
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Local Search with Dynamic-Threshold Configuration Checking
and Incremental Neighborhood Updating for Maximum k-plex Problem

Peilin Chen,1 Hai Wan,1∗ Shaowei Cai,2* Jia Li,1 Haicheng Chen1

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

wanhai@mail.sysu.edu.cn, {chenpl7, lijia49, chenhch8}@mail2.sysu.edu.cn, caisw@ios.ac.cn

Abstract

The Maximum k-plex Problem is an important combinatorial
optimization problem with increasingly wide applications. In
this paper, we propose a novel strategy, named Dynamic-
threshold Configuration Checking (DCC), to reduce the cy-
cling problem of local search. Due to the complicated neigh-
borhood relations, all the previous local search algorithms
for this problem spend a large amount of time in identify-
ing feasible neighbors in each step. To further improve the
performance on dense and challenging instances, we pro-
pose Double-attributes Incremental Neighborhood Updating
(DINU) scheme which reduces the worst-case time complex-
ity per iteration from O(|V | · ΔG) to O(k · ΔG). Based on
DCC strategy and DINU scheme, we develop a local search
algorithm named DCCplex. According to the experiment
result, DCCplex shows promising result on DIMACS and
BHOSLIB benchmark as well as real-world massive graphs.
Especially, DCCplex updates the lower bound of the maxi-
mum k-plex for most dense and challenging instances.

Introduction

In social network analysis, detecting a large cohesive sub-
graph is a fundamental and extensively studied topic with
various applications. Clique is a classical and ideal model
in the field of cohesive subgraph detection. The Maximum
Clique Problem (MCP), that is, to find a complete graph of
maximum size in a given graph, is a fundamental problem in
graph theory and finds wide application in many fields, such
as biochemistry and genomics (Butenko and Wilhelm 2006;
Pullan 2007), wireless network (Lakhlef 2015; Luo et al.
2015), data mining (Boginski, Butenko, and Pardalos 2006;
Conte et al. 2018) and many others.

However, in some real-world applications, the networks
of interest may be built based on empirical data with noises
and faults. In these cases, large cohesive subgraphs hardly
appear as ideal cliques. To tackle this problem, many clique
relaxation models have been proposed (Luce 1950; Mokken
1979; Pattillo et al. 2013). In this paper, we focus on k-plex,
a degree-based clique relaxation model. A simple undirect

∗corresponding author and having equal contribution with the
first author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graph with n vertices is a k-plex if each vertex of this graph
has at least n− k neighbors. The maximum k-plex problem,
that is, to find a k-plex of maximum size on a given graph
with a given integer k, has received increasing attention from
researchers in the fields of social network analysis and data
mining (Kondo and Okubo 2012; Xiao et al. 2017; Conte et
al. 2018; Gao et al. 2018).

As with MCP, the maximum k-plex problem is known
to be NP-hard (Balasundaram, Butenko, and Hicks 2011).
Practical methods for this problem can be mainly catego-
rized into exact algorithms and heuristic ones. Balasun-
daram, Butenko, and Hicks (2011) proposed a branch-and-
bound algorithm based on a polyhedral study of this prob-
lem. McClosky and Hicks (2012) developed two branch-
and-bound algorithms adapted from combinatorial clique al-
gorithms. Recently, Xiao et al. (2017) proposed an exact al-
gorithm which breaks the trivial exponential bound of 2n for
maximum k-plex problem with k ≥ 3. Gao et al. (2018) pro-
posed several graph reduction methods and integrated them
into a brand-and-bound algorithm.

However, these exact methods do not scale well and sev-
eral heuristic approaches, mainly local search (LS) ones,
have been proposed for solving large and hard instances. Gu-
jjula, Seshadrinathan, and Meisami (2014) proposed a hy-
brid metaheuristic based on the GRASP method. Miao and
Balasundaram (2017) improved the construction procedure
to provide a better initial solution for GRASP method. Zhou
and Hao (2017) developed a tabu search algorithm named
FD-TS which achieved state-of-the-art performance.

Though LS algorithms have made some achievement on
this challenging problem, it has some limitations, a ma-
jor one of which is the cycling problem (Hoos and Stützle
2004). When the search process is cycling, it is stuck in lo-
cal optima and frequently visits a small group of a candidate
solution. For a long time, much effort has been devoted to
reducing the cycling problem in local search. Tabu search
(Glover and Laguna 1998) maintains a short-term memory
of the recent search steps and forbid reversing the recent
changes. Configuration Checking (Cai, Su, and Sattar 2011)
remembers local state change and reduces global cycling
problem by prohibiting cycling locally.

Different from the tabu method, Configuration Checking

2343

(CC) is a non-parameter strategy which exploits the cir-
cumstance information to reduce cycling problem in local
search. Recently, CC and its variants have been successfully
applied in various combinatorial problems (Cai and Su 2013;
Wang, Cai, and Yin 2016; Wang et al. 2018). However, as is
shown in (Cai and Su 2013), the CC strategy becomes in-
effective when solving the dense SAT instances where most
variables are connected to each other. The reason is that the
forbidding strength of the CC is too weak on instances which
have dense variable-variable connections. The situation is
the same when applying CC strategy for the maximum k-
plex problem on dense graphs. In this paper, we propose
Dynamic-threshold Configuration Checking (DCC), to en-
able an adaptive forbidding strength for CC so that it can
handle dense instances well.

In the literature, there exists a lightweight neighborhood
evaluation method for the maximum clique problem (Bat-
titi and Protasi 2001). For the maximum k-plex problem ,
however, the relaxed constraints on connectivity lead to a
complicated neighborhood relation, which is the main dif-
ficulty when designing an efficient neighborhood updating
method. In this paper, we propose Double-attributes Incre-
mental Neighborhood Updating (DINU) scheme to tackle
the complicated neighborhood relations for the maximum k-
plex problem. Theoretical and empirical analysis show that
DINU cuts down the overhead per search step and signifi-
cantly boosts the iterating speed of local search for the max-
imum k-plex problem .

Based on the DCC strategy and DINU scheme, we de-
velop an LS algorithm named DCCplex. According to the
experiments, DCCplex shows a promising result on the DI-
MACS benchmark and dominates on the BHOSLIB bench-
mark, updating the lower bounds of the size of the maxi-
mum k-plexes for most hard instances. Besides, DCCplex
achieves state of the art performance on massive graphs.

Preliminaries

Basic Definitions and Notations

An undirected graph is defined as G = (V,E), where V is a
set of vertices and E is a set of edges. Each edge e consists
of two vertices, denoted as e = (v, u), where v and u are the
endpoints of this edge. Two vertices are neighbors if they
belong to an edge and non-neighbors otherwise. Let N(v)
denote the set of all neighbors of v. The degree of vertex v
is defined as the deg(v) = |N(v)|. The maximum degree
of a graph G , denoted by ΔG, and the minimum degree
of a graph, denoted by δG, are the maximum and minimum
degree of its vertices. The edge density of G = (V,E) is
defined as ρ = 2|E|

|V |(|V |−1) . For a vertex set S, let N(S) =
⋃

v∈S N(v) \ S be the set of neighbors of S and G[S] =
(S,E∩(S×S)) be the induced graph of S. The complement
graph of G = (V,E) is the graph G on the same set of
vertices, and with edges set {(u, v)|u �= v, (u, v) /∈ E}.

Given a graph G and an integer k, a subset S ⊆ V is a k-
plex, if |N(v) ∩ S| ≥ |S| − k for all v ∈ S. A vertex v ∈ S
is a saturated vertex if |N(v)∩ S| = |S| − k. The saturated
set C[S] of set S is the set of all saturated vertices in S.

Local Search for Maximum k-plex Problem

Given a graph G = (V,E) and an integer k, a typical
three-phase LS algorithm for the maximum k-plex problem
maintains a feasible k-plex S ⊆ V as candidate solution
and uses three operators, Add, Swap and Perturb to mod-
ify it iteratively. Three sets AddSet(S), SwpSet(S) and
PerturbSet(S) contain the objects of these three operators.
They are defined as follows:

AddSet(S) ={v ∈ N(S) | |N(v) ∩ S| > |S| − k,

C[S] \N(v) = ∅}
SwapSet(S) ={v ∈ N(S) | |N(v) ∩ S| ≥ |S| − k,

|C[S] \N(v)| = 1} ∪ {v ∈ N(S) :

|N(v) ∩ S| = |S| − k, |C[S] \N(v)| = ∅}
PerturbSet(S) =S

AddSet(S) contains the vertices in N(S) that can be
added into S directly. A vertex v ∈ N(S) is in AddSet(S)
if it has less than k non-neighbors in S and is adjacent to all
saturated vertices. A vertex v ∈ N(S) is in SwapSet(S)
if it satisfies one of the following conditions, (i) v has k
non-neighbors in S and is adjacent to all saturated vertices,
(ii) v has less than k non-neighbors in S but is not adjacent
to one saturated vertex. A higher priority are given to Add
and Swap operator. When AddSet(S) and SwapSet(S) are
empty, a vertex in PerturbSet(S) will be removed from S.

Dynamic-threshold Configuration Checking
Configuration Checking (CC) (Cai, Su, and Sattar 2011),
is a parameter-free strategy that can exploit the structural
property of the problem to reduce cycling problem in local
search. The configuration of a vertex is defined as the states
of its neighbors. The main idea of CC strategy is that if the
configuration of a vertex remains unchanged since its last
removal from candidate solution, then it is forbidden to be
added back into the candidate solution.

Among the variants of CC, we highlight the Strong Con-
figuration Checking (SCC) strategy which was proposed in
(Wang, Cai, and Yin 2016) for the Maximum Weight Clique
Problem. The difference between SCC and CC is that SCC
allows a vertex v to be added into the candidate solution
only when some of v’s neighbors have been added since v’s
last removal, while CC allows the adding of a vertex v when
some of v’s neighbors have been either added or removed.

According to our preliminary experiments, applying CC
or SCC directly does not lead to a good performance for
the maximum k-plex problem. The reason is that the con-
figurations of the high-degree vertices in these graphs are
very likely to change and the forbidding strength of CC
and other existing CC variants is too weak on these ver-
tices. Therefore, we propose a new variant of CC named
Dynamic-threshold Configuration Checking (DCC), which
can dynamically adjust its forbidding strength on vertices
with various degrees.

The main idea of the DCC strategy is to increase the for-
bidding strength on the vertices that are frequently operated.
For each vertex, DCC maintains an integer nChange to
count the number of changes of its configuration and an inte-
ger threshold to control the forbidding strength. A vertex v

2344

is allowed to be added into the candidate solution only when
DCC condition nChange(v) ≥ threshold(v) is satisfied.
The following four rules specify the DCC strategy.

DCC-InitialRule. In the beginning of search process, for
all v ∈ V , nChange(v) = threshold(v) = 1.

DCC-AddRule. When v is added into the candidate so-
lution, nChange(v) = 0, threshold(v) + +, and for all
v′ ∈ N(v), nChange(v′) + +.

DCC-SwapRule. When v is added into the candidate so-
lution at the cost of removal of u, nChange(u) = 0.

DCC-PerturbRule. When v is removed from candidate
solution, nChange(v) = 0.

Note that the SCC strategy is a special case of
DCC strategy whose nChange(v) is a Boolean value
and threshold(v) is fixed to 1. The SCC condition is
nChange(v) = 1. Lemma 1 illustrate their relation.
Lemma 1. If a vertex v satisfies the DCC condition, then
it satisfies the SCC condition. The reverse is not necessarily
true.

Proof. According to DCC rules, threshold(v) ≥ 1 for
∀v ∈ V during the search processs. If the DCC condition
nChange(v) ≥ threshold(v) holds, then nChange(v) ≥
threshold(v) ≥ 1. So at least one neighbor of v must be
added into candidate solution since the last time v was re-
moved. So the SCC condition is satisfied.

Suppose v satisfies the SCC condition nChange(v) = 1,
but threshold(v) > nChange(v). In this case the DCC
condition is not satisfied.

According to Lemma 1, we can conclude that DCC has
stronger forbidding strength than SCC. Note that some
works exist that tried to quantify the CC strategy (Luo, Su,
and Cai 2012; Wang et al. 2019). But we are the first to quan-
tify the CC strategy to enable a dynamic forbidding strength.

An Incremental Neighborhood Updating

Scheme

The performance of an LS algorithm is influenced not only
by its search strategies but also the implementation. In-
cremental neighborhood updating scheme is an important
speed-up technique for LS, which is verified in (Battiti and
Protasi 2001; Cai, Luo, and Su 2015; Lin et al. 2019). Com-
pared with evaluating neighbors from scratch, evaluating
them incrementally can significantly reduce the computa-
tional overhead per search step.

Note that each vertex in AddSet(S) or SwapSet(S)
corresponds to a feasible neighbor of S. Which set a ver-
tex v ∈ N(S) belongs to depends on not only the num-
ber of non-neighbors in S but also non-neighbors in C[S].
For the maximum 1-plex (clique) problem, all the vertices
in S are saturated vertices. However, for k ≥ 2, S and
C[S] are not equal in general. How to keep track of the
saturated set and its connection with vertices in N(S) is
the major difficulty to design an efficient neighborhood up-
dating scheme. The straightforward neighborhood updat-
ing method used in FD-TS and other LS methods for this
problem contains two parts: 1) scan all the vertices in S,
identify all the saturated vertices, 2) for each v ∈ N(S),

scan all the neighbors of v and add them into the corre-
sponding sets according to the numbers of non-neighbors
in S and C[S]. Obviously its worst-case time complexity is
O(|S| · ΔG) + O((|V | − |S|) · ΔG) = O(|V | · ΔG). It is
time-consuming on dense graphs.

In this section, we propose a novel neighborhood up-
dating scheme named DINU (Double-attributes Incremental
Neighborhood Updating) to tackle the complicated neigh-
borhood relations for maximum k-plex problem .

Implementation Details of DINU

Data Structures Before presenting the details of DINU,
we first introduce two attributes for each vertex.

(1)NNS = |S \N(v)|, i.e., the number of non-neighbors
in the candidate solution S.

(2)NNC = |C[S] \ N(v)|, i.e., the number of non-
neighbors in the saturated set C[S].

With these two attributes, we redifine the AddSet(S) and
SwapSet(S) as follows:

AddSet(S) = {v ∈ N(S) | NNS(v) ≤ k − 1, NNC(v) = 0}
SwapSet(S) = {v ∈ N(S) | NNS(v) ≤ k,NNC(v) = 1}

∪{v ∈ N(S) | NNS(v) = k,NNC(v) = 0}.
Figure 1 shows in an intuitive way how to classify a vertex

according to its NNS and NNC. Note that for MCP, all
vertices in the candidate solution are saturated vertices, thus
NNS(v) = NNC(v) for all v ∈ V .

Figure 1: The Regions of AddSet(S) and SwapSet(S) in
NNS −NNC Coordinates

Updating Rules The underlying idea of DINU is to keep
track of the NNS and NNC attributes of each vertex and
update the set a vertex belongs to only when it crosses the
border in NNS − NNC coordinates. Consider a situation
where a vertex v is added into candidate solution. The fol-
lowing rules specify how to update the set a vertex belongs
to according to the change of its attributes.

• In each search step, after a vertex v is added into S, for
all u ∈ NG(v), NNS(u)++. If NNS(u) = k− 1, then
for all w ∈ NG(u), NNC(w) + +.

• If NNC(v) = 0 and NNS(v) changes from k − 1 to k,
move x from AddSet(S) to SwapSet(S).
• If NNC(v) ≤ 1 and NNS(v) changes from k to k + 1,

remove x from SwapSet(S).

2345

• If NNS(v) ≤ k−1, NNC(v) changes from 0 to 1, move
x from AddSet(S) to SwapSet(S).

• If NNS(v) ≤ k, NNC(v) changes from 1 to 2, remove
x from SwapSet(S).

With the above rules, we can incrementally update the
AddSet(S) and SwapSet(S) after Add operations. The up-
dating rules for Perturb operations can be got similarly and
are detailed in the supplemental material.

Implementation in Add Operation We implement the
updating rules in the DINU-ADD function, whose details
is presented in Algorithm 1.

Algorithm 1: DINU-ADD(S, v)
Input : Current S, a vertex v to be added
Output: New AddSet(S) and SwapSet(S)

1 forall u ∈ NG(v) \ S do
2 NNS(u) + +;
3 move u according to the updating rules;
4 forall u ∈ NG(v) ∩ S do
5 NNS(u) + +;
6 if NNS(u) = k − 1 then
7 forall w ∈ NG(u) do
8 NNC(w) + +;
9 if w /∈ S then

10 move w according to the updating rules;

11 if NNS(v) = k − 1 then
12 forall m ∈ NG(v) do
13 NNC(m) + +;
14 if m /∈ S then
15 move m according to the updating rules;

16 return AddSet(S) and SwapSet(S)

After adding v into S, we increase the NNS value of its
non-neighbors out of S by one (line 2) and move them ac-
cording to updating rules (line 3). The non-neighbors in S
whose NNS is increased to k − 1 become saturated ver-
tices. The non-neighbors of these saturated vertices have to
increase their NNC value by one and make a move accord-
ing to Update-Rules (line 5-10). In the end, if the added ver-
tex v is a saturated vertex, increase the NNC value of all
its non-neighbors as described above (line 11-15) and move
them if necessary. The new DINU-Perturb function is easy
to get by analogy and is omitted for saving space.

Complexity Analysis

Next, we will analyze the complexity of DINU in Add oper-
ation. We give the following theorem.

Theorem 1. With the DINU scheme, each search step of
local search algorithm for maximum k-plex problem has a
worst-case complexity of O(k ·ΔG).

Proof. We begin with the analysis of new DINU-ADD func-
tion. When a vertex v is added to S, first, for all u ∈

NG(v) \ S, NNS(u) + +, operations of this loop (line
1-3) are at most ΔG. Second, for all u ∈ NG(v) ∩ S,
NNC(u) + +. If u is a saturated vertex, then we need to
update NNC for all w ∈ NG(u), |NG(u)| is at most ΔG
and move operation costs O(1). According to the defini-
tion of k-plex, we have |NG(v) ∩ S| ≤ k − 1, so the time
cost of the loop in line 4-10 is bound by (k − 1) · ΔG. At
last, if this added vertex v is a saturated vertex, the number
of operations inside this loop (line 11-15) are at most ΔG.
Similarly, we can get the same time complexity of the new
DINU-PERTURB function. In practice, DINU-SWAP func-
tion can be implemented by combining a DINU-PERTURB
and DINU-ADD function. Therefore, we can conclude that
the worst-case complexity of each iteration is O(k ·ΔG).

For a small constant k and a dense graph G where ΔG(v)
is much smaller than ΔG(v), our scheme has a lower worst-
case complexity compared with the straightforward method,
which will be verified by experiments.

DCCplex Algorithm

Based on the DCC strategy and the DINU scheme, we de-
velop an LS algorithm named DCCplex, whose pseudocode
is shown in Algorithm 2. Initially, the best found k-plex, de-
noted as S∗, is initialized as an empty set. In each loop (line
2-10), an initial solution is firstly constructed (line 3) as the
starting point of the search trajectory, and the search proce-
dure starts. If the best solution in this search trajectory Slbest

is better than the best solution ever found S∗, S∗ is updated
by Slbest and PEEL function (line 8) is called to reduce the
graph. If the reduced graph has fewer vertices than |S∗|, then
|S∗| is returned as one of the optimum solutions. Three ma-
jor components in DCCplex are initial solution construction,
search procedure and graph peeling. We describe them in de-
tails as follows.

Algorithm 2: DCCplex algorithm
Input : A graph G, an integer k, cutoff time ct,

iterations limit L
Output: The largest k-plex found

1 S∗ ← ∅;
2 while elapsedtime < ct do
3 S ← INITCONSTRUCT(G, k);
4 ρ← compute the edge density of G;
5 Slbest ← SEARCH(G, k, S, L, ρ);
6 if |Slbest| > |S∗| then
7 S∗ ← Slbest;
8 G← PEEL(G, k, |S∗|) ;
9 if |V | ≤ |S∗| then

10 return S∗;

11 return S∗

We adopt the construction function in FD-TS (Zhou and
Hao 2017). The INITCONSTRUCT function starts with an
empty initial solution S and repeatedly add the vertex that
is operated least frequently (breaking ties randomly) in

2346

AddSet(S) into S until AddSet(S) is empty. Then the fi-
nal solution S is returned as the initial solution. By giving
priority to vertices that are operated less frequently, the con-
struction procedure can generate diversified initial solutions
in different rounds.

Algorithm 3: SEARCH(G, k, S, L, ρ)
Input : A graph G, an integer k, initial solution S,

search depth L, edge density ρ
Output: The largest k-plex in this search procedure

1 curStep← 0, Slbest ← S,;
2 nChange(v)← 1, threshold(v)← 1 for all v ∈ V ;
3 initialize DINU data structures ;
4 obtain AddSet(S), SwapSet(S) ;
5 while curStep < L do
6 if AddSet(S) �= ∅ then
7 add a vertex v ∈ AddSet(S) into S;
8 else if SwapSet(S) �= ∅ then
9 swap a vertex u ∈ S for a vertex

v ∈ SwapSet(S);
10 else
11 remove a random vertex from S;
12 update nChange and threshold according to the

DCC rules;
13 if ρ > ρ0 then
14 update AddSet(S), SwapSet(S) with DINU;
15 else
16 obtain AddSet(S), SwapSet(S) from scratch ;
17 if |S| > |Slbest| then
18 Slbest ← S;
19 curStep← curStep+ 1

20 return Slbest;

The SEARCH function iteratively modifies the candi-
date solution until the iterations limit L is reached, as is
shown in Algorithm 3. The Slbest records the best-quality
solution in the search process so far. Before the search
starts, the algorithm will initialize DINU data structures and
AddSet(S), SwapSet(S). If the AddSet(S) is not empty,
then the algorithm selects a vertice in AddSet(S) and add it
into S. If the AddSet(S) is empty the SwapSet(S) is not,
the algorithm selects a vertice in SwapSet(S) and add it
into S after remove a vertex from S. If both sets are empty,
then a vertex randomly selected is removed from S to cre-
ate a new search area. After each search step, if the edge
density is more than ρ0, AddSet(S) and SwapSet(S) are
updated with DINU scheme. Otherwise, they are obtained
from scratch. If |S| > |Slbest|, then record S in Slbest.

If the Slbest returned by SEARCH is better than S∗, then
S∗ is updated with Slbest and the PEEL function is called
to recursively deletes the vertices (and their incident edges)
with a degree less than |S∗| − k + 1 until no such vertex
exists. It is sound to remove these vertices since they can not
be included in any feasible k-plexes larger than |S∗|.

Experimental Result

Experiment Preliminaries

In this section, we carry out extensive experiments on DI-
MACS and BHOSLIB (Xu et al. 2005) benchmark as well
as massive graphs. We choose two state of the art algorithms
as competitors, including a heuristic one FD-TS (Zhou and
Hao 2017) and an exact one BnB (Gao et al. 2018). All of
these algorithms are all implemented in C++ and compiled
by g++ with ’-O3’ option. All experiments are run on an In-
tel Xeon CPU E7-4830 v3 @ 2.10GHz with 128 GB RAM
server under Ubuntu 16.04.5 LTS. We set the search depth
L = 4000 and the ρ0 = 0.5 for DCCplex. The All algo-
rithms are executed 25 independently times with different
random seeds on each graph with k = 2, 3, 4.

Evaluation on DIMACS and BHOSLIB

We evaluate DCCplex and FD-TS on DIMACS and
BHOSLIB benchmark with a cutoff time of 1000s. Note that
most DIMACS instances are so easy that FD-TS and DCC-
plex find the same quality k-plex quickly, and thus are not
reported. According to our preliminary experiments, the re-
maining instances are so challenging for BnB that it returns
a much smaller k-plex than its heuristic competitors even
given 10000 seconds. Thus we do not report the result of
BnB.

According to Table 1, DCCplex dominates on C domain,
MANN domain and keller domain in DIMACS benchmark
as well as the whole BHOSLIB benchmark. DCCplex up-
dates the best-known solutions for 7 instances and 45 in-
stances in DIMACS and BHOSLIB benchmark respectively.
Note that these instances are large and challenging. For some
instances in brock domain and san domain, FD-TS is more
robust and achieves better average performance, partly be-
cause of its more random behavior in adding and swap-
ping phases (Zhou and Hao 2017). The complementarity be-
tween DCCplex and FD-TS indicates that it is promising to
build an algorithm-selector to achieve generally good per-
formance across the wide range of problem domains in DI-
MACS benchmark.

In BHOSLIB benchmark, DCCplex is always better than
FD-TS in terms of maximum size and average size, except
one instance (frb53-24-4 with k = 2). It is worthy to note
that for the very challenging instance frb100-40, DCCplex
reaches a much larger k-plex than the state of the art algo-
rithms, which is a great progress for this problem.

Evaluation on Massive Graphs

We evaluate DCCplex on real-world massive graphs from
Network Data Repository online (Rossi and Ahmed 2015),
which have recently been used in testing the performance
of local search algorithms (Rossi et al. 2014; Wang, Cai,
and Yin 2016; Cai, Lin, and Luo 2017). We only test on
36 graphs that have more than 100000 vertices. According
to our experiments, within the cutoff time of 1000s, BnB re-
turns a solution and proves its optimality on 76 out of 108
(= 36 × 3) instances. For these 76 instances, DCCplex can
achieve the same quality solution within the cutoff time of
100s (most less than 10s). As for the remaining 32 instances,

2347

Table 1: Evaluation on DIMACS and BHOSLIB with k = 2, 3, 4

Instance
k=2 k=3 k=4

FD-TS DCCplex FD-TS DCCplex FD-TS DCCplex
C1000.9 82(81.2) 82(81.88) 95(94.8) 95(95) 108(107.48) 109(108)
C2000.5 20(19.44) 20(19.68) 23(22.04) 23(22.2) 25(25) 25(25)
C2000.9 92(90.16) 93(92.04) 106(104.84) 108(107.12) 120(118.16) 123(121.24)
C4000.5 21(20.24) 22(20.92) 24(23.28) 24(23.6) 27(26.12) 27(26.28)

DSJC1000.5 18(18) 18(18) 21(21) 21(21) 24(24) 24(23.96)
MANN a81 2162(2161.92) 2162(2162) 3240(3240) 3240(3240) 3240(3240) 3240(3240)
brock400 4 33(32.84) 33(32.84) 36(36) 36(36) 41(41) 41(41)
brock800 1 25(25) 25(25) 30(29.8) 30(29.16) 34(34) 34(33.96)
brock800 2 25(25) 25(25) 30(30) 30(30) 34(33.72) 34(33.28)
brock800 3 25(25) 25(25) 30(30) 30(30) 34(34) 34(33.84)
brock800 4 26(26) 26(25.6) 29(29) 29(29) 34(33.12) 33(33)

gen400 p0.9 65 74(74) 74(73.08) 101(101) 101(101) 132(132) 132(132)
gen400 p0.9 75 80(79.16) 79(79) 114(114) 114(114) 136(136) 136(136)

keller6 63(63) 63(63) 93(91.24) 93(91.68) 108(105.32) 117(114.56)
p hat1500-2 80(80) 80(80) 93(93) 93(93) 107(107) 107(106.92)
san400 0.7 2 33(32.2) 32(32) 47(47) 47(46.36) 61(61) 61(61)
san400 0.7 3 28(27.4) 27(27) 39(38.52) 39(38.08) 50(50) 50(49.76)
san400 0.9 1 102(102) 103(102.2) 150(150) 150(150) 200(200) 200(200)
frb50-23-1 67(65.84) 67(66.24) 79(78.12) 79(78.96) 92(90.12) 92(91.16)
frb50-23-2 66(65.64) 66(66) 79(78.08) 79(78.96) 91(89.8) 92(90.72)
frb50-23-3 65(63.44) 65(64.04) 76(75.12) 76(75.68) 87(86.16) 88(87.4)
frb50-23-4 66(65.16) 66(65.88) 78(77.56) 79(78.96) 91(89.6) 91(90.72)
frb50-23-5 67(65.48) 67(66.24) 79(78) 80(79.16) 91(89.84) 92(91.12)
frb53-24-1 70(69.2) 71(70.88) 84(82.96) 85(84.12) 97(96.32) 99(97.96)
frb53-24-2 69(68.4) 70(69.96) 82(80.96) 83(82.16) 94(93.28) 95(94.6)
frb53-24-3 70(68.56) 70(69.84) 83(81.72) 83(82.84) 95(94.2) 96(96)
frb53-24-4 70(68.4) 69(69) 82(81.32) 84(82.52) 95(94.12) 96(95.68)
frb53-24-5 68(67.44) 68(68) 80(79.72) 82(81.52) 92(91.84) 94(93.52)
frb56-25-1 74(73.24) 75(74.28) 89(87.6) 89(88.96) 102(101.52) 104(103.04)
frb56-25-2 74(72.96) 75(74.48) 88(86.8) 89(88.48) 101(100.12) 103(102.04)
frb56-25-3 73(72) 74(73.48) 87(85.4) 88(87.04) 99(98.44) 101(100.04)
frb56-25-4 73(72.08) 73(72.84) 87(85.04) 88(86.88) 99(98) 100(99.72)
frb56-25-5 73(72.2) 74(73.084) 86(85.4) 88(86.8) 99(98.32) 101(100.08)
frb59-26-1 78(76.64) 79(78.16) 92(90.72) 93(92.64) 106(104.72) 108(106.96)
frb59-26-2 78(76.88) 79(78.16) 91(90.96) 93(92.8) 106(104.8) 108(106.8)
frb59-26-3 77(75.6) 78(77.04) 91(89.92) 93(92.2) 105(104.08) 107(106.12)
frb59-26-4 77(75.68) 78(77.2) 91(89.84) 93(92) 105(103.6) 107(105.84)
frb59-26-5 77(76) 78(77.92) 91(89.56) 92(91.68) 105(103.24) 106(105.48)
frb100-40 125(123.4) 129(127.6) 148(146.64) 156(153.68) 170(168.72) 178(176.56)

DCCplex can return a larger solution than BnB on 24 in-
stances most of the time.

DCCplex and FD-TS achieve the same quality solution
quickly on most of these sparse graphs. To save space, we
only report the results on the graphs that DCCplex and FD-
TS do not return the same quality solutions in 100% runs
with k = 2, 3, 4. As is shown in Table 2, DCCplex outper-
forms FD-TS on 14 instances in terms of average solution
while it is defeated on only 5 instances, indicating its robust-
ness. As for the best solution quality, DCCplex and FD-TS
show the same performance in general.

Effectiveness of the DCC strategy

To study the effectiveness of the DCC strategy, we replace
the DCC strategy in DCCplex with the SCC strategy. The
resulting algorithm is termed as SCCplex. We compare DC-
Cplex with SCCplex on the DIMACS and BHOSLIB bench-
marks as well as massive graphs, and the result is summa-
rized in Table 3.

We explain the meaning of each column in the table.
We evaluate SCCplex and DCCplex on the three bench-
marks with 19, 21 and 36 instances respectively. The col-

umn ”XCCplex #Better” represents the number of instances
that XCCplex has better results than its competitor in terms
of the maximum and average results. According to the Ta-
ble 3, DCCplex outperforms SCCplex on DIMACS and
BHOSLIB benchmarks with k = 2, 3, 4,. It is worth men-
tioning that DCCplex defeats SCCplex on 21, 20, 21 in-
stances in terms of average results on BHOSLIB benchmark
with k = 2, 3, 4 respectively while is defeated on one case.
On those massive sparse graphs, the results of SCCplex and
DCCplex are comparable. The experiment result verifies the
effectiveness of the DCC strategy.

Empirical Analysis on Speedup Ratio

We assess the speedup ratio of DCCplex implemented with
DINU scheme over DCCplex with straightfoward neighbor-
hood updating scheme. The speedup ratio, denoted as r, is
defined as

r =
step(DINU)

step(straightfoward)

where the step(DINU) (resp. step(straightfoward)) is
the number of steps excuted by DCCplex with DINU (resp.
straightfoward) scheme per 1000s. Note that we set the

2348

Table 2: Evaluation on Massive Graphs with k = 2, 3, 4

Instance FD-TS
ct=100s

DCCplex
ct=100s

rt-retweet-crawl
k=2 14(13.5) 14(13.3)
k=3 15(14.6) 15(14.4)
k=4 16(15.6) 16(15.5)

soc-digg
k=2 57(55.8) 57(55.3)
k=3 63(61.8) 63(61.8)
k=4 69(67.6) 69(68.7)

soc-FourSquare
k=2 35(34.5) 35(34.9)
k=3 39(38.5) 39(38.7)
k=4 42(38.3) 42(42)

soc-gowalla
k=2 30(30) 30(29.3)
k=3 31(31) 31(31)
k=4 32(32) 32(32)

soc-pokec
k=2 23(22.3) 26(25.7)
k=3 32(28.1) 29(28.8)
k=4 32(29.4) 32(30.4)

soc-twitter-follows
k=2 8(8) 8(8)
k=3 9(8.9) 9(9)
k=4 11(11) 11(11)

socfb-A-anon
k=2 28(26.2) 28(27.3)
k=3 31(28.5) 32(31.2)
k=4 34(32.3) 34(34)

socfb-B-anon
k=2 27(25.2) 27(26.6)
k=3 30(28.4) 30(29)
k=4 33(30.9) 33(32)

ρ0 = 1 so that DINU always chooses the updating scheme
of O(k ·ΔG) complexity. Figure 2 is a scatter diagram that
illustrates the speedup ratio varying with edge density of the
graphs. Each point in the figure represents a graph in DI-
MACS/BHOSLIB. As we can see from Figure 2, it is a gen-
eral trend that with the increase of edge density, the superi-
ority of DCCplex with DINU scheme is increasingly obvi-
ous, which is in coincidence with the O(k · ΔG) complex-
ity of DINU scheme. On 55 out of 60 instances, DCCplex
with DINU scheme executes more iterations than its com-
petitor within the same time. On 15 instances, the speedup
ratio exceeds 10. It is worth mentioning that on the dense
graph MANN a81 whose edge density is 0.996, DCCplex
with DINU scheme achieve the speedup ratio of 230. That
explains why DCCplex with DINU scheme reaches the best-
known value of the maximum 2-plex for MANN a81 in
100% runs.

Conclusions and Future Work

In this paper, we have proposed a novel variant of Configura-
tion Checking named DCC and the Double-attribute Neigh-
borhood Update (DINU) scheme for the maximum k-plex
problem. Based on the DCC strategy and DINU scheme, we
develop a local search algorithm DCCplex. The experimen-
tal result shows that DCCplex achieve good performance
across a broad range of problem instances and update the
lower bounds on the size of the maximum k-plexes on many
hard instances. In the future, we plan to study more clique
relaxation models.

Table 3: Comparing SCCplex and DCCplex

Benchmarks SCCplex
#Better

DCCplex
#Better

DIMACS(19)
k=2 1(1) 3(10)
k=3 1(0) 1(9)
k=4 0(0) 3(11)

BHOSLIB(21)
k=2 1(0) 5(21)
k=3 0(1) 3(20)
k=4 0(0) 7(21)

Massive(36)
k=2 0(0) 4(8)
k=3 0(3) 0(1)
k=4 0(0) 1(3)

Figure 2: Speedup ratio varying with edge density

Acknowledgments

This paper was supported by the National Natural Science
Foundation of China (No. 61573386, 61976232), National
Key R&D Program of China (No. 2018YFC0830600),
Guangdong Province Natural Science Foundation (No.
2016A030313292, 2017A070706010 (soft science),
2018A030313086), Guangdong Province Science and
Technology Plan projects (No. 2016B030305007 and No.
2017B010110011), Guangzhou Science and Technology
Project (No. 201804010435). Shaowei Cai was supported
by Youth Innovation Promotion Association, Chinese
Academy of Sciences (No.2017150).

References

Balasundaram, B.; Butenko, S.; and Hicks, I. V. 2011.
Clique relaxations in social network analysis: The maximum
k-plex problem. Operations Research 59(1):133–142.
Battiti, R., and Protasi, M. 2001. Reactive local search for
the maximum clique problem. Algorithmica 29(4):610–637.
Boginski, V.; Butenko, S.; and Pardalos, P. M. 2006. Mining
market data: a network approach. Computers & Operations
Research 33(11):3171–3184.
Butenko, S., and Wilhelm, W. E. 2006. Clique-detection
models in computational biochemistry and genomics. Euro-
pean Journal of Operational Research 173(1):1–17.

2349

Cai, S., and Su, K. 2013. Local search for boolean satisfi-
ability with configuration checking and subscore. Artificial
Intelligence 204:75–98.
Cai, S.; Lin, J.; and Luo, C. 2017. Finding A small ver-
tex cover in massive sparse graphs: Construct, local search,
and preprocess. Journal of Artificial Intelligence Research
59:463–494.
Cai, S.; Luo, C.; and Su, K. 2015. Improving walksat by ef-
fective tie-breaking and efficient implementation. Computer
Journal 58(11):2864–2875.
Cai, S.; Su, K.; and Sattar, A. 2011. Local search with edge
weighting and configuration checking heuristics for mini-
mum vertex cover. Artificial Intelligence 175(9-10):1672–
1696.
Conte, A.; De Matteis, T.; De Sensi, D.; Grossi, R.; Marino,
A.; and Versari, L. 2018. D2k: Scalable community de-
tection in massive networks via small-diameter k-plexes. In
Proceedings of the 24th ACM SIGKDD, 1272–1281.
Gao, J.; Chen, J.; Yin, M.; Chen, R.; and Wang, Y. 2018. An
exact algorithm for maximum k-plexes in massive graphs.
In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, 1449–1455.
Glover, F., and Laguna, M. 1998. Tabu search. In Handbook
of Combinatorial Optimization. 2093–2229.
Gujjula, K. R.; Seshadrinathan, K. A.; and Meisami, A.
2014. A hybrid metaheuristic for the maximum k-plex prob-
lem. In Examining Robustness and Vulnerability of Net-
worked Systems. 83–92.
Hoos, H. H., and Stützle, T. 2004. Stochastic local search:
Foundations and applications. Elsevier.
Kondo, K., and Okubo, T. 2012. Structural estimation
and interregional labour migration: Evidence from japan.
Keio/Kyoto Joint Global COE Discussion Paper Series
2011-040.
Lakhlef, H. 2015. A multi-level clustering scheme based on
cliques and clusters for wireless sensor networks. Comput-
ers & Electrical Engineering 48:436–450.
Lin, J.; Cai, S.; Luo, C.; Lin, Q.; and Zhang, H. 2019. To-
wards more efficient meta-heuristic algorithms for combina-
torial test generation. In Proceedings of Joint Meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering 2019, 212–222.
Luce, R. D. 1950. Connectivity and generalized cliques in
sociometric group structure. Psychometrika 15(2):169–190.
Luo, C.; Yu, J.; Yu, D.; and Cheng, X. 2015. Distributed
algorithms for maximum clique in wireless networks. In
Proceedings of the 11th International Conference on Mobile
Ad-hoc and Sensor Networks, 222–226.
Luo, C.; Su, K.; and Cai, S. 2012. Improving local search for
random 3-sat using quantitative configuration checking. In
Proceedings of the 20th European Conference on Artificial
Intelligence, 570–575. IOS Press.
McClosky, B., and Hicks, I. V. 2012. Combinatorial algo-
rithms for the maximum k-plex problem. Journal of combi-
natorial optimization 23(1):29–49.

Miao, Z., and Balasundaram, B. 2017. Approaches for find-
ing cohesive subgroups in large-scale social networks via
maximum k-plex detection. Networks 69(4):388–407.
Mokken, R. J. 1979. Cliques, clubs and clans. Quality &
Quantity 13(2):161–173.
Pattillo, J.; Veremyev, A.; Butenko, S.; and Boginski, V.
2013. On the maximum quasi-clique problem. Discrete Ap-
plied Mathematics 161(1-2):244–257.
Pullan, W. 2007. Protein structure alignment using maxi-
mum cliques and local search. In Proceedings of Advances
in Artificial Intelligence 2007, 776–780.
Rossi, R. A., and Ahmed, N. K. 2015. The network data
repository with interactive graph analytics and visualization.
In Proceedings of the 29th AAAI Conference on Artificial
Intelligence, 4292–4293.
Rossi, R. A.; Gleich, D. F.; Gebremedhin, A. H.; and Pat-
wary, M. M. A. 2014. Fast maximum clique algorithms for
large graphs. In Proceedings of the 23rd International World
Wide Web Conference, 365–366.
Wang, Y.; Cai, S.; Chen, J.; and Yin, M. 2018. A fast local
search algorithm for minimum weight dominating set prob-
lem on massive graphs. In Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence, 1514–
1522.
Wang, Y.; Li, C.; Sun, H.; Chen, J.; and Yin, M. 2019.
Mlqcc: an improved local search algorithm for the set k-
covering problem. International Transactions in Opera-
tional Research 26(3):856–887.
Wang, Y.; Cai, S.; and Yin, M. 2016. Two efficient local
search algorithms for maximum weight clique problem. In
Proceedings of the 30th AAAI Conference on Artificial Intel-
ligence, 805–811.
Xiao, M.; Lin, W.; Dai, Y.; and Zeng, Y. 2017. A fast al-
gorithm to compute maximum k-plexes in social network
analysis. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence, 919–925.
Xu, K.; Boussemart, F.; Hemery, F.; and Lecoutre, C. 2005.
A simple model to generate hard satisfiable instances. arXiv
preprint cs/0509032.
Zhou, Y., and Hao, J.-K. 2017. Frequency-driven tabu search
for the maximum s-plex problem. Computers & Operations
Research 86:65–78.

2350

