, q4), then the probabil-
ity distribution of the first iteration is v1 = (p0q0, p0(1 −
q0), (1 − p0)q0, (1 − p0)(1 − q0)) and the successive out-
comes follow a Markov chain with transition matrix given
by:

M =

⎛
⎜⎝
p1q1 p1(1− q1) (1− p1)q1 (1− p1)(1− q1)
p2q3 p2(1− q3) (1− p2)q3 (1− p2)(1− q3)
p3q2 p3(1− q2) (1− p3)q2 (1− p3)(1− q2)
p4q4 p4(1− q4) (1− p4)q4 (1− p4)(1− q4)

⎞
⎟⎠

Each entry of M represents the probability of transition
between different states, and vrM = vr+1. If vM = v,
then we say that v is stationary. Following (Akin 2016), we
call M convergent when there is a unique stationary distribu-
tion vector for M. Although the sequence of vi(i = 1, 2, ...)
may cycle through several states and thus not converge,
the sequence of the Cesaro averages { 1

n

∑n
i=1 v

i} of the
outcome distributions always converges to some stationary
distribution v (Akin 2016). Thus this limit of average al-
ways exists given the game is infinitely repeated. That is, if
limn→∞ 1

n

∑n
k=1 v

k = v, then vM = v.
Press and Dyson (Press and Dyson 2012) showed that if

v is a stationary vector of the Markov matrix M, then its
dot product with any vector f = (f1, f2, f3, f4) is propor-
tional(noted as ≡) to D(p,q, f), which can be written as:

v · f ≡ D(p,q, f)

=

∣∣∣∣∣∣∣

p1q1 − 1 p1 − 1 q1 − 1 f1
p2q3 p2 − 1 q3 f2
p3q2 p3 q2 − 1 f3
p4q4 p4 q4 f4

∣∣∣∣∣∣∣
(1)

A normalization converts this proportion to equivalent,
and the payoffs sX and sY of X and Y, respectively, in v
can be computed as

sX =
v · SX

v · 1 =
D(p,q,SX)

D(p,q,1)

sY =
v · SY

v · 1 =
D(p,q,SY)

D(p,q,1)
(2)

where SX = (R,S, T, P ) is the X’s payoff matrix and
SY = (R, T, S, P ) the Y’s.

Since f can be any four-vector, we shall use equation (1)
to calculate the value of v2 and v3 in the next section.

Invincible Strategy

Stationary Distribution

Since only outcome CD and DC make a difference to play-
ers’ payoffs, what we really care about is the relation be-
tween v2 and v3, which can be calculated according to Eq.
(1). The normalization is similar to Eq. (2), which guaran-
tees v1 + v2 + v3 + v4 = 1 .
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Let f2 = (0, 1, 0, 0), f3 = (0, 0, 1, 0), then,

v2 =
v · f2
v · 1 =

D(p,q, f2)

D(p,q,1)

v3 =
v · f3
v · 1 =

D(p,q, f3)

D(p,q,1)
(3)

For simplicity, let D = D(p,q,1), D2 = D(p,q, f2),
D3 = D(p,q, f3). Then, v2 = D2

/
D, v3 = D3

/
D.

If D = 0, there may be more than one stationary distri-
butions, depending on the initial distribution. For example,
when both players take strategy Repeat, that is, p = q =
(1, 1, 0, 0), then D = 0 and the vector of stationary distri-
bution v is exactly the same as initial distribution v1. Such
special cases will be discussed separately as the calculation
is different from above.

Theorem 1. Assume p1, ..., p4, q1, ..., q4 ∈ [0, 1], then for
D = D(p,q,1), D ≤ 0

Proof. ∀z ∈ {p1, ..., p4, q1, ..., q4}, ∂2D
/
∂2z = 0. So,

when all variables in {p1, ..., p4, q1, ..., q4} except z are
fixed, ∂D

/
∂z = C, where C is a constant independent of z.

Thus, when other variables are fixed, D(z) is a monotonic
function. Thus we can get all extrema of D by letting

z = 0 or z = 1, ∀z ∈ {p1, ..., p4, q1, ..., q4}
Since all of 28 = 256 extrema are less or equal to zero, we
can conclude that D ≤ 0.

Invincible Strategy

Definition 1 (Invincible Strategy). Player X plays a
memory-one strategy p against player Y who plays memory-
one strategy q. Player X and Y get the average payoff of sX
and sY respectively. A memory-one strategy p is invincible
if against any other memory-one strategy q, for any initial
distribution v0, the players’ payoffs satisfy sX ≥ sY .

According to our definition, a memory-one strategy p is
invincible if it will not lose against any other memory-one
strategy. Notice that according to (Press and Dyson 2012),
this implies that p will not lose against any other strategy,
memory-one or not, as having longer memory or playing
more complex strategy will not help.

In Table 1, both players share the same payoff on action
profile CC and DD, therefore only profile CD and DC
matter when we compare payoffs, hence we have the fol-
lowing lemma.

Lemma 1. Assume sX and sY exist according to (2), and
that v = (v1, v2, v3, v4) is the unique stationary distribu-
tion. Under T > S, sX ≥ sY ⇐⇒ v2 ≤ v3.

Proof.

sX ≥ sY ⇐⇒ v · SX ≥ v · SY

⇐⇒ (T − S) ∗ (v3 − v2) ≥ 0

⇐⇒ v2 ≤ v3

We need Akin’s lemma as well as a similar new lemma in
the proof of our theorems.

Lemma 2 (Akin’s Lemma). Assume that X uses the strategy
p = (p1, p2, p3, p4), we call p̃ = (p1 − 1, p2 − 1, p3, p4) the
Press-Dyson vector of p. If the opponent Y uses a strategy
pattern that yields a sequence of distributions {vn}, then

lim
n→∞

1

n

n∑
k=1

vk · p̃ = 0

Or shortly,

v · p̃ = v1(p1 − 1) + v2(p2 − 1) + v3p3 + v4p4 = 0. (4)

Lemma 3. Assume that X uses the strategy p =
(p1, p2, p3, p4) and Y uses the strategy q = (q1, q2, q3, q4).
Let u = (p1q1 − 1, p2q3, p3q2, p4q4), v is the stationary
vector, then

v · u = v1u1 + v2u2 + v3u3 + v4u4 = 0.

Proof. Let f = u = (p1q1 − 1, p2q3, p3q2, p4q4), then ac-
cording to Eq. (1),

v · u ≡ D(p,q,u) = 0 (5)

Eq. (5) is zero because the first and fourth column in this
determinant are the same.

Theorem 2. If p = (p1, p2, p3, p4) is invincible, then

p2 + p3 ≤ 1 (6)

p4 = 0 (7)

p2 
= 1 (8)

Proof. Suppose p is invincible.
Assume p2 = 1. Consider when p plays against Always

Defect and assume the first iteration is {CD}. The unique
stationary distribution is (0,1,0,0). So for this game p has
lower score, a contradiction with our assumption that p is
invincible. This shows p2 
= 1.

Suppose p4 > 0. Consider again when p plays against Al-
ways Defect. From p’s perspective, the possible outcomes
are either {DD,CD} or {CD}. Either case, strategy p
loses. Thus p4 = 0 for p to be invincible.

Thus we can assume p = (p1, p2, p3, 0). Now consider it
plays against q = (0, 0, 0, 1). Apply Lemma 2 to p, we get,

(p1 − 1)v1 + (p2 − 1)v2 + p3v3 = 0 (9)

Apply Lemma 3 to both p and q, we have,

−v1 = 0 (10)

From Eq. (9) and (10), we get, (1− p2)v2 = p3v3.
Since p is invincible, by Lemma 1, v2 ≤ v3.
Thus 1− p2 ≥ p3, hence p2 + p3 ≤ 1.

Theorem 3. If conditions (6), (7) and (8) hold, then p =
(p1, p2, p3, p4) is invincible.
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Proof. Suppose agent X and Y take strategy p and q respec-
tively, D = D(p,q,1).

Let L =(1− p2 − p3)(1− p1q1)

+ (1− p1)p3q2 + (1− p1)p2q3

Given that p1, ..., p4, q1, ..., q3 ∈ [0, 1], and that we assume
p2 + p3 ≤ 1 in equation (6), we have

∀q1, ..., q3 ∈ [0, 1], L ≥ 0

Because we assume p4 = 0 and 0 ≤ q4 ≤ 1, notice that

q4 · L = D2 −D3

We have
∀q, D2 ≥ D3

(1)Assume D 
= 0, according to Theorem 1, D < 0, we
have

∀q, D2

D
≤ D3

D

It’s the same as, ∀q, v2 ≤ v3. According to Lemma 1,
∀q, sX ≥ sY .
Therefore, strategy p is invincible.
(2)When D = 0, there are more than one terminal sets,
and the stationary distribution depends on the initial one,
which occurs when some variables in (p1, ..., p4, q1, ..., q4)
equal to 0 or 1. It can be proved by computer solvers that if
q 
= (1, 1, 0, 0) and 0 < pi < 1, then D 
= 0.

The following discussion is from p’s perspective, i.e.
{CD} refers to the state where p plays C and q plays D.
Case 1. p=(0,0,0,0). Obviously, no matter what q is, Always
Defect is invincible.
Case 2. p=(0,0,1,0). Because {CD} can only appear exactly
after {DC} except for this first iteration, this strategy is in-
vincible if the game is played for infinite rounds.
Case 3. p=(0,1,0,0). This strategy is NOT invincible since
{CD} can be a stationary distribution.
Case 4. p=(1,0,0,0). Trigger Strategy is invincible since
{CD} can only appear at most once in game history and
we assume the game is played for infinite rounds.
Case 5. p=(1,0,1,0). Tit for Tat is invincible since {CD} can
only appear exactly after {DC}, except for the first time af-
ter {CC} or the first iteration, which doesn’t matter when
the game is played for infinite rounds.
Case 6. p=(1,1,0,0). Obvious, Repeat is NOT invincible if it
plays C in the first iteration.
Case 7. q=(1,1,0,0). Repeat is the only situation where q can
unilaterally set D = 0 when ∀z ∈ {p1, p2, p3, p4}, z 
= 0
and z 
= 1.

All edge cases can be avoided when p2 
= 1. In case
1,2,4,5, in the infinite sequence of game history, there is one
more {CD} than {DC}. When the game is played for infinite
rounds, losing one shot game doesn’t make any difference on
the average payoff. As for case 7, suppose q is Always De-
fect, {DD} is the only absorbing state while {CD} is only a
transient state, thus strategy p is still invincible.

Theorem 2 and 3 lead to the following conclusion, our
main technical result of the paper:

Theorem 4. A strategy p = (p1, ..., p4) is invincible iff the
three conditions (6), (7) and (8) hold.

Invincible strategies can also be nice. A strategy is nice if
it is never the first to defect. There is no constraint on p1 in
Theorem 4, so an invincible strategy is nice if it cooperates
in the initial iteration and its p1 = 1, together with condi-
tions (6), (7) and (8).

Invincible strategies are largely robust against noise due
to fuzzy mind or trembling-hand. As p4 is fixed to 0, there is
no excuse of noise on p4. However, as there is no constraint
on p1, it’s totally robust against noise. As for p2 + p3 ≤ 1
and p2 
= 1, they are generally robust against noises under
the constraints. Some other strategies, like generous Tit-for-
Tat (p = (1, 1/3, 1, 1/3)) in (Nowak and Sigmund 1992),
may be exploited by their opponents although they’re robust
against errors.

Invincible strategies account for a large proportion of all
strategies. Half of firm strategies (p4 = 0) are invincible
since the hyper plane p2 + p3 ≤ 1 bisects the 3D cube
(p1, p2, p3) ∈ [0, 1] when p4 = 0. Well-known strate-
gies that are invincible include Tit-for-Tat (1, 0, 1, 0) which
equalizes the payoff of both players, and Always Defect
which never allow itself to be taken advantage of.

We now show the properties of invincible strategies and
discuss its relationship with some well-studied strategies.

Press and Dyson’s Extortionate Strategies

Press and Dyson’s extortionate strategies are special zero
determinant strategies (ZDS). According to Press and
Dyson (Press and Dyson 2012), a strategy p = (p1, ..., p4)
is a ZDS if for some α, β and γ, p̃ = αSX + βSY + γ1
where p̃ = (p1 − 1, p2 − 1, p3, p4).

A strategy p = (p1, ..., p4) is extortionate if for some φ
and χ ≥ 1,

p1 = 1− φ(χ− 1)
R− P

P − S
, p2 = 1− φ(1 + χ

T − P

P − S
)

p3 = φ(χ+
T − P

P − S
), p4 = 0 (11)

χ is called the extortion factor because of the following
equation which follows from (11):

sX − P = χ(sY − P )

For instance, p = (11/13, 1/2, 7/26, 0) is an extortionate
strategy with the extortion factor χ = 3. There are extortion-
ate strategies for any χ and sufficiently small φ. According
to (Press and Dyson 2012) the allowed range of φ is

0 < φ ≤ (P − S)

(P − S) + χ(T − P )
(12)

As Press and Dyson showed, for given (R,S, T, P ), one can
use the constraint p̃ = αSX + βSY + γ1 to deduce nec-
essary conditions of zero determinant strategy. For example,
if R=3, S=0,T=5, and P=1, then a zero determinant strategy
must satisfy the following equation:

3 ∗ p1 − 2 ∗ p2 − 2 ∗ p3 + p4 − 1 = 0 (13)
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Theorem 5. All extortionate strategies are invincible strate-
gies.

Proof. According to equation set (11), extortionate strate-
gies satisfy p2 
= 1 and p4 = 0.

p2 + p3 = 1 + φ(1− χ)(
T + S − 2P

P − S
)

Recall in the setting of the IPD, T + S > 2P and P > S.
In extortionate strategies, χ ≥ 1, φ > 0. Then we have p2 +
p3 ≤ 1. Therefore, all extortionate strategies are invincible.

Extortionate strategies are also zero determinant. How-
ever, not all zero determinant strategies are invincible. For
example, p = (3/7, 0, 5/7, 2/7) is a zero determinant strat-
egy that sets the co-player’s score to a fixed value, but itself
can receive a lower payoff.

While we have shown that all extortionate strategies are
invincible, not all invincible strategies are extortionate. For
example, p=(0.5,0.2,0.7,0) is invincible, but does not satisfy
equation (13). In fact, this strategy is neither zero determi-
nant nor extortionate.

Payoff Control

Theorem 6. Suppose player X and Y play the IPD. If player
X takes an invincible strategy, no matter what strategy player
Y takes, both players’ payoffs satisfy,

sX ≥ P, sY ≤ R. (14)

Proof. This follows from the two constraints sX ≥ sY and
2P ≤ sX + sY ≤ 2R. The former because X’s strategy is
invincible. The latter because of the constraints of the IPD.

Theorem 6 guarantees that invincible strategies are as
good as Always Defect in the worst case, and that mutual
cooperation is the best outcome for the other player. Thus
Always Cooperate is a best response to nice invincible strate-
gies.

Payoff control is also discussed in (Hao, Li, and Zhou
2018), but the authors only give an example of extortionate
strategy, which has already been defined in (Press and Dyson
2012). The simple characterization of invincible strategies
is not pointed out. Without considering special edge cases,
payoff control may not be robust against every deterministic
strategy. For example, p1 = 1, p4 = 0, p2 + p3 = 1 may
not guarantee sX = sY , because if p2 = 1, p3 = 0, when
the co-player plays D after initial outcome CD, the game
converges to outcome CD. It’s the worst case to the payoff
controller.

Akin’s Good Strategies

The invincible strategies include extortionate ones. But they
also include nice ones like the TFT, which is also a good
one according to Akin (Akin 2016). While not all invincible
strategies are Akin’s good strategies, all nice ones are. We
first review Akin’s definition of good strategies.

Definition 2 (Akin’s Good Strategies (Akin 2016)). X’s
strategy p is nice if p1 = 1. It is good if it is nice and for
any strategy chosen by Y, we have that

if SY ≥ R then SY = SX = R.

Notice that p1 = 1 means that this strategy always coop-
erate when the previous outcome is CC. We now show that
nice and invincible strategies are good.
Theorem 7. If X’s strategy is nice and invincible, then it is
good.

Proof. By Theorem 6, sY ≤ R. Suppose SY ≥ R, then
SY = R. Since X is invincible, SX ≥ SY = R. Because
sX + sY ≤ max{2R, T + S, 2T} = 2R, we get sX =
R.

However, not all good strategies are invincible. This fol-
lows from (Akin 2016).

Competitive Strategies

Invincible strategies are also studied in (Hilbe, Traulsen, and
Sigmund 2015), where it’s called competitive strategy. How-
ever, the concept is defined for the discounted-payoff IPD
and all calculations depend on a discount factor δ < 1. Its
Proposition 2 conducts an explicit calculation of payoffs,
showing that,

sX − sY = − (T − S)((1− δ)p0 + δpDD)

1 + δ(pDD − pCD)
(15)

And their competitive strategy is defined as,

p0 = pDD = 0, δ(pCD + pDC) ≤ 1. (16)

We cannot simply let δ = 1 to generalize this conclusion to
average-payoff IPD, because the denominator in (15) may
vanish to zero. Moreover, such competitive strategy always
defects in the first iteration, hindering itself from being nice.
While playing with cooperative strategies like Trigger(q =
(1, 0, 0, 0)) or even Tit-for-Tat(q = (1, 0, 1, 0)), the game
can immediately converge to outcome DD, which may not
be what we want.

Other Solution Concepts

Also related is work that introduces alternative solution con-
cepts (e.g. (Halpern and Pass 2012; Capraro et al. 2013)) to
capture desirable behaviours of agents in repeated games.
In particular, Capraro et al. (2013) proposed the concept
of iterated cooperative equilibria (ICE) to explain human
long term cooperative behaviours. An interesting question
is whether certain invincible strategies are ICE or whether
ICE are all nice and invincible. We leave this as future work.

Generalization

Repeated 2× 2 Game

We have presented invincible strategies in the context of
IPD, by far the most studied repeated game. Invincible
strategies actually exist in other repeated 2× 2 normal-form
games as well.

A general 2 × 2 normal-form game a tuple (N ,A, u),
where
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Table 3: Payoff Matrix

(a) PD-like Games

B1 B2

A1 a, a b, b+ ε
A2 c+ ε, c d, d

(b) SUG

Accept Deny
a (a,b) (0,0)
b (b,a) (0,0)

note: in table (a), ε > 0; in table (b), a > b > 0.

• N = {X,Y } is a pair of players.

• A = A×B, where A = {A1, A2} is a set of actions avail-
able to player X , while B = {B1, B2} is that to player Y .
Each vector o = (a, b) ∈ A is called an action profile(or
outcome).

• u = (uX , uY ), where ui : A �→ R is a real-valued util-
ity(or payoff) function for player i.

The game is played for infinite rounds, and similar to the
IPD, we consider only memory-one strategies. For X (the
row player), her memory-one strategy is defined in terms
of the probability of playing action A1, and for Y (the col-
umn player), that of playing B1. Again similar to the IPD,
the strategies are represented by four-element vectors, in the
following orders for X’s strategy p and Y’s strategy q:

p = (p1, p2, p3, p4) = (pA1B1 , pA1B2 , pA2B1 , pA2B2),

q = (q1, q2, q3, q4) = (qA1B1
, qA2B1

, qA1B2
, qA2B2

).

Outcome o and stationary distribution v can be defined sim-
ilarly,

v = (v1, v2, v3, v4) = (vA1B1 , vA1B2 , vA2B1 , vA2B2)

o = (o1, o2, o3, o4) = (A1B1, A1B2, A2B1, A2B2)

The average payoffs of both players are calculated by,

sX =

4∑
i=1

vi ∗ uX(oi), sY =

4∑
i=1

vi ∗ uY (oi) (17)

Player X’s strategy p is invincible iff ∀q, sX ≥ sY . Sim-
ilarly, player Y ’s strategy q is invincible iff ∀p, sY ≥ sX .
As the average payoffs depend on utility functions, it is not
possible to have a general theorem that characterizes invinci-
ble strategies in all repeated 2x2 games. Below we consider
some of them.

PD-like Games

Table 4: Example of Games

(a) Game of Chicken

Chick Dare
Chick 6,6 2,7
Dare 7,2 0,0

(b) Battle of the Sexes

Opera Game
Game 0,0 2,3
Opera 3,2 0,0

Consider a 2x2 game with a payoff matrix of the form in
Table 3a. Games of this form includes the PD, the Game of
Chicken (Table 4a), and the Battle of the Sexes (Table 4b).

Tacit collusion in repeated second-price auctions (Skrzypacz
and Hopenhayn 2004) can also be modeled into such game.

For repeated versions of these games, invincible strategies
for both players can be characterized in the same way as for
the IPD, with similar proofs.

Simplified Ultimatum Game

Our second class of repeated 2x2 games for which we can
characterize the invincible strategies is a simplified Ultima-
tum Game(SUG) (Thaler 1988), given in Table 3b. Player X
makes a division of a+b dollars (a > b > 0). She can either
keep a or b dollars to herself and give the rest to Y. Player Y
can either accept or decline the offer. If she accepts, both re-
ceive the money according to this division; otherwise none
of them get any money. The game is repeated for infinite
rounds and we characterize invincible strategies for X.

For the repeated simplified Ultimatum Game, we can
show that sX ≥ sY if and only if v1 ≥ v3. The proof is sim-
ilar to that of Lemma 1. Intuitively, v1 ≥ v3 can be achieved
by playing “more” action A1 than A2. However, the neces-
sary and sufficient condition turns out to be more complex.

Following equation (3), let f1 = (1, 0, 0, 0), f3 =
(0, 0, 1, 0).

v1 =
v · f1
v · 1 =

D(p,q, f1)

D(p,q,1)
, v3 =

v · f3
v · 1 =

D(p,q, f3)

D(p,q,1)

Let g(p,q) = D(p,q, f3) − D(p,q, f1), from theorem 1,
we know that D(p,q,1) ≤ 0. First we assume D 
= 0, then

v1 ≥ v3 ⇔ D(p,q, f1) ≤ D(p,q, f3) ⇔ g(p,q) ≥ 0

Similar to Theorem 1, we can prove that g(p,q) is mono-
tonic w.r.t. qi, i = 1, ..., 4, so g(p,q) reaches its extreme
value when qi = 0 or qi = 1. Then ∀q, g(p,q) ≥ 0 is

Table 5: Extreme Values

ID Extreme Value g(p,q) ≥ 0
g0 0 0
g1 (1− p2)(2 ∗ p4 − 1) p4 ≥ 0.5
g2 p4 ∗ (2 ∗ p2 − 1) p2 ≥ 0.5

g3
p1 ∗ p2 − p1 ∗ p4 + p2 ∗ p3
−p3 ∗ p4 + 2 ∗ p4 − 1

g4 0 0
g5 (1− p2) ∗ (p3 + p4 − 1) p3 + p4 ≥ 1
g6 p4 ∗ (p2 + p3 − 1) p2 + p3 ≥ 1

g7
p1 ∗ p2 − p1 ∗ p4
+p3 + p4 − 1

g8 0 0
g9 (1− p2) ∗ (p1 + p4 − 1) p1 + p4 ≥ 1
g10 p4 ∗ (p1 + p2 − 1) p1 + p2 ≥ 1

g11
p1 + p2 ∗ p3
−p3 ∗ p4 + p4 − 1

g12 0 0
g13 (1− p2) ∗ (p1 + p3 − 1) p1 + p3 ≥ 1
g14 p4 ∗ (p1 + p3 − 1) p1 + p3 ≥ 1
g15 p1 + p3 − 1 p1 + p3 ≥ 1
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(a) WSLS, Defector (b) WSLS, Defector, Invincible

Figure 1: Evolutionary Experiment

equivalent to all these extrema are no less than zero. We cal-
culate all extrema with SymPy, a Python library for sym-
bolic mathematics (Meurer et al. 2017). Table 5 displays all
these extrema together with the if and only if condition that
g(p,q) ≥ 0.

Although g3, g7, g11 look complex, they can be derived
from other inequations, namely when all other inequations
hold, these three will hold automatically. For instance,

g3 = (1− p1) ∗ p4 + (1− p3) ∗ p4 + (p1 + p3) ∗ p2 − 1

≥ 0.5 ∗ (1− p1) + 0.5 ∗ (1− p3) + 0.5 ∗ (p1 + p3)− 1

= 0

To avoid the case that D(p,q,1) = 0 and the Markov
chain is trapped in v3, let p3 
= 0. Then we can conclude
X’s invincible strategies for repeated simplified Ultimatum
Game.
Theorem 8. In repeated simplified Ultimatum Game in ta-
ble 3b, X’s memory-one strategy p = (p1, p2, p3, p4) is in-
vincible iff

p2 ≥ 0.5, p4 ≥ 0.5, p3 
= 0

∀i 
= j ∈ {1, 2, 3, 4}, pi + pj ≥ 1

Evolutionary Experiment

Since Press and Dyson’s work, there have been several ex-
periments about ZD and extortionate strategies. One was by
Stewart and Plotkin (Stewart and Plotkin 2012) who ran a
Axelrod-style tournaments that include a few extortionate
strategies. One of the notable results of Stewart and Plotkin’s
tournament is that the extortionate strategy named Extort-2
won the second most head-to-head matches. We now know
this is not really surprising given that extortionate strategies
are invincible. Actually, no invincible strategy will loose a
head-to-head match if the game is repeated for sufficient
number of rounds.

Another was by Hilbe et al. (Hilbe, Nowak, and Sigmund
2013) who ran an experiment to analyze the evolutionary
performance of extortionate strategies. They concluded that
extortionate strategies can act as catalysts for the evolu-
tion of cooperation but that they themselves are not the sta-
ble outcome of natural selection. We rerun their experiment
and replace extortionate strategy with the invincible strategy
(0.9,0.7,0.2,0), and the result turns out to be similar. Notice
that (0.9,0.7,0.2,0) is just invincible. It is not even a zero de-
terminant strategy.

Figure 1 shows some representative runs. The Axelrod
python library (Knight et al. 2016) make it easy to run ex-
periments about the IPD. Here are four experiments similar
to some of those in (Hilbe, Nowak, and Sigmund 2013) but
with extortionate strategies replaced by invincible ones.

The evolutionary behavior of invincible strategies turn out
to be similar to that of extortionate ones.
(a) The population begins with cooperative strategy Win-
Stay-Lose-Shift and defective strategy Always Defect. After
70 iterations, defective strategies dominates this population.
(b) After adding agents of the invincible strategy (0.9, 0.7,
0.2, 0), defectors are firstly eliminated, followed by invinci-
ble strategies. Cooperative strategy becomes the stable out-
come. Thus, some invincible strategies can act as catalyst of
cooperation, but they are not a stable outcome of evolution.

Conclusion

Inspired by our initial observation that no strategies can de-
feat an extortionate strategy, we went on to study the class of
all such strategies that will never lose a head-to-head match
and call them invincible.

Invincible strategies are interesting for a variety of rea-
sons. We list four below. Firstly, they have a very clear and
intuitive definitions - never lose a match. Secondly, they are
surprisingly simple to characterize - our main technical re-
sult in this paper is that they are captured by three simple
conditions (6), (7) and (8). Thirdly, they are closely related
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with some other well-studied strategies such as Press and
Dyson’s extortionate strategies and Akin’s good strategies.
Finally, we have seen from our experiments that some invin-
cible strategies that are neither extortionate nor cooperative
like the TFT can also act as catalyst for cooperation.

Repeated games are notoriously difficult to analyse, partly
because of the large space of complex strategies. The IPD is
by far the most studied repeated game and by identifying an
interesting new class of strategies with well-defined proper-
ties, we have contributed to the work on repeated game in
general and the IPD in particular.
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