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Abstract

Somatic contiguous hypermutation (CHM) operators are im-
portant variation operators in artificial immune systems. The
few existing theoretical studies are only concerned with
understanding the optimization behavior of CHM opera-
tors on solving single-objective optimization problems. The
MOEA/D framework is one of the most popular strategies for
solving multi-objective optimization problems (MOPs). In
this paper, we present a runtime analysis of using two CHM
operators in MOEA/D framework for solving five benchmark
MOPs, including four bi-objective and one many-objective
problems. Our analyses show that the expected runtimes of
CHM operators on the four bi-objective problems are better
than or as good as that of the well-studied standard bit muta-
tion operator. Moreover, using CHM operators in MOEA/D
framework can improve the best known upper bound on the
many-objective problem by a factor of n. This paper provides
insight into understanding the optimization behavior of CHM
operators in the well-known MOEA/D framework, and indi-
cates that using the CHM operator in MOEA/D framework is
a promising method for handling MOPs.

Introduction

Evolutionary algorithms (EAs) are a class of randomized
search heuristics inspired by natural evolution. Among EAs,
artificial immune systems (AISs) are inspired by the prin-
ciples of immune systems of vertebrates (Corus, Oliveto,
and Yazdani 2019). A main distinguishing feature of AISs
to other EAs is that AISs use hypermutation operators. Dif-
ferent from the standard bit mutation (SBM, only flipping
one bit in expectation) operator in classical EAs, hypermu-
tation operators usually flip multiple bits in a mutation step.

AISs with hypermutation operators have achieved great
success in solving complex optimization problems, includ-
ing single-objective and multi-objective optimization, for
example, (Shang et al. 2011; Yao et al. 2016; Alizadeh, Me-
skin, and Khorasani 2017; Dudek 2017; Lin et al. 2018;
Xu et al. 2018; Geng et al. 2019). Compared to successes
in application, the theoretical analysis on understanding the
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optimization behavior of hypermutation operators is under-
developed, particularly on optimizing multi-objective opti-
mization problems (MOPs). Somatic contiguous hypermu-
tation (CHM) operators are important variation operators in
AISs. Runtime analysis is an essential and powerful theoret-
ical tool to understand the working principles of EAs (Doerr
and Doerr 2018; Qian et al. 2019). A few theoretical studies
have presented runtime analyses of EAs with CHM opera-
tors on solving single-objective optimization problems.

Jansen and Zarges (2011) analyzed the expected runtimes
of a simple algorithm framework using three CHM operators
on pseudo-Boolean functions. The results show that all con-
sidered CHM operators perform much better than SBM on
the CLOBb,k problem. Jansen, Oliveto, and Zarges (2011)
showed that the expected runtimes of a simple AIS with
CHM operator are lower than that of SBM-based EAs on
vertex cover instances that are known to be hard for random-
ized search heuristics. Corus et al. (2017) analyzed the ex-
pected runtimes of CHM and SBM on their easiest function
classes, i.e., MINBLOCKS and ONEMAX. The results show
that MINBLOCKS is exponentially hard for SBM, while
CHM is only worse than SBM a factor of n on ONEMAX.
Xia and Zhou (2018) presented runtime analyses of a simple
algorithm with CHM, SBM or local mutation (LM) on some
discrete optimization problems. The results show that CHM
operators can solve all considered problems efficiently while
SBM and LM need exponential expected runtime.

These studies indicate that CHM operators are very com-
petitive operators for solving single-objective optimization
problems, especially on instances that are hard for EAs with
SBM or LM. In addition, analyses in (Jansen, Oliveto, and
Zarges 2011) show that CHM operators can be an alterna-
tive to crossover without having to control population size
and diversity. However, to the best of our knowledge, the
optimization behavior of CHM operators on solving MOPs
has not yet been studied from theoretical analysis aspect.

Multi-objective EAs (MOEAs) are popular methods for
solving MOPs. MOEA based on decomposition (MOEA/D)
framework (Zhang and Li 2007) is one of the most popular
strategies in MOEAs. The decomposition idea has been used
in (Ishibuchi and Murata 1998), and it becomes popular after
Zhang and Li presented the MOEA/D framework in (2007).
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In the past years, there are vast studies developing MOEAs
based on the MOEA/D framework, e.g., (Qi et al. 2014;
Jiang and Yang 2015; Li et al. 2017; He et al. 2019). Li et
al. presented a runtime analysis of a simple MOEA/D with
SBM on solving four benchmark MOPs in (2016).

In this paper, we present runtime analyses of a simple
MOEA based on the MOEA/D framework with two typical
CHM operators on optimizing five benchmark MOPs, which
include four bi-objective and one many-objective problems.
The results show that the expected runtimes of the MOEA
using CHM operators on the four bi-objective problems, i.e.,
COCZ, LPTNO, Dec-obj-MOP and Plateau-MOP, are bet-
ter than or as good as that of using the well-studied SBM
operator. The expected runtimes of using CHM operators
on the many-objective problem, namely mLOTZ (m = 4),
are O(n2 log n), which is lower than the best known upper
bound by a factor of n. This analysis provides insight into
understanding the optimization behavior of CHM operators
in the well-known MOEA/D framework. The analysis re-
sults indicate that using CHM operator in MOEA/D frame-
work is a promising method for solving MOPs.

Preliminaries

CHM Operators

We let [a..b] := {y ∈ Z|a ≤ y ≤ b}. Given a bit string
x ∈ {0, 1}n, we denote by x[i], i ∈ [0..n − 1] the value of
the i-th bit in x. Note that we denote the first bit and the last
bit in x as x[0] and x[n − 1], respectively. The two CHM
operators considered in this paper are defined as follows.

Definition 1 (CHM1 (Jansen and Zarges 2009; 2011; Xia
and Zhou 2018)). Given a parameter r ∈ [0, 1], the CHM1
operator mutates x ∈ {0, 1}n in the following way.

1: Choose p1 ∈ [0..n− 1] uniformly at random.
2: Choose p2 ∈ [0..n− 1] uniformly at random.
3: For i := min{p1, p2} to max{p1, p2} do
4: Flip x[i] with probability r.

Definition 2 (CHM2 (Jansen and Zarges 2011; Xia and
Zhou 2018)). Given a parameter r ∈ [0, 1], the CHM2 op-
erator mutates x ∈ {0, 1}n in the following way.

1: Choose p ∈ [0..n− 1] uniformly at random.
2: Choose l ∈ [0..n] uniformly at random.
3: For i := 0 to l − 1 do
4: Flip x[(p+ i) mod n] with probability r.

As in the previous runtime analyses on CHM1 and CHM2
operators (Jansen and Zarges 2011; 2014; Xia and Zhou
2018), we only consider the case of r = 1 in this analysis.

Analyzed Algorithm

An MOP can be formally defined as follows:

max F (x) =
(
f1(x), · · · , fm(x)

)
s.t. x ∈ X,

(1)

where x is the decision variable, X is the decision space,
F : X → Rm consists of m functions and Rm is the ob-
jective space. Generally, we call an MOP as many-objective
optimization problem (MaOP) if m ≥ 4. For x′, x′′ ∈ X ,

Algorithm 1 A simple decomposition-based MOEA
Input: An MOP with m objectives, stop criterion, param-
eter H , the number of scalar optimization subproblems N ,
weight vectors {λ1, · · · , λN} and neighbor size T .
Output: A candidate Pareto optimal solution set P .

1: Initialization: The Pareto optimal solution set P =
∅. For each subproblem g(x|λk), k ∈ [1..N ], select
the T closest subproblems to form its neighbor set
Bk according to the Euclidean distance between their
weight vectors. Generate a solution xk ∈ {0, 1}n uni-
formly at random for each subproblem g(x|λk). Set
the reference point z = (z1, · · · , zm), where zi =
maxk∈[1..N ]{fi(xk)}. Let Sk denote the set of solutions
corresponding to subproblems in Bk.

2: while stop criterion is not satisfied do
3: for each subproblem g(x|λk), k ∈ [1..N ] do
4: Reproduction: create yk := mutate(xk).
5: Update z: for each i ∈ [1..m], if fi(yk) > zi, set

zi = fi(yk).
6: Update Sk: for each solution xj in Sk, if

g(yk|λj) ≤ g(xj |λj), replace xj with yk.
7: Update P : remove all solutions weakly dominated

by yk from P . If yk is not dominated by any solu-
tion in P , add yk into P .

8: end for
9: end while

we say that x′ weakly dominates x′′, denoted as x′ � x′′,
if fi(x′) ≥ fi(x

′′) for all i ∈ [1..m]. Furthermore, we say
that x′ dominates x′′, denoted as x′ � x′′, if x′ � x′′ and
F (x′) 	= F (x′′). A solution x∗ ∈ X is Pareto optimal if
there is no x ∈ X such that x � x∗. The set of all Pareto
optimal solutions is called the Pareto set (PS) and the set of
objective vectors of the PS is called the Pareto front (PF).

In MOEA/D framework (Zhang and Li 2007), an MOP
is first decomposed into N scalar optimization subproblems
according to the decomposition approach (e.g., the classical
Weighted sum, Tchebycheff or Penalty-based boundary in-
tersection (Zhang and Li 2007)) and weight vectors. Then,
for each subproblem the framework selects the T closest
subproblems to form its neighbor set. The distance is mea-
sured by the Euclidean distance between their weight vec-
tors. At last, the framework controls a population of size N
to cooperatively solve the N subproblems in parallel by us-
ing the neighborhood-based coevolution.

The analyzed algorithm based on the MOEA/D frame-
work in this paper is summarized in Algorithm 1. It is not
difficult to see that Algorithm 1 can be instantiated by using
different mutation operators in line 4. If the SBM operator is
used, Algorithm 1 is equivalent to the analyzed algorithm in
(Li et al. 2016). In this paper, we are mainly concerned with
analyzing the expected runtime of Algorithm 1 with CHM1
or CHM2 operator on optimizing five benchmark MOPs.

Similar to runtime analysis in (Li et al. 2016), Tcheby-
cheff approach is used in this paper. Given an MOP in Eq.
(1) and weight vector λ = (λ1, · · · , λm), the subproblem
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generated by Tchebycheff approach is
min g(x|λ) = max

1≤i≤m
{λi|fi(x)− z∗i |}, (2)

where λi ≥ 0 for i ∈ [1..m] and
∑m

i=1 λi = 1, and
z∗ = (z∗1 , · · · , z∗m) denotes the reference point, i.e., z∗i =
max{fi(x)|x ∈ X}. By altering the weight vector, the
Tchebycheff approach generates different subproblems in
form of Eq. (2). For Algorithm 1, we use the classical Das
and Dennis’s approach (1998) to generate the N evenly dis-
tributed weight vectors for all considered problems, i.e., tak-
ing λ

k∈[1..N ]
i∈[1..m] from { 0

H , 1
H , · · · , H

H } such that
∑m

i=1 λ
k
i = 1,

where H is a positive integer and N =
(
H+m−1
m−1

)
.

Analysis on Bi-objective Problems
In this section, we present a runtime analysis of Algorithm 1
with CHM1 or CHM2 on COCZ, LPTNO, Dec-obj-MOP
and Plateau-MOP. They have been widely used in theo-
retical analyses of MOEAs, e.g., (Laumanns, Thiele, and
Zitzler 2004; Qian, Yu, and Zhou 2013; Li et al. 2016;
Bian, Qian, and Tang 2018; Huang et al. 2019). Let |x|1 de-
note the number of 1-bits in solution x. The four analyzed
problems in this section can be defined as follows.
Definition 3 (COCZ (Li et al. 2016)). The pseudo-Boolean
function COCZ : {0, 1}n → N

2 is defined as follows:

COCZ(x) =
(|x|1, n− |x|1

)
For COCZ, it is to maximize the numbers of 1-bits and 0-

bits in x simultaneously. A similar definition of this problem
called ONEMINMAX is presented in (Giel and Lehre 2010).
Definition 4 (LPTNO (Li et al. 2016)). The pseudo-Boolean
function LPTNO : {−1, 1}n → R

2 is defined as follows:

LPTNO(x) =
( n∑
i=1

i∏
j=1

(1 + xj),

n∑
i=1

n∏
j=i

(1− xj)
)
.

Weight LPTNO is first defined in (Qian, Yu, and Zhou
2013). It is an extension of LOTZ (where the numbers of
leading 1-bits and trailing 0-bits are maximized simultane-
ously) obtained by shifting the decision space from {0, 1}n
to {−1, 1}n, and adding weights wi and vi for the i-th lead-
ing 1-bit and trailing (-1)-bit, respectively. Li et al. (2016)
considered the case of wi = vi = 1 and denoted as LPTNO.
Definition 5 (Dec-obj-MOP). The pseudo-Boolean function
Dec–obj–MOP : {0, 1}n → N

2 is defined as follows:

Dec–obj–MOP (x) =
(
f1(x), f2(x)

)
,

where
f1(x) = n+ 1− |x|1 mod (n+ 1), (3)
f2(x) = n+ |x|1 mod (n+ 1). (4)

Dec-obj-MOP is first defined in (Li et al. 2016). For
f2(x), there is deceptive property in the search space.
Specifically, the global optimum 0n is far from the local op-
timum 1n, and the search is guided to 1n with overwhelming
probability. Thus, these kinds of functions are hard to solve
for algorithms with SBM. The expected runtime of Algo-
rithm 1 with SBM finding the optimal solution for subprob-
lem corresponding to λ = (0, 1) is Ω(nn) (Li et al. 2016).

Definition 6 (Plateau-MOP (Li et al. 2016)). The pseudo-
Boolean function Plateau–MOP : {0, 1}n → N

2 is de-
fined as follows:

Plateau–MOP (x) =
(
f1(x), f2(x)

)
,

where

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩
n if x = 1n,

3n/4 if x = 1j0n−j , 3n/4 < j < n,

j if x = 1j0n−j , 0 ≤ j ≤ 3n/4,

−|x|1 otherwise,

(5)

f2(x) =

{
n− j if x = 1j0n−j , 0 ≤ j ≤ n,

−|x|1 otherwise.
(6)

For f1(x) of Plateau-MOP, there is a plateau in the search
space, where x is in the form of 1i0n−i, i ∈ [ 3n4 ..n − 1].
For convenience, we hereafter assume that n

4 is integral.
Thus, solutions in this range are dominated by the solution
13n/40n/4 since the fitness value on f2(x) becomes worse
when increasing |x|1. Before we present the main results,
we first prove two helper lemmas for our analyses.

Lemma 1. Given a solution x ∈ {0, 1}n, let p′ and p′′ be
two positions of x satisfying p′ ≤ p′′. The probability of
CHM1 or CHM2 only flipping all bits in the contiguous re-
gion from p′ to p′′ in x in an execution is Θ( 1

n2 ).

Proof. From Definition 1, we know that in an execution
CHM1 only flips all bits in the contiguous region from p′ to
p′′ in x if and only if {p1 = p′, p2 = p′′} or {p2 = p′, p1 =
p′′}. Note that we have assumed r = 1. Since p1 and p2 are
selected from [0..n−1], the total number of combinations is
n2. Thus, if p′ 	= p′′ the probability is 2

n2 otherwise 1
n2 . For

CHM2, in an execution it only flips all bits between p′ and
p′′ in x if and only if {p = p′, l = p′′ − p′ + 1}. Thus, the
probability is 1

n(n+1) since the total number of combinations
is n(n + 1). Therefore, the probability of CHM1 or CHM2
only flipping all bits in the contiguous region from p′ to p′′
in x in an execution is Θ( 1

n2 ).

Let 1i0n−i denote the bit string with i leading 1-bits and
(n− i) trailing 0-bits and S := {1i0n−i, i ∈ [0..n]}.

Lemma 2. For x1, x2 ∈ S satisfying x1 	= x2, the probabil-
ity of CHM1 or CHM2 creating x2 from x1 in an execution
is Θ( 1

n2 ).

Proof. Let d1 and d2 denote the first and the last of bits that
have different values between x1 and x2, respectively. By
Lemma 1, in an execution CHM1 or CHM2 creates x2 from
x1, i.e., only flipping all bits in the contiguous region from
d1 to d2 in x1, with probability Θ( 1

n2 ).

In the following, we present the runtime analysis of Algo-
rithm 1 with CHM1 or CHM2 on the four problems (using
the evenly distributed weight vectors for all problems). For
each problem, our analysis consists of two phases. In the first
phase, we estimate the expected runtime until a solution in
the form of 1i0n−i is found for some subproblems for the
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first time. In the second phase, we bound the expected run-
time of obtaining a set of solutions to cover the whole PF of
the problem after the first phase according to Lemma 2.

Similar to (Li et al. 2016), we assume that the optimal
values of all objectives, i.e., the reference points, of all prob-
lems have been known in our analysis. Recall that for k ∈
[1..N ], λk

i∈[1..m] ∈ {0, 1/H, 2/H, · · · , 1} and
∑m

i=1 λ
k
i =

1 hold. For ease of expression, we number the elements in
the set of weight vectors in ascending order according to
λk
1 , i.e., λ1 = (0, 1), λ2 = (1/H, 1 − 1/H), · · · , λN−1 =

(1− 1/H, 1/H), λN = (1, 0).
For COCZ, all solutions are Pareto optimal. Thus, we only

need to bound the runtime of finding a solution for each vec-
tor in the PF. Li et al. (2016) proved that using the evenly dis-
tributed weight vectors with H = n, Algorithm 1 with SBM
can optimize the COCZ in expected runtime O(n2 log n).
Lemma 3. For COCZ, Algorithm 1 with CHM1 or CHM2
respectively finds the optimal solutions 0n and 1n for
g(x|λ1) and g(x|λN ) in expected runtime O(N · n2 log n).

Proof. For COCZ, the reference point is (n, n). According
to Eq. (2), these decomposed subproblems corresponding to
weight vectors λi, i ∈ [1..N ] are as follows:

min g(x|λi) = max{λi
1n− λi

1|x|1, λi
2|x|1}, (7)

Observing the two terms in Eq. (7) when increasing |x|1
from 0 to n, the value of (λi

1n − λi
1|x|1) decreases from

λi
1n to 0 and the value of λi

2|x|1 increases from 0 to λi
2n. So

there exists a real number yi ∈ [0, n] such that
λi
1n− λi

1yi = λi
2yi ⇒ yi = λi

1n.

Thus, to get the minimal value of g(x|λi) (in Eq. (7)), we
should set |x|1 close to yi as much as possible. Note that
there may be two consecutive integers for |x|1 to obtain the
minimal value of g(x|λi), since |x|1 is the number of 1-bits
in solution x and yi may be a real number.

For ease of expression, we assume that a = λi
1n is an

integer. This implies that the number of 1-bits in the op-
timal solution for g(x|λi) is λi

1n. Since λ1 = (0, 1) and
λN = (1, 0), we have that the optimal solutions for g(x|λ1)
and g(x|λN ) are 0n and 1n, respectively. Note that they are
both in the form of 1j0n−j . We next estimate the expected
runtime of Algorithm 1 with CHM1 or CHM2 finding the
optimal solutions for g(x|λ1) and g(x|λN ).

For g(x|λ1), the optimal solution is 0n and the function
fitness value becomes better when the number of 1-bits in
the solution decreases. Let t denote the number of 1-bits in
the current solution. In the generation, if CHM1 or CHM2
only flips one of the (n−t) 1-bits in the current solution into
0-bit, then an improved solution is created. From Lemma 1,
we know that in a generation CHM1 or CHM2 only flips any
bit in the solution with probability Θ( 1

n2 ). Thus, the proba-
bility of Algorithm 1 with CHM1 or CHM2 creating an im-
proved solution for g(x|λ1) from the current one is at least(
n−t
1

) · Θ( 1
n2 ) = Θ(n−t

n2 ). Therefore, the expected runtime
of Algorithm 1 with CHM1 or CHM2 finding the optimal
solution 0n for g(x|λ1) is upper bounded by

N

n−1∑
t=0

n2

n− t
= N · n2

n∑
t=1

1

t
= O(N · n2 log n).

Note that in a generation Algorithm 1 creates a new solu-
tion for each subproblem. Similarly, we have that Algorithm
1 with CHM1 or CHM2 finds the optimal solution 1n for
g(x|λN ) in expected runtime O(N · n2 log n).

In summary, Algorithm 1 with CHM1 or CHM2 finds the
optimal solutions 0n and 1n for subproblems g(x|λ1) and
g(x|λN ) in expected runtime O(N · n2 log n).

We next bound the expected fitness evaluations until all
solutions in S = {1i0n−i, i ∈ [0..n]} are created after 0n
and 1n have been found for g(x|λ1) and g(x|λN ), respec-
tively. Note that the objective vectors of S can cover the PF
of COCZ and these vectors will be retained by the algorithm
after they have been found (see line 7 in Algorithm 1).
Lemma 4. For COCZ, after the optimal solutions 0n and
1n have been respectively found for g(x|λ1) and g(x|λN ),
Algorithm 1 with CHM1 or CHM2 obtains a set of solutions
to cover the PF in expected runtime O(N · n2 log n).

Proof. Note that the optimal solutions 0n and 1n will be re-
spectively kept by g(x|λ1) and g(x|λN ) forever after they
have been found for the first time. So they are always under-
going the variation operator in the later generations.

From Lemma 2, we know that by applying CHM1 or
CHM2 to 0n, any solution in S is created in the new gen-
eration with probability Θ( 1

n2 ). Let j denote the number of
solutions in S that have not been created up to the current
generation. Thus, by applying CHM1 or CHM2 to 0n, one
of the j solutions is created in the new generation with prob-
ability

(
j
1

) ·Θ( 1
n2 ). Similarly, we have that a new solution in

S is created in the new generation with probability Θ( j
n2 ) by

applying CHM1 or CHM2 to 1n. Hence, in the new genera-
tion a new solution in S is created with probability Ω( j

n2 ).
Therefore, after 0n and 1n have been respectively found for
g(x|λ1) and g(x|λN ), the expected runtime of Algorithm 1
with CHM1 or CHM2 obtaining a set of solutions to cover
the whole PF of COCZ is upper bounded by

N
n−2∑
j=1

n2

j
≤ N · n2

n∑
j=1

1

j
= O(N · n2 log n).

Note that Algorithm 1 consumes N fitness evaluations in
any generation.

By Lemmas 3 and 4, we have the following theorem.
Theorem 1. For COCZ, if N = O(1), Algorithm 1 with
CHM1 or CHM2 obtains a set of solutions to cover the PF
in expected runtime O(n2 log n).

For LPTNO, the PS is {1n, 1n−1(−1), · · · , (−1)n}. Li et
al. (2016) proved that using the weight vectors {(λk

1 , 1 −
λk
1)|λk

1 =
∑k

j=1 2n+1−j

∑n
j=k+1 2j+

∑k
j=1 2n+1−j , k ∈ [0..n]}, Algorithm

1 with SBM obtains a set of solutions to cover the PF in
expected runtime O(n3). Note that Das and Dennis’s ap-
proach can only generate these weight vectors in the case
of H = Ω(2n) (see Lemma 3 in (Li et al. 2016)).
Lemma 5. For LPTNO, Algorithm 1 with CHM1 or CHM2
finds an optimal solution, which is in the form of 1j(-1)n−j ,
for each subproblem in expected runtime O(N · n2 log n).
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Proof. For LPTNO, the reference point is (2n+1−2, 2n+1−
2). According to Eq. (2), these subproblems corresponding
to weight vectors λi, i ∈ [1..N ] are

min g(x|λi) = max{λi
1(b−2l(x)+1), λi

2(b−2t(x)+1)}, (8)

where b = 2n+1, and l(x) and t(x) are the numbers of lead-
ing 1-bits and trailing (-1)-bits in x, respectively. Observe
that the value of λi

1(b− 2l(x)+1) decreases when increasing
l(x), and the value of λi

2(b − 2t(x)+1) also decreases when
increasing t(x). Thus, to obtain the minimal value of g(x|λi)
(in Eq. (8)), we should simultaneously increase the values of
l(x) and t(x) as much as possible. If l(x) + t(x) ≤ n − 2,
we can increase each of them by at least one, and the values
of the two terms in the right hand of g(x|λi) are decreased
simultaneously. Then a better function value is found for
g(x|λi) and x cannot be an optimal solution. Hence, we have
that l(x) + t(x) = n holds for any optimal solution x of
g(x|λi). Note that for any solution x, l(x) + t(x) 	= n − 1
hold, since the rest bit between the leading 1-bits and trailing
(-1)-bits must be 1 or -1. This implies that for any g(x|λi),
the optimal solutions are in the form of 1j(-1)n−j .

We now determine the exact value of l(x) and t(x) in the
optimal solution of each g(x|λi). Since l(x) + t(x) = n
holds for any optimal solution x, by Eq. (8) we have

min g(x|λi) = max{λi
1(b− 2l(x)+1), λi

2(b− 2n−l(x)+1)}.
(9)

Observe the trend of two terms in Eq. (9) when l(x) in-
creases from 0 to n. The value of the first term decreases
from λi

1(b− 2) to 0 and the second term increases from 0 to
λi
2(b−2). So there exists a real number yi ∈ [0, n] satisfying

λi
1(b− 2yi+1)− λi

2(b− 2n−yi+1) = 0 ⇒

yi =

{
n− 1 + log(

√
(a− 1)2 + a

2n−2 − (a− 1)), if λi
1 �= 0,

0, otherwise,

where a =
λi
2

λi
1

. To get the optimal value of g(x|λi), we
should set l(x) close to yi as much as possible. For con-
venience, we again assume that yi is an integer. This means
that the optimal solution of g(x|λi) is 1yi (-1)n−yi . We next
estimate the expected runtime of Algorithm 1 with CHM1
or CHM2 finding the optimal solution for each g(x|λi).

We use the shorthands f1(x|λi) and f2(x|λi) for the val-
ues of the first term and the second term in g(x|λi) (see Eq.
(8)), respectively. Let x0 = 1nl (-1)#1(-1)nt denote the cur-
rent solution for g(x|λi), where # denotes a wildcard string
consisting of 1-bits and (-1)-bits. Without loss of general-
ity, we assume that nl < yi, nt < n − yi and f1(x0|λi) =
f2(x0|λi) hold. From Eq. (8), we know that for g(x|λi) so-
lutions x1 = 1nl+1#1(-1)nt and x2 = 1nl (-1)#(-1)nt+1

are not worse than x0, and the solution x3 = 1nl+1#(-
1)nt+1 is strictly better than x0, x1 and x2. Thus, if x3 has
been created for g(x|λi), x0, x1 and x2 will never be ac-
cepted since Algorithm 1 is elitist. For CHM1, in a mutation
it creates x1 or x2 from x0 if p1 ∈ {nl, n − nt − 1} and
p2 ∈ [nl..n − nt − 1]. For CHM2, in a mutation x1 is cre-
ated from x0 if p = nl and l ∈ [1..n − nl − nt], and x2 is
created from x0 if p ∈ [nl..n−nt−1] and l = n−nl−nt−p.

absorbing state

0x 1 2,x x 3x

21 2
( )l tn n np

n
� �

� �

12 2
( )l tn n np

n
� �

� �

10 2

1
( )l tn n np

n
� � �

� �

Figure 1: The Markov chain of finding an improved solution
for g(x|λi) from the current one.

Thus, by Lemma 1, the probability of CHM1 or CHM2 cre-
ating x1 and x2 from x0 in a generation is Θ(n−nl−nt

n2 ). By
analogy, we have that CHM1 or CHM2 creates x3 from x1

or x2 in a generation with probability Θ(n−nl−nt−1
n2 ). Note

that the probability of CHM1 or CHM2 creating x0 from x1

and x2 is also Θ(n−nl−nt

n2 ).
Thus, in the worst case the process of Algorithm 1 with

CMH1 or CHM2 finding an improved solution for g(x|λi)
from the current one is equivalent to reaching the absorbing
state of the Markov chain shown in Figure 1. According to
Corollary 2 in (Zhou, He, and Nie 2009), the expected run-
time of reaching x3 from x0 is at most 1

p21
+ 1

p10
+ 1

p21
· p12

p10
≤

O( n2

n−nl−nt−1 ). Note that the expected runtime of creating
x3 from x1 or x2 is not larger than that of from x0. There-
fore, the expected fitness evaluations of Algorithm 1 with
CMH1 or CHM2 finding the optimal solution for subprob-
lem g(x|λi) is upper bounded by

n−2∑
j=nl+nt

n2

n− j − 1
≤ n2

n−2∑
j=0

1

n− j − 1
= O(n2 log n).

In summary, for LPTNO Algorithm 1 with CHM1 or
CHM2 finds an optimal solution for each subproblem in ex-
pected runtime O(N ·n2 log n) since it optimizes the N sub-
problems in parallel.

Theorem 2. For LPTNO, if N = O(1), Algorithm 1 with
CHM1 or CHM2 obtains a set of solutions to cover the PF
in expected runtime O(n2 log n).

Proof. Note that the PS of LPTNO is {1i(-1)n−i, i ∈ [0..n]}
and all optimal solution found for all subproblems are in the
form of 1i(-1)n−i. Let j denote the number of solutions in
the PS that have been not found so far. By using similar ar-
gument in the proof of Lemma 4, we have that in the new
generation a new solution in S is created with probability
Ω( j

n2 ). Thus, after the optimal solution has been found for
each subproblem, the expected runtime of Algorithm 1 with
CHM1 or CHM2 obtaining a set of solutions to cover the
whole PF of LPTNO is upper bounded by

N

n−2∑
j=1

n2

j
≤ N · n2

n∑
j=1

1

j
= O(N · n2 log n).

Therefore, combining Lemma 5, we have that Algorithm
1 with CHM1 or CHM2 obtains a set of solutions to cover
the whole PF of LPTNO in expected runtime O(n2 log n) if
N = O(1) (i.e., H = O(1) ).
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The PS and PF of Dec-obj-MOP are the same as the
COCZ. Li et al. (2016) proved that using the evenly dis-
tributed weight vectors with H = n, Algorithm 1 with SBM
can find a set of solutions to cover the PF in expected run-
time O(n2 log n).
Lemma 6. For Dec-obj-MOP, Algorithm 1 with CHM1 or
CHM2 finds the optimal solution 0n for subproblem g(x|λ1)
in expected runtime O(N · n2 log n).

Proof. For Dec-obj-MOP, the reference point is (n, n). Ac-
cording to Eq. (2), these decomposed subproblems corre-
sponding to weight vectors λi, i ∈ [1..N ] are

min g(x|λi) = max{λi
1f2(x), λ

i
2n− λi

2f2(x)}, (10)

where f2(x) is shown in Eq. (4). Observe the trend of the
two terms in the right hand of Eq. (10) when f2(x) increases
from 0 to n. The value of λi

1f2(x) increases from 0 to λi
2n ≥

0 and the value of (λi
2n−λi

2f2(x)) decreases from λi
2n ≥ 0

to 0. So there must exist a real number yi ∈ [0, n] such that

λi
2n− λi

2yi = λi
1yi ⇒ yi = λi

2n.

To get the minimal value of g(x|λi), we should set f2(x)
close to yi as much as possible. Since λ1 = (0, 1), the min-
imal value of g(x|λ1) is obtained when f2(x) = n. By Eq.
(4), we know that the optimal solution of g(x|λ1) is 0n.

For g(x|λ1), there is deceptive property in the search
space since the function value becomes better when increas-
ing |x|1 if |x|1 > 0. Since the expected number of 1-bits
in the initial solution is n

2 > 0, by Chernoff bound, the
search will be guided to the local optimum 1n with prob-
ability 1 − e−Ω(n). If 0n has not been found, by Lemma
1, CHM1 or CHM2 increases the number of 1-bits by one
in a generation with probability at least Θ(n−j

n2 ), where j
denotes the number of 1-bits in the current solution. Thus,
Algorithm 1 with CHM1 or CHM2 finds the local optimum
1n for g(x|λ1) in expected runtime O(n2 log n). By Lemma
2, CHM1 or CHM2 creates 0n from 1n in a generation with
probability Θ( 1

n2 ). Therefore, Algorithm 1 with CHM1 or
CHM2 finds the global optimum 0n for g(x|λ1) in expected
runtime O(N ·n2 log n)+Θ(N ·n2) = O(N ·n2 log n).

Lemma 7. For Dec-obj-MOP, after the optimal solution 0n

has been found for g(x|λ1), Algorithm 1 with CHM1 or
CHM2 finds a set of solution to cover the PF in expected
runtime O(N · n2 log n).

We omit the detailed proof of this lemma since it is very
similar to the proof of Lemma 4, where the optimal solu-
tion of g(x|λ1) is also 0n. Thus, combining Lemma 6 and
Lemma 7, we have the following theorem.
Theorem 3. For Dec-obj-MOP, if N = O(1), Algorithm 1
with CHM1 or CHM2 obtains a set of solutions to cover the
PF in expected runtime O(n2 log n).

For Plateau-MOP, the well-known GSEMO is hard to
optimize and the expected runtime is Ω(n0.25n) (Li et al.
2016). Li et al. (2016) proved that using the evenly dis-
tributed weight vectors with H = n, Algorithm 1 with SBM
obtains a set of solutions to cover the PF of Plateau-MOP in
expected runtime O(n3).

Lemma 8. For Plateau-MOP, Algorithm 1 with CHM1 or
CHM2 finds a solution in the form of 1j0n−j for each sub-
problem in expected runtime O(N · n2 log n).

Proof. For Plateau-MOP, the reference point is z∗ = (n, n),
and these subproblems corresponding to weight vectors
λi, i ∈ [1..N ] are

min g(x|λi) = max{λi
1(n−f1(x)), λ

i
2(n−f2(x))}, (11)

where f1(x) and f2(x) are shown in Eq. (5) and Eq. (6), re-
spectively. Observing the two terms in the right hand of Eq.
(11), we can find that the value of the first term decreases
when increasing f1(x) and the value of the second term de-
creases when increasing f2(x). Thus, to obtain the minimal
value of g(x|λi), we should simultaneously increase the val-
ues of f1(x) and f2(x) as much as possible.

From Eq. (5) and Eq. (6), we know that if the current so-
lution is not in the form of 1j0n−j , any new solution re-
ducing the number of 1-bits will increase f1(x) and f2(x)
simultaneously. Thus if the current solution is not in form of
1j0n−j , in a generation CHM1 or CHM2 creates a better so-
lution with probability Θ( t

n2 ), where t denotes the number
of 1-bits in the current solution. Recall that in an execution
CHM1 or CHM2 only flips any bit in the solution with prob-
ability Θ( 1

n2 ) (see Lemma 1). Therefore, the expected run-
time of Algorithm 1 with CHM1 or CHM2 finding a solution
in the form of 1j0n−j for each g(x|λi) is upper bounded by

N
n−2∑
t=1

n2

t
= N · n2

n−2∑
t=1

1

t
= O(N · n2 log n).

Recall that Algorithm 1 with CHM1 or CHM2 consumes N
fitness evaluations in any generation.

Note that for all λi, we have g(x|λi) < g(y|λi) for any
x ∈ S, y /∈ S by Eq. (11), where S := {1i0n−i, i ∈ [0..n]}.
Thus, for any subproblem, if a solution in S has been found,
all solutions not in the form of 1i0n−i will never be accept.
Theorem 4. For Plateau-MOP, if N = O(1), Algorithm 1
with CHM1 or CHM2 finds a set of solutions to cover the
whole PF in expected runtime O(n2 log n).

The proof of this theorem is very similar to that of The-
orem 2 since all solutions kept by every subproblems are in
the form of 1i0n−i after the first phase and the PS of Plateau-
MOP is a subset of S.

Analysis on Many-objective Problem

In this section, we present the runtime analysis of Algorithm
1 with CHM1 or CHM2 on a many-objective problem, i.e.,
mLOTZ for m = 4 (Laumanns, Thiele, and Zitzler 2004).
Definition 7 (mLOTZ). The pseudo-Boolean function
mLOTZ : {0, 1}n → N

m is defined as follows:

mLOTZ(x) =
(
f1(x), f2(x), · · · , fm(x)

)
,

where

fk(x) =

{∑n′

i=1

∏i
j=1 x[j + n′ (k−1)

2 ] if k is odd,∑n′

i=1

∏n′

j=i(1− x[j + n′ (k−2)
2 ]) otherwise,

m = 2 ·m′, n = m′ · n′ and m′, n′ ∈ N.
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As shown in Definition 7, mLOTZ is the concatenation
of m′ = m/2 bi-objective LOTZ problems of n′ = 2n/m
bits each. For mLOTZ, the size of the PF is (2n/m+1)m/2

and thus the problem becomes complicated quickly when
increasing m. For ease of observation, we only consider the
case of m = 4 in this analysis. The expected runtime of the
well-known SEMO on mLOTZ is O(nm+1), and the best
known upper bound for m = 4 is O(n3 log n) (Laumanns,
Thiele, and Zitzler 2004). For mLOTZ, if m = 4 (denoted as
4LOTZ), the PS is {1i0n/2−i1j0n/2−j}, where i, j ∈ [0..n2 ].
To simplify the analysis, we only consider these solutions
created for the subproblem corresponding to weight vector
λ0 = (0.5, 0, 0, 0.5) in the following proof.

Lemma 9. For 4LOTZ, Algorithm 1 with CHM1 or CHM2
finds the optimal solution of subproblem corresponding to
weight vector λ0 in expected runtime O(N · n2 log n).

Proof. For 4LOTZ, the reference point is (n2 ,
n
2 ,

n
2 ,

n
2 ) and

the subproblem corresponding to weight vector λ0 is

min g(x|λ0) = max{n/4− 0.5f1(x), n/4− 0.5f4(x)}.
(12)

Observe that the optimization of Eq. (12) is equivalent to
maximizing f1(x) and f4(x) simultaneously. From Defini-
tion 7, f1(x) and f4(x) are equal to the numbers of lead-
ing 1-bits in the first half of x and trailing 0-bits in the sec-
ond half of x, respectively. Thus, the optimal solution of Eq.
(12) is 1n/20n/2. Let nl(x) and nt(x) denote the number
of leading 1-bits and trailing 0-bits in the current solution
x, respectively. We assume that min{nl(x), nt(x)} < n/2
holds, otherwise there is nothing to prove. By using similar
analysis in the proof of Lemma 5, we know that the process
of Algorithm 1 creating a new solution x′ from x such that
min{nl(x

′), nt(x
′)} > min{nl(x), nt(x)} is equivalent to

reaching the absorbing state of the Markov chain shown in
Figure 1 (p21 = p12 = Ω(n−2j

n2 ) and p10 = Ω(n−2j−1
n2 )).

Thus, the expected fitness evaluations of Algorithm 1 with
CHM1 or CHM2 finding an improved solution from the
current one is O( n2

n−2j−1 ), where j = min{nl(x), nt(x)}.
Therefore, the expected runtime of Algorithm 1 with CMH1
or CHM2 finding the optimal solution 1n/20n/2 for subprob-
lem g(x|λ0) is upper bounded by

N

n/2−1∑
j=0

n2

n− 2j − 1
≤ N · n2

n∑
j=1

1

j
= O(N · n2 log n).

Note that Algorithm 1 solves the N subproblems in parallel
and creates a new solution for each one in a generation.

Note that some elements in the PS of 4LOTZ are not in
the form of 1i0n−i, e.g., 120n/2−21n/2. Thus, we cannot
use Lemma 2 to simply bound the expected runtime of Al-
gorithm 1 with CHM1 or CHM2 on the problem as before.

Lemma 10. For 4LOTZ, after the optimal solution 1n/20n/2

has been found for subproblem g(x|λ0), Algorithm 1 with
CHM1 or CHM2 obtains a set of solutions to cover the
whole PF in expected runtime O(N · n2 log n).

Proof. Note that the optimal solution 1n/20n/2 will be kept
by subproblem g(x|λ0) forever after it has been found for
the first time. For ease of observation, we list the two com-
ponents of solutions in the PS of 4LOTZ as in Table 1. Ob-
serve that if CHM1 or CHM2 flips only all bits in the con-
tiguous region from p′ = n/2 − i to p′′ = n/2 + j − 1 in
1n/20n/2 (i.e., A0B0), the Pareto optimal solution AiBj is
created (except A0B0), where i, j ∈ [0..n/2]. Thus, if all
pairs (i, j) ∈ [0..n2 ] × [0..n2 ] \ {0 × 0} are selected at least
once, all solutions in the PS of 4LOTZ have been created.
Note that the total number of pairs is (n2 +1)2−1 = n2

4 +n.

Table 1: The two components of solutions in PS of 4LOTZ.
A0 1n/2 0n/2 B0

A1 1n/2−101 110n/2−1 B1

...
...

...
...

An/2−i 1n/2−i0i 1j0n/2−j Bn/2−j

...
...

...
...

An/2−1 110n/2−1 1n/2−101 Bn/2−1

An/2 0n/2 1n/2 Bn/2

For CHM1 and CHM2, by Lemma 1, in an execution
only all bits in any contiguous region from p′ to p′′ in
1n/20n/2 are flipped with probability Θ( 1

n2 ). Thus, in a
generation Algorithm 1 with CHM1 or CHM2 creates a
new Pareto optimal solution from 1n/20n/2 with probabil-
ity

(
n2/4+n−t

1

) · Θ( 1
n2 ) = Θ(n

2/4+n−t
n2 ), where t denotes

the number of pairs that have been selected before. There-
fore, after the optimal solution 1n/20n/2 has been found for
g(x|λ0), the expected runtime of Algorithm 1 with CHM1
or CHM2 finding all solutions in the PS is upper bounded by
n2

4 +n−1∑
t=1

N · n2

n2/4 + n− t
≤

n2

4 +n∑
t=1

N · n2

t
= O(N · n2 log n).

Recall that the algorithm consumes N fitness evaluations in
any generation.

By Lemmas 9 and 10, we have the following theorem.
Theorem 5. For 4LOTZ, if N = O(1), Algorithm 1 with
CHM1 or CHM2 finds a set of solutions to cover the whole
PF in expected runtime O(n2 log n).

Conclusions
The existing theoretical analyses on CHM operators are
only concerned with optimizing single-objective optimiza-
tion problems. This paper presents runtime analyses of
an MOEA based on the well-known MOEA/D framework
with two typical CHM operators on optimizing five bench-
mark MOPs, which include four bi-objective and one many-
objective problems. The results on the four bi-objective
problems, i.e., COCZ, LPTNO, Dec-obj-MOP and Plateau-
MOP, show that using CHM operators can always find the
Pareto fronts in expected runtime better than or as good
as using the well-studied SBM operator. Moreover, the ex-
pected runtimes of using CHM operators on the many-
objective problem, i.e., mLOTZ (m = 4), are better than
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the best known bound by a factor of n. These results in-
dicate that using CHM operator in MOEA/D framework is
promising method for solving MOPs. This study provides
insight into the optimization behavior of CHM operators in
the well-known MOEA/D framework, and might be helpful
for designing efficient MOEAs in future research.
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