
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

A Unifying View on Individual Bounds and
Heuristic Inaccuracies in Bidirectional Search

Vidal Alcázar
vidal.alcazar@riken.jp

Riken AIP, Tokyo, Japan

Pat Riddle, Mike Barley
{pat, barley}@cs.auckland.ac.nz

University of Auckland, Auckland, New Zealand

Abstract

In the past few years, new very successful bidirectional
heuristic search algorithms have been proposed. Their key
novelty is a lower bound on the cost of a solution that includes
information from the g values in both directions. Kaindl and
Kainz (1997) proposed measuring how inaccurate a heuris-
tic is while expanding nodes in the opposite direction, and
using this information to raise the f value of the evaluated
nodes. However, this comes with a set of disadvantages and
remains yet to be exploited to its full potential. Additionally,
Sadhukhan (2013) presented BAE∗, a bidirectional best-first
search algorithm based on the accumulated heuristic inaccu-
racy along a path. However, no complete comparison in re-
gards to other bidirectional algorithms has yet been done, nei-
ther theoretical nor empirical. In this paper we define individ-
ual bounds within the lower-bound framework and show how
both Kaindl and Kainz’s and Sadhukhan’s methods can be
generalized thus creating new bounds. This overcomes pre-
vious shortcomings and allows newer algorithms to benefit
from these techniques as well. Experimental results show a
substantial improvement, up to an order of magnitude in the
number of necessarily-expanded nodes compared to state-of-
the-art near-optimal algorithms in common benchmarks.

Introduction

Front-to-end bidirectional heuristic search (Bi-HS) was pro-
posed by Pohl (1969) shortly after A∗ was presented (Hart,
Nilsson, and Raphael 1968). However, Bi-HS was never
much better empirically than either A∗ or blind bidirectional
search, and pathologically expanded nodes that blind bidi-
rectional search would not expand despite being more in-
formed (Barker and Korf 2015). Recently, though, the idea
of delaying the expansion of nodes with high g addressed
this problem partially (Holte et al. 2017; Shaham et al. 2017;
2018) or totally (Barley et al. 2018; Shperberg et al. 2019b).
Also, a theoretical analysis on how the g values of nodes
from both sides interact (Eckerle et al. 2017) led to the de-
velopment of algorithms with strong theoretical properties,
like NBS’s near-optimality (Chen et al. 2017) — meaning
that NBS will never expand more than twice the number of
necessarily-expanded nodes of any other Bi-HS algorithm.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Reducing the depth of the search is not the only advan-
tage of Bi-HS. Kaindl and Kainz (1997) showed how con-
sistent heuristics can be strengthened by checking how inac-
curate they are for nodes in the opposite direction. Naively
strengthening them renders them inconsistent, and so far no
general method has been widely used in this context.

Another algorithm that uses heuristic inaccuracies is
BAE∗ (Sadhukhan 2013), which adds the estimated error to
the target and the heuristic inaccuracy to the source. This
value, the total accumulated error, is used both as a criterion
to keep consistency (as it depends only on one direction,
unlike Kaindl and Kainz’s) and to compute a global lower
bound. Nevertheless, the relationship to Kaindl and Kainz’s
methods is unclear, and the empirical evaluation is limited.

An important observation is that both approaches pro-
vide global lower bounds. In this paper we delve deeper into
the lower-bound framework that modern Bi-HS algorithms
use and propose the use of individual lower bounds. These
bounds allow integrating recent approaches and the use of
heuristic inaccuracies in a simple and general way. Further-
more, bound propagation techniques like those of Shperberg
et.al. (2019b) can be also seen as a usage of individual lower
bounds, with a straightforward way to exploit global bounds
for individual nodes too. Empirical results show that, by
using heuristic inaccuracies, a substantial increase in per-
formance can be obtained. In fact, we observe that using
heuristic inaccuracies allows expanding fewer than half of
the necessarily-expanded nodes of near-optimal algorithms,
which again emphasizes the importance of the theoretical
implications of our approach.

The contributions of this paper are organized by sections:
first, we extend the lower-bound framework, introducing the
concepts of individual bounds, delayed nodes and relative
minimum node values, and proposing a fixpoint computa-
tion for the latter; then, Kaindl and Kainz’s work is inte-
grated into the framework by creating new bounds, which
solves its problematic aspects and finally allows using it to
its full potential. Afterwards, Sadhukhan’s work is also gen-
eralized as an individual bound and linked to the bounds cre-
ated in the previous section; finally, we present experiments
that show a substantial improvement over the state of the art,
and outline future lines of research.

2327



Background

A search problem is a tuple P = (G =
(S,E), start, goal, hf , hb). G is an implicit directed
graph; S is the set of vertices (which correspond to states in
explicit-state search); E is the set of edges, each of which
has a non-negative arbitrary cost; start ∈ S is the initial
state; goal ∈ S is the goal; hf , hb are the forward and
backward heuristics respectively. ε is the value of the edge
with minimum cost, ι is the greatest common denominator
among the cost of all non-zero-cost edges, e.g. if edges have
costs 1.0 and 1.5, ε = 1.0 and ι = 0.5.

The cost of the shortest path between two states in S is
c : S × S → R≥0. Search algorithms keep track of previ-
ously seen states using nodes; a node makes reference to a
single state, but a single state can be referenced by different
nodes. Nodes have node values g, h and f that can be la-
beled with the direction of the search, like hf and hb. When
the direction is the same in an equation but can be either
one, the label is x, like fx. Other terms subject to the con-
cept of direction can also be labeled this way, e.g. Openx is
the open list of direction x. The opposite direction of x is
x̄. Given a node n referencing a state s ∈ S, gf (n) is the
cost of the forward path from start to n, gb(n) is the cost of
the backward path from goal to n, hf (n) = hf (s, goal),
hb(n) = hb(s, start) and fx(n) = gx(n) + hx(n). For
gf (n) and gb(n) to be optimal, gf (n) = c(start, s) and
gb(n) = c(s, goal) respectively. hf and hb are admissible
iff, for any state s ∈ S, hf (s) ≤ c(s, goal) and hb(s) ≤
c(start, s) respectively. hx is consistent iff it is admissible
and hx(n) ≤ c(n, n′) + hx(n

′) for any pair of nodes n, n′.
The priority function of a best-first search algorithm is a
ranking function that maps a node n to a value that deter-
mines the order of expansion.
C∗ = c(start, goal) is the cost of an optimal solution.

U is the cost of the best solution found so far, and thus
monotonically decreasing. For an algorithm to be optimal,
C∗ = U at the end of the execution if there is at least one
solution path. C is a lower bound on the cost of any new
solution at any given moment, and thus monotonically in-
creasing. When C ≥ U , necessarily C∗ = U and thus an
optimal solution has been found. For algorithms to expand
nodes with optimal gx, consistent heuristics are needed. All
heuristics in this paper are assumed to be consistent.

Individual Bounds and Relative Minimum

Node Values

All consistent optimal algorithms work with C either im-
plicitly or explicitly, e.g. in A* (Hart, Nilsson, and Raphael
1968) the implicit C is the minimum f value in the open
list. However, keeping track of C explicitly allows im-
plementing more complex techniques (Chen et al. 2017;
Barley et al. 2018; Shperberg et al. 2019a; 2019b; Alcázar,
Barley, and Riddle 2019). Both Shperberg et al. (2019b) and
Alcázar et al. (2019) propose a high-level algorithm to keep
track of C, but the former expands whole layers and the lat-
ter defines how states are alternatively expanded. Algorithm
1 defines a more general high-level algorithm that keeps the
option of using a last-layer tie-breaking routine like Alcázar

et al. (2019) but without the specificity of either algorithm.

Algorithm 1 Main Lower Bound Loop
1: U ⇐∞; C ⇐ 0
2: Openf ⇐ {start};Openb ⇐ {goal}
3: while Openf �= ∅ ∧ Openb �= ∅ do
4: if UpdateC() then
5: RunTieBreaker()
6: end if
7: if C ≥ U then
8: return U
9: end if

10: Expand()
11: end while
12: return U

The purpose of the main loop is to raise C as fast as possi-
ble so it converges to U . The purpose of RunTieBreaker() is
to check whether a solution of cost C exists so U converges
to C. UpdateC() returns true if C has been increased i.e. a
higher lower bound has been found.

Eckerle et al. (2017) defined a lower bound for any so-
lution path through nodes n ∈ Openf , n

′ ∈ Openb such
that the cost of the path is at least max(gf (n) + gb(n

′) +
ε, ff (n), fb(n

′)). The minimum lower bound among all pos-
sible pairs of states from opposite directions is a lower bound
on the solution, and thus can be used to increase C. Let us
temporarily define fMinx and gMinx as the minimum f and
g values respectively in Openx; then a global lower bound is
max(gMinf + gMinb + ε, fMinf , fMinb). Because this lower
bound takes the maximum of three different equations, and
because new bounds will be introduced in subsequent sec-
tions, let us individually define the bounds.
Definition 1. (g bound). The g bound is defined as gMinf +
gMinb + ε.
Definition 2. (f bounds). The forward f bound is defined as
fMinf . The backward f bound is defined as fMinb.

When fMinx and gMinx are indeed the global minimum
node values in the open list, C can directly take the value of
the highest bound. However, both Shperberg et al. (2019b)
in Section 4.2 and Alcázar et al. (2019) in Theorem 1
pointed out how only nodes such that their f value is equal
or lower than C need to be taken into account when comput-
ing gMinx, the way NBS (Chen et al. 2017) implicitly does
when pairing nodes. In fact, this can be extended to any min-
imum node value. In order to prove this, let us introduce first
the concepts of delayed and expandable nodes.
Definition 3. (Expandable and delayed node). A node n is
delayed at layer C if it can be proven that no solution path of
cost C can go through n. A non-delayed node is expandable.

Shperberg et al. (2019b) defined a new heuristic hlb(n)
based on the lower bound on individual nodes. hlb(n) de-
pends on C and its purpose is in fact to prevent the expan-
sion of the node at a given C. Hence, the obtained numeric
value has no bearing other than to be compared with C: if
it is higher than C, then delay its expansion until C is in-
creased, turning the node from expandable to delayed.

2328



We now redefine fMinx and gMinx as the minimum node
values among expandable nodes, meaning they are relative
to C. Because fewer nodes are considered, higher values for
the minimum node values for a given C can be obtained.

Theorem 1. (Minimum node values only relevant among
expandable nodes). When computing minimum node values
at a given layer C, only expandable nodes have to be taken
into account.

Proof. (Proof sketch). Let a solution of cost C pass through
nodes n ∈ Openx and n′ ∈ Openx̄. Their lower bound rela-
tive to C must not be higher than C, and thus both must be
expandable.

Delayed nodes can also be linked to the concept of indi-
vidual bounds in a very simple way: for a node generated in
direction x, substitute the minimum node values in direction
x by the corresponding values of the node. We call this the
delaying rule of a bound. For instance, a forward node n is
delayed by the g bound if gf (n)+gMinb+ε > C; similarly,
a backward node n′ is delayed by the backward f bound if
fb(n

′) > C. However, if the minimum values are relative, C
cannot take the value of the global lower bound equation, as
admissibility may be compromised. Also, because delaying
nodes may cause the minimum node values to increase, and
because increasing the minimum node values may cause ex-
tra nodes to be delayed, computing the minimum node val-
ues and the set of delayed nodes requires a fixpoint compu-
tation. Figure 1 illustrates all this.

F1 7/4

F2 8/1

Openf

G19/2

G27/6

Openb

Figure 1: Example of fixpoint computation of minimum
node values. First number is f value, second is g value.

Assume C = 7, ε = ι = 1; initially gMinf = 1, fMinf =
7, gMinb = 2 and fMinb = 7. The following steps are done:

• F2 and G1 are delayed by the f bounds, because ff (F2) >
C and fb(G1) > C. Thus, gMinf = 4 and gMinb = 6.

• The value of the g bound is now gMinf + gMinb + ε =
11 > C, so C must be increased. It would be a mistake
to assign 11 to C, as there may be solutions of lower cost
e.g. a solution of cost 8 through F2 and G2. As all solution
costs are a multiple of ι, increasing C by ι means that
no C value will be skipped, and thus C is increased to 8
instead. All nodes become expandable again.

• G1 is delayed by the backward f bound, because
fb(G1) > C. Thus, gMinb = 6.

• F1 is delayed by the g bound, because gf (F1)+ gMinb+
ε > C. Thus, fMinf = 8.

• No more nodes can be delayed, and the bounds are not
greater than C, so the fixpoint computation stops.

In the end, C = 8, gMinf = 1, fMinf = 8, gMinb = 6
and fMinb = 7. Note that fMinf = 8 and not 7, which will
be relevant once new bounds are introduced. Another cri-
terion to increase C is running out of expandable nodes in
either direction instead of checking the value of the bounds.
This criterion is equivalent, but checking the bounds gives
additional information that may help to decide which crite-
ria should be used as part of the priority function. Following
this, we can describe in pseudocode a general way of imple-
menting UpdateC() in Algorithm 2 assuming that fMinx and
gMinx are relative and not global minimum values.

Algorithm 2 UpdateC
1: updated⇐ False
2: while C < max(gMinf + gMinb + ε, fMinf , fMinb) do
3: C ⇐ C + ι
4: updated⇐ True
5: UpdateMinValues()
6: end while
7: return updated

This fixpoint computation can be expensive. A way of
speeding it up is using g-f buckets (Burns et al. 2012) and
caching results until the addition or removal of a bucket may
change the values. Also, if this computation becomes a bot-
tleneck in terms of time, it can be terminated earlier at the
expense of having lower minimum node values.

Kaindl and Kainz’s Heuristic Inaccuracies

Kaindl and Kainz (1997) observed that, when using consis-
tent heuristics, the lower bound of a node can be increased
by exploiting the inaccuracy of the heuristic. This inaccu-
racy is measured comparing the g value of a node with
what the opposite heuristic yields: if a forward node n has
gf (n) = 3 and hb(n) = 2, the heuristic inaccuracy of hb for
that node is 1. This value was called diffx(n), but we will call
it just d for succinctness and consistency with other values.
Definition 4. (d value of a node). The d value of a node n is
defined as dx(n) = gx(n)− hx̄(n).

dMinx is the minimum d value of a set of nodes in
direction x. Originally the set of nodes was Openx and
thus dMinx was non-relative. Two different methods were
proposed, the Add and the Max method, which we will
call KKAdd and KKMax, as other works in the literature
have done. KKAdd increases the f value of a node by
adding the value of dMin in the opposite direction, that is,
KKAddx(n) = fx(n) + dMinx̄. Figure 2 is the original fig-
ure that shows how KKAdd is computed.

KKMax, uses the d value of the node and adds the min-
imum f in the other direction, that is, KKMaxx(n) =
dx(n) + fMinx̄. Similarly, Figure 3 is the original figure that
shows how KKMax is computed.

The main disadvantage of this method is the loss of con-
sistency when KKAdd or KKMax are used as the prior-
ity function. Other works have tried to exploit KKAdd and

2329



Figure 2: Figure 7 of Kaindl and Kainz (1997).

Figure 3: Figure 8 of Kaindl and Kainz (1997).

KKMax in different ways, like computing d in one direction
only (Kaindl et al. 1999; Wilt and Ruml 2013) or using it
only to discard nodes after a solution has been found (Auer
and Kaindl 2004). Still, this does not exploit all the informa-
tion derived from heuristic inaccuracies, often requires mul-
tiple decisions and/or parameters and is difficult to integrate
with other Bi-HS algorithms.

Nevertheless, KKAdd and KKMax are in fact a lower
bound on the cost of any solution going through a given
node, and thus can fulfill the same role as the g bound and
the f bounds. In addition, the minimum node values used can
be relative, and not absolute like in the original definition, if
the purpose is delaying a node at level C. For instance, a for-
ward node n can be delayed if ff (n)+dMinb > C — which
corresponds to the value of KKAddf (n) — even if dMinx

is relative. Likewise, a backward node n′ can be delayed if
fMinf + db(n

′) > C, which corresponds to KKMaxb(n′).
This allows us to define two KK bounds, one per direction.

Definition 5. (KK bounds). The forward KK bound is de-
fined as fMinf + dMinb. The backward KK bound is defined
as fMinb + dMinf .

Because the KK bounds trivially dominate the f bounds,
the condition in Line 2 of Algorithm 2 can be replaced by:

C < max(gMinf + gMinb + ε,

fMinf + dMinb, fMinb + dMinf )
(1)

Interestingly, the delaying rule of the forward KK bound
corresponds to KKAdd for forward nodes and to KKMax for
backward nodes, and vice versa for the backward KK bound.
Thus, both methods, originally thought to be different tech-
niques, are in fact part of the same lower-bound definition,
exemplifying how the lower bound framework can easily in-
tegrate Kaindl and Kainz’s contribution.

To compute the KK bounds, three-dimensional g-f-d buck-
ets can be used instead of g-f ones. The fixpoint computation

of minimum node values can also be modified to account for
dMinx and the delaying rule of the KK bounds.

Bidirectional Estimates and BAE∗

Before the interest on bidirectional search was rekindled,
Sadhukhan proposed an interesting bidirectional best-first
algorithm based on accumulated errors along paths, BAE∗1,
first at a national conference (Sadhukhan 2012) and later
in a journal article (Sadhukhan 2013) with a correction on
the latter that drops the need for symmetric heuristics (Sad-
hukhan 2015). Given node n, BAE∗ uses a priority function
defined as the total accumulated error TEx(n) = FEx(n) +
BEx(n) = (gx(n) + hx(n) − h0) + (gx(n) − hx̄(n)),
where h0 is hf (start) forward and hb(goal) backward. To
prove optimality BAE∗ uses the lower bound 1

2 (hf (start) +
hb(goal))+ 1

2 (TEMinf +TEMinb). Note however that h0 in
direction x is a constant subtracted from all nodes, so one
may choose not to subtract it without changing the rank-
ing of the priority function. Such a priority function can
be reformulated in terms more similar to the previous ones:
TEx(n) + h0 = fx(n) + dx(n). This can be represented by
a single node value, which we define as b.
Definition 6. (b value of a node). The b value of a node n is
defined as bx(n) = fx(n) + dx(n).

We choose b because it aggregates estimates from both hf

and hb and so b is a bidirectional estimate. f and d are mono-
tonically increasing along paths and maintain consistency
(Hart, Nilsson, and Raphael 1968; Wilt and Ruml 2013), so
we can prove as a corollary that b does too. The same re-
sult can be derived from Sadhukhan’s proofs about the total
accumulated error along paths (Sadhukhan 2013).
Corollary 1. (Consistency of the b value). If hf and hb are
consistent, b is monotonically increasing along paths, and
expanding by minimum b ensures that the g value of a node
upon expansion is optimal.

bMinx is then the minimum b value among all expandable
nodes in Openx. Reformulating BAE∗’s global lower bound,
we can define a new bound: the b bound.
Definition 7. (b bound). The b bound is defined as (bMinf+
bMinb)/2 rounded up to the next multiple of ι, that is,

ι� (bMinf + bMinb)/2

ι
�.

The corresponding delaying rule using the individual b
bound is bx(n) > 2C − bMinx̄. A proof of the admissibility
of the b bound can be produced from BAE∗’s own proofs,
but here we will prove it using Kaindl and Kainz’s terms
to offer an alternative and hopefully clearer picture on the
relationship between BAE∗ and Kaindl and Kainz’s work.
Theorem 2. (Admissibility of the b bound). If a problem has
a solution and C = C∗, the b bound will not delay a node
belonging to a path of cost C.

Proof. Let n ∈ Openx and n′ ∈ Openx̄ be expandable
nodes at layer C such that bf (n) = bMinf and bb(n

′) =

1We believe that BAE∗ stands for Bidirectional A∗ with Error;
Sadhukhan never defines the acronym.

2330



bMinb, let P be an optimal path, no solution has been found,
and C = C∗. There are three possibilities:

• Both nodes belong to the same optimal path, that is,
n, n′ ∈ P . The sum bf (n) + bb(n

′) can be decom-
posed as ff (n) + df (n) + fb(n

′) + db(n
′). From Corol-

laries 5.1 and 5.2 of Kaindl and Kainz (1997) we know
that ff (n) + db(n

′) ≤ C∗ and fb(n
′) + df (n) ≤ C∗.

Hence, ff (n) + db(n
′) + fb(n

′) + df (n) ≤ 2C, so
bf (n) + bb(n

′) ≤ 2C and thus bf (n) ≤ 2C − bMinb
and bb(n

′) ≤ 2C − bMinf , and neither will be delayed.
• n ∈ P but n′ �∈ P and there is at least one expandable

node n′′ such that n′′ ∈ P and bx(n
′′) ≥ bx(n

′). Then
the value of the sum bf (n)+ bb(n

′) cannot be higher than
in the previous case and hence n will not be delayed. The
opposite case in which n′ ∈ P but n �∈ P is analogous.

• n ∈ P but n′ �∈ P and all nodes both in Openx̄ and in P
have already been delayed by another bound. This cannot
happen, as a node on an optimal path cannot be delayed
when C = C∗ by a bound that maintains admissibility.

Having proved this, the b bound can be added to the con-
dition in Line 2 of Algorithm 2, making it:

C < max(gMinf + gMinb + ε,

fMinf + dMinb, fMinb + dMinf ,

ι� (bMinf + bMinb)/2

ι
�)

(2)

Informally, the relationship between the KK bounds and
the b bound can be described the following way: given two
nodes n ∈ Openx and n′ ∈ Openx̄, when n tries to use
fx̄(n

′) or dx̄(n′) to check if it is delayed by a KK bound, the
KK bound in the opposite direction may delay either node
as well using the opposite pair of node values. Since com-
puting all pairwise combinations of KK bounds is akin to
a front-to-front heuristic and hence a priori computationally
expensive, the averaged minimum b values are taken instead.

Because b depends on f and d, it can be easily computed
using the g-f-d buckets used with the KK bounds. Neverthe-
less, explicitly keeping b values can lead to a more efficient
implementation, as in our implementation of BAE∗. Also,
both bMinx and the delaying rule of the b bound can be in-
cluded in the fixpoint computation of minimum node values.

Comparison of b and KK bounds
Now we show that the b bound and the KK bounds do not
dominate each other. Figures 4 and 5 prove this. In these
pictures, bidirectional arrows represent the heuristic value
of both hf and hb, and all visible edges have a cost of 1.

Figure 4 shows how the forward KK bound yields a higher
value than the b bound. Assume that S, G, Mf , and Mb have
been expanded, so a solution of cost U = 3 has been found.
All nodes n in S1 have ff (n) = 2 and df (n) = 0; all nodes
n′ in G1 have fb(n

′) = 1 and db(n
′) = 1. In this case,

fMinf = 2, dMinf = 0, bMinf = 2, fMinb = 1, dMinb = 1
and bMinb = 2, so the value of the forward KK bound is
fMinf+dMinb = 3, and the value of the b bound is (bMinf+

Mf Mb GS

←→
0

←→
0

G1

←→
1

←→
1

S1

Figure 4: The forward KK bound is higher than the b bound.

bMinb)/2 = 2. The forward KK bound proves optimality, as
C = U = 3, but with only the b bound an arbitrary number
of additional nodes will have to be expanded.

G G’SS’

←→
0

←→
1

G1

←→
0

←→
1

S1

U=4

Figure 5: The b bound is higher than either KK bound.

Figure 5 shows the opposite case. Assume that S, S’, G
and G’ have been expanded, and a solution of cost U = 4
has been found. S1 contains nodes such that ff (n) = 3
and df (n) = 1 and such that ff (n) = 2 and df (n) = 2,
and similarly G1 contains nodes such that fb(n) = 3 and
db(n) = 1 and such that fb(n) = 2 and db(n) = 2. Thus,
fMinf = 2, dMinf = 1, bMinf = 4, fMinb = 2, dMinb =
1 and bMinb = 4, so the value of either KK bound is
fMinx + dMinx̄ = 3, and the value of the b bound is
(bMinf + bMinb)/2 = 4. The b bound proves optimality,
as C = U = 4, but if only the KK bounds are used an arbi-
trary number of additional nodes will have to be expanded.

Experiments

In this section we present an exhaustive experimental eval-
uation of relevant Bi-HS algorithms. All algorithms use ε if
applicable. The algorithms used are:

• A* and BS*. BS* (p) is the original BS* (Kwa 1989);
it uses Pohl’s cardinality criterion, expanding in the direc-
tion of the smallest open list. BS* (a) alternates directions.
• NBS and NBB. NBS (Chen et al. 2017) and NBB

(Alcázar, Barley, and Riddle 2019), both near-optimal al-
gorithms. NBB is equivalent to NBSa (Shperberg et al.
2019a) apart from its pseudocode; we choose NBB be-
cause its bucket-based implementation is the basis for
DBS and DBBS (described below).
• DVCBS and DVCBSa. Developed by Shperberg et al.

(2019a), the reported state of the art.
• GBFHS and GBFHSe. GBFHS as in Barley et al. (2018),

but it uses Pohl’s cardinality criterion as the split function:
when updating its g limits, GBFHS computes the number
of expandable nodes on both open lists after increasing

2331



Algorithm GAP-0 GAP-1 GAP-2 GAP-3 GAP-4 GAP-5 GAP-6
NBS 174 71 0.22 7310 7169 0.96 150k 149k 0.98 786k 786k 1 1448k 1448k 1 1624k 1624k 0.98 1626k 1624k 0.82
NBB 469 61 0.12 5474 5217 0.92 115k 111k 0.96 620k 617k 0.98 1346k 1345k 0.94 1598k 1598k 0.84 1626k 1622k 0.54
DBS (a) 521 58 0.06 23724 3308 0.06 163k 54k 0.14 425k 289k 0.20 549k 510k 0.28 665k 628k 0.30 786k 717k 0.28
DBBS (a) 521 58 0.06 13924 1780 0.12 136k 40k 0.16 404k 240k 0.22 544k 486k 0.28 664k 617k 0.30 786k 711k 0.28
A* 72 45 0 8431 8393 0 352k 348k 0 6865k 6827k 0 - - - - - - - - -
BS* (a) 379 96 0 10712 10868 0.02 443k 432k 0 9462k 9667k 0 - - - - - - - - -
BS* (p) 220 62 0 6148 6061 0.02 246k 246k 0 5452k 5406k 0 - - - - - - - - -
DVCBS 161 45 0.06 5798 5703 0.86 94k 93k 0.96 482k 479k 0.70 937k 899k 0.20 1130k 1039k 0.02 1168k 1053k 0
DVCBSa 365 46 0 10681 4595 0.44 122k 83k 0.36 630k 452k 0.14 1060k 897k 0 1162k 1039k 0 1238k 1053k 0
GBFHS 988 42 0 58126 5190 0 717k 116k 0 1686k 632k 0 1080k 914k 0 1066k 1039k 0 1064k 1053k 0
GBFHSe 112 44 0 5226 5007 0 105k 104k 0 584k 581k 0 923k 913k 0 1063k 1039k 0 1081k 1053k 0
BAE* (a) 90 65 0 654 552 0 15k 11k 0 132k 113k 0 469k 465k 0 1107k 1091k 0 1793k 1775k 0
BAE* (p) 88 64 0 729 620 0 18k 13k 0 154k 135k 0 481k 476k 0 1106k 1090k 0 1785k 1768k 0
DBS (p) 293 45 0.02 9027 2672 0.28 81k 46k 0.24 317k 250k 0.30 512k 464k 0.30 667k 617k 0.24 794k 718k 0.28
DBBS (p) 293 45 0.02 4110 902 0.22 34k 21k 0.48 230k 170k 0.44 474k 430k 0.36 649k 587k 0.36 791k 702k 0.22

Table 1: Pancakes. Dashed entries mean that there were instances in which the solver ran out of memory.

the g limit of either direction, and increases the limit that
leads to having fewer expandable nodes. Initially the f
limit is set to max(hf (start), hb(goal)) and both g limits
are set to 0. All limits are increased by ι and not by 1.
GBFHS can behave badly in the last layer, as it expands
nodes such that f(n) = C∗ before increasing the g limits,
delaying the collision. GBFHSe (eager GBFHS) increases
the g limits as soon as the f limit is increased except in
the initial step, losing some information when deciding
which g limit to increase but allowing early collisions.

• DBS and DBBS. DBS (d-using Bidirectional Search)
uses g-f-d buckets and the g and KK bounds to delay
nodes and prove optimality, and performs a fixpoint com-
putation of all minimum node values. DBBS (d and b-
using Bidirectional Search) also uses the b bound. Both
expand by minimum g and break ties by minimum f ,
and additionally among d buckets, by minimum d. We
choose this because the most successful algorithms so far
(NBB/NBSa, DVCBS and GBFHS) do so as well, and be-
cause we want to display how using additional bounds in-
creasingly improves the performance of NBB. However,
other criteria may be better both to raise C faster and to
have a better last-layer tie-break. DBS (a) and DBBS (a)
expand alternating directions like NBB, and thus retain
near-optimality. DBS (p) and DBBS (p) use Pohl’s car-
dinality criterion, but count only expandable nodes with
minimum g, similar to DVCBS and GBFHS.

• BAE*. Same as BS*, but the priority function uses bx(n)
instead and the termination criterion is the b bound.

Experiments show average total expanded nodes, average
necessarily-expanded nodes (expanded when C < C∗) and
the ratio of problems with no expansions in the last layer,
that is, an optimal solution was found before C reached C∗.
For nodes, best results are in bold. NBS, NBB, DBS (a) and
DBBS (a) are listed first, as they are near-optimal.

Table 1 shows results for 100 random instances in the 14-
Pancake Puzzle with the GAP heuristic (Helmert 2010).
The first k pancakes of the target state are ignored to get
an asymmetric weaker heuristic. In terms of necessarily-

expanded nodes, DBS (a) is clearly stronger than NBB, the
difference increasing as the heuristic degrades. DBBS ex-
pands fewer nodes than DBS, especially the (p) version for
heuristics of intermediate strength. BAE∗ is very competi-
tive for heuristics of intermediate strength, but the advan-
tage of using the b bound decreases relative to the g bound
for weak heuristics, and becomes the worst algorithm among
the modern Bi-HS ones for GAP-6. DBS and DBBS keep a
robust behavior thanks to their combination of bounds, and
become the best algorithms for GAP-5 and GAP-6.

We also made the heuristic symmetric by abstracting
the first k pancakes away using a relative-order abstraction
(Helmert and Röger 2010) and then computing GAP. We
omit the results for lack of space, but DBBS in this case no-
tably outperforms BAE∗ even for heuristics of intermediate
strength. We hypothesize that, because the heuristic is sym-
metric and the search space is largely so as well, the best
splits for all but the strongest heuristics will occur around
the middle, in which case the g bound is most useful.

Algorithm ToH-12 (10+2) ToH-12 (8+4) ToH-12 (6+6)
NBS 233k 233k 1 654k 653k 0.94 682k 663k 0.56
NBB 230k 230k 0.98 645k 645k 0.90 678k 662k 0.56
DBS (a) 140k 118k 0.38 531k 488k 0.12 640k 606k 0.14
DBBS (a) 70k 66k 0.74 307k 286k 0.52 621k 583k 0.20
A* 276k 276k 0 1926k 1925k 0 3268k 3239k 0
BS* (a) 175k 177k 0 1180k 1161k 0 1603k 1599k 0
BS* (p) 230k 235k 0 929k 918k 0 2004k 1988k 0
DVCBS 224k 224k 0.94 613k 601k 0.32 664k 636k 0.16
DVCBSa 219k 217k 0.74 628k 601k 0.06 661k 628k 0.08
GBFHS 207k 162k 0 1246k 1071k 0 1524k 1384k 0
GBFHSe 207k 206k 0 621k 615k 0 653k 627k 0
BAE* (a) 47k 46k 0 187k 186k 0 383k 382k 0
BAE* (p) 46k 45k 0 185k 182k 0 375k 374k 0
DBS (p) 113k 105k 0.70 463k 443k 0.58 601k 570k 0.24
DBBS (p) 58k 54k 0.80 232k 221k 0.66 496k 479k 0.58

Table 2: Towers of Hanoi

Table 2 shows results for 50 instances of the 12-disk
4-peg Towers of Hanoi problem with (10+2), (8+4) and

2332



(6+6) additive PDBs (Felner, Korf, and Hanan 2004). The
KK bounds are very useful e.g. DBS (a) expands almost
half of NBB’s nodes with (10+2). The b bound is even
stronger, making DBBS and BAE* the most efficient algo-
rithms. BAE* has an edge over DBBS because it expands
nodes by minimum b instead of minimum g, which raises C
faster in this domain. As the heuristic degrades, DBS’ ad-
vantage decreases, but DBBS and BAE* retain a substan-
tial margin. The b bound seems to be more useful than the
KK bounds because additive heuristics compensate for their
weaknesses and avoid extreme fMinx and dMinx values,
probably benefiting the averaging behavior of the b bound.
Still, a deeper analysis is necessary to better understand this.

Algorithm 15 Puzzle
NBS 12748k 12710k 0.93
NBB 12067k 11739k 0.86
DBS (a) 26590k 10736k 0.07
DBBS (a) 22184k 10159k 0.19
A* 15550k 14700k 0
BS* (a) 19355k 19305k 0
BS* (p) 12001k 11942k 0
DVCBS 11670k 11590k 0.78
DVCBSa 11934k 10660k 0.55
GBFHS 42532k 10645k 0
GBFHSe 10753k 10645k 0
BAE* (a) 2707k 2700k 0
BAE* (p) 2837k 2829k 0
DBS (p) 10187k 8011k 0.66
DBBS (p) 3915k 3059k 0.69

Table 3: Sliding Tile Puzzle

Table 3 shows results for 100 instances of the 15 Sliding
Tile Puzzle (Korf 1985) with Manhattan Distance. DBS (p)
and DBBS (p) are much better than their alternating counter-
parts, which implies that the new bounds are useful in find-
ing good splits too. Expanding by b like BAE∗ is very advan-
tageous, but DBBS (p) is close despite expanding by g. DBS
and DBBS expand many more total nodes than necessarily-
expanded nodes due to delayed nodes along optimal paths.

Table 4 shows results for grid-based pathfinding bench-
marks (Sturtevant 2012) with the octile heuristic, using
mazes and Dragon Age: Origins (DAO) maps. Diagonal
moves are allowed with a cost of 1.5, so costs are non-
unitary. Mazes are built to misguide the heuristic, and indeed
DBS, DBBS and BAE* are able to leverage this. DVCBS
and GBFHS are negatively affected, with only GBFHSe able
to find good splits. DAO maps are more conventional, and
using heuristic inaccuracies is not much better than just us-
ing A*, although DBS and DBBS are still better than NBB.

In terms of nodes per second, using more dimensions in
the open list and doing a fixpoint computation can affect per-
formance. With a small range of node values (all unitary-
cost domains here), DBS and DBBS are not substantially
slower. The opposite is true in Mazes and DAO, with a
large range of node values. Here the algorithms that use a
heap (A∗, BS∗, BAE∗, NBS) are the fastest; those that use

Algorithm Mazes DAO
NBS 84011 84006 0.86 6676 6561 0.37
NBB 84007 83993 0.86 6876 6543 0.35
DBS (a) 78633 78563 0.52 6200 5866 0.21
DBBS (a) 78525 78458 0.53 6191 5858 0.21
A* 99396 99369 0 5406 5321 0
BS* (a) 100330 99369 0 6609 6567 0
BS* (p) 87726 87760 0 6200 6132 0
DVCBS 93543 93434 0.42 5545 5157 0.16
DVCBSa 93145 93032 0.43 5545 5152 0.17
GBFHS 98573 98547 0.18 5225 5030 0.03
GBFHSe 78212 78206 0.93 6262 6088 0.24
BAE* (a) 80835 80809 0 6718 6668 0
BAE* (p) 74069 74033 0 5995 5861 0
DBS (p) 75167 75131 0.75 5600 5318 0.28
DBBS (p) 75533 75501 0.76 5595 5314 0.28

Table 4: Grids

bi-dimensional buckets (NBB, DVCBS, GBFHS) are up to
1 order of magnitude slower; those with three-dimensional
buckets and fixpoint computation (DBS and DBBS) are up
to 2 orders of magnitude slower. A preliminary analysis
shows that the fixpoint computation ends on average after a
few steps. However, a high range of node values means that
the number of buckets is high (so iterating through them is
costlier) and the buckets are smaller (so minimum node val-
ues are recomputed often). Nevertheless, results may be dif-
ferent when the bottleneck is the heuristic or the successor
generation, like in automated planning. Also, more efficient
implementations should be investigated and additional ex-
perimentation should find which bounds are worth using.

Regarding total nodes, the new bounds often delay nodes
on optimal paths e.g. in Pancake GAP-1, NBB explores the
last layer only 8% of the time, but DBS (a) does it 94% of
the time, with catastrophic results in terms of total nodes.
GBFHS and DVCBSa display sometimes a very bad last-
layer behavior too. Hence, implementing RunTieBreaker()
is an interesting alternative for these algorithms.

Overall, BAE∗ stands out as the most efficient algorithm
in the presented data. However, this does not mean that
BAE∗ will always expand fewer nodes, as other priority
functions may yield better results. For example, DBBS ex-
panding by b and DBS expanding by f are often similar or
better than BAE∗ e.g. in Sliding Tile Puzzle, the best do-
main for BAE∗, DBS (a) by f expands 1806k necessarily-
expanded nodes, and DBBS (a) by b, 1701k, compared to
BAE∗’s 2700k. Time can also be improved by using fewer
node values e.g. just g and b values. Unfortunately, both
questions are out of scope here, and belong to future work.

Conclusions and Future Work

In this paper we have defined individual bounds within
the lower-bound framework of bidirectional search. These
bounds seamlessly integrate both modern techniques and
techniques that for years remained hard to exploit. They gen-
eralize over Kaindl and Kainz’s and Sadhukhan’s works and

2333



are easy to understand and to exploit in modern Bi-HS algo-
rithms. Results show a great leap in performance, breaking
the limits imposed by near-optimality thanks to the use of
heuristic inaccuracies and pushing the state of the art. Due
to this and to how relatively simple it is to implement al-
gorithms using the newer bounds, we personally argue that,
if backward search is possible and consistent heuristics are
available, front-to-end bidirectional search should be tried
first over unidirectional algorithms like A∗.

Two main lines of research are now open, one theoreti-
cal and one empirical: first, the must-expand pairs defined
by Eckerle et al. (2017) and its derived definitions, like
near-optimality, must be modified to work with individual
bounds. Second, a thorough empirical analysis is necessary
to understand when and why the different bounds are use-
ful, which criteria to use to expand nodes (e.g. if the forward
KK bound is the one raising C, expand by f forward and by
d backward), how the last-layer behavior is different from
the C-rising process, and how to modify newer algorithms
(like NBS, DVCBS and GBFHS, arguably more complex
than DBS and DBBS) to exploit the individual bounds.

References

Alcázar, V.; Barley, M.; and Riddle, P. J. 2019. A theoretical com-
parison of the bounds of MM, NBS, and GBFHS. In Proceedings
of the Twelfth International Symposium on Combinatorial Search,
SoCS, 160–161.

Auer, A., and Kaindl, H. 2004. A case study of revisiting best-
first vs. depth-first search. In Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI’04, 141–145.

Barker, J. K., and Korf, R. E. 2015. Limitations of front-to-end
bidirectional heuristic search. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 1086–1092.

Barley, M. W.; Riddle, P. J.; Linares López, C.; Dobson, S.; and
Pohl, I. 2018. GBFHS: A generalized breadth-first heuristic search
algorithm. In Proceedings of the Eleventh International Sympo-
sium on Combinatorial Search, SoCS, 28–36.

Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Proceedings of the
Fifth Annual Symposium on Combinatorial Search, SoCS, 25–32.

Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. 2017. Front-
to-end bidirectional heuristic search with near-optimal node expan-
sions. In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI, 489–495.

Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte, R. C.
2017. Sufficient conditions for node expansion in bidirectional
heuristic search. In Proceedings of the Twenty-Seventh Interna-
tional Conference on Automated Planning and Scheduling, ICAPS,
79–87.

Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pattern
database heuristics. JAIR Journal of Artificial Intelligence Re-
search 22:279–318.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–107.

Helmert, M., and Röger, G. 2010. Relative-order abstractions for
the pancake problem. In ECAI European Conference on Artificial
Intelligence, 745–750.

Helmert, M. 2010. Landmark heuristics for the pancake problem.
In Proceedings of the Third Annual Symposium on Combinatorial
Search, SoCS, 109–110.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and Chen, J.
2017. MM: A bidirectional search algorithm that is guaranteed to
meet in the middle. Artif. Intell. 252:232–266.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic search
reconsidered. J. Artif. Intell. Res. 7:283–317.
Kaindl, H.; Kainz, G.; Steiner, R.; Auer, A.; and Radda, K. 1999.
Switching from bidirectional to unidirectional search. In Proceed-
ings of the Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI, 1178–1183.
Korf, R. E. 1985. Depth-first iterative-deepening: An optimal ad-
missible tree search. Artif. Intell. 27(1):97–109.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artif. Intell. 38(1):95–109.
Pohl, I. 1969. Bi-directional and heuristic search in path problems.
Ph.D. Dissertation, Stanford Linear Accelerator Center.
Sadhukhan, S. K. 2012. A new approach to bidirectional heuristic
search using error functions. In 1st International Conference on
Intelligent Infrastructure at the 47th Annual National Convention
Computer Society of India (CSI-2012), 239–243.
Sadhukhan, S. K. 2013. Bidirectional heuristic search using error
estimate. CSI Journal of Computing 2(1-2):S1:57–S1:64.
Sadhukhan, S. K. 2015. Letter to the editor - corrections. CSI
Journal of Computing 2(4):80.
Shaham, E.; Felner, A.; Chen, J.; and Sturtevant, N. R. 2017. The
minimal set of states that must be expanded in a front-to-end bidi-
rectional search. In Proceedings of the Tenth International Sympo-
sium on Combinatorial Search, SoCS, 82–90.
Shaham, E.; Felner, A.; Sturtevant, N. R.; and Rosenschein, J. S.
2018. Minimizing node expansions in bidirectional search with
consistent heuristics. In Proceedings of the Eleventh International
Symposium on Combinatorial Search, SoCS, 81–98.
Shperberg, S.; Felner, A.; Sturtevant, N. R.; Hayoun, A.; and Shi-
mony, E. S. 2019a. Enriching non-parametric bidirectional search
algorithms. In Proceedings of the Thirty-Third AAAI Conference
on Artificial Intelligence, 2379–2386.
Shperberg, S. S.; Felner, A.; Sturtevant, N. R.; Shimony, S. E.; and
Hayoun, A. 2019b. Improving bidirectional heuristic search by
bound propagation. Proceedings of the Twelfth International Sym-
posium on Combinatorial Search, SoCS 106–114.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfinding.
IEEE Trans. Comput. Intellig. and AI in Games 4(2):144–148.
Wilt, C. M., and Ruml, W. 2013. Robust bidirectional search via
heuristic improvement. In Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, 954–961.

2334


