
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

How the Duration of the Learning Period Affects the
Performance of Random Gradient Selection Hyper-Heuristics

Andrei Lissovoi, Pietro S. Oliveto
Rigorous Research, Department of Computer Science

The University of Sheffield
Sheffield S1 4DP, United Kingdom
{a.lissovoi, p.oliveto}@sheffield.ac.uk

John Alasdair Warwicker
Institute of Operations Research

Karlsruhe Institute of Technology
76185 Karlsruhe, Germany

john.warwicker@kit.edu

Abstract

Recent analyses have shown that a random gradient hyper-
heuristic (HH) using randomised local search (RLSk) low-
level heuristics with different neighbourhood sizes k can op-
timise the unimodal benchmark function LEADINGONES in
the best expected time achievable with the available heuris-
tics, if sufficiently long learning periods τ are employed. In
this paper, we examine the impact of the learning period on
the performance of the hyper-heuristic for standard unimodal
benchmark functions with different characteristics: RIDGE,
where the HH has to learn that RLS1 is always the best
low-level heuristic, and ONEMAX, where different low-level
heuristics are preferable in different areas of the search space.
We rigorously prove that super-linear learning periods τ are
required for the HH to achieve optimal expected runtime for
RIDGE. Conversely, a sub-logarithmic learning period is the
best static choice for ONEMAX, while using super-linear val-
ues for τ increases the expected runtime above the asymptotic
unary unbiased black box complexity of the problem. We
prove that a random gradient HH which automatically adapts
the learning period throughout the run has optimal asymptotic
expected runtime for both ONEMAX and RIDGE. Addition-
ally, we show experimentally that it outperforms any static
learning period for realistic problem sizes.

1 Introduction

One of the main challenges in solving complex and poorly
understood optimisation problems is the choice of which
heuristic to apply and which related parameters to use. As a
result, time consuming trial and error phases are often used
to tune the inherent parameters.

Hyper-heuristics have been designed to mitigate such
problems by automatically configuring the heuristic and pa-
rameters to be employed for the optimisation problem at
hand. Selection hyper-heuristics automate the optimisation
process by selecting from a set of existing low-level heuris-
tics which one to apply at each decision point during the run.
Several examples of their efficiency for solving optimisation
problems are available (Cowling, Kendall, and Soubeiga
2001; Burke et al. 2013; 2010; Özcan, Bilgin, and Korkmaz
2008). Theoretical analyses also exist that have confirmed
their effectiveness for the optimisation of both unimodal and

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

multimodal benchmark functions (Alanazi and Lehre 2016;
Lehre and Özcan 2013; Alanazi and Lehre 2014; Qian, Tang,
and Zhou 2016; Lissovoi, Oliveto, and Warwicker 2019b;
2019a; Doerr et al. 2018; Doerr, Doerr, and Yang 2016a). For
an overview of theoretical results regarding the performance
of hyper-heuristics and other parameter control mechanisms,
we refer to the recent survey by Doerr and Doerr (2019).

It is well understood that random gradient hyper-
heuristics need to apply low-level heuristics for some time,
i.e., the learning period τ , to estimate how good or bad
the chosen heuristic is for the current region of the search
space (Lissovoi, Oliveto, and Warwicker 2019b). In partic-
ular, Lissovoi et al. analysed the Generalised Random Gra-
dient (GRG) hyper-heuristic that applies a randomly chosen
low-level heuristic for τ iterations and restarts the learning
period whenever the fitness value is improved. They proved
that for the LEADINGONES benchmark function, any con-
stant k, and an appropriately set τ , GRG matches the best-
possible expected runtime achievable by using k Random-
ized Local Search mutation operators with different neigh-
bourhood sizes ({RLS1, . . . , RLSk}) up to lower order
terms. In that setting, GRG was shown to have an expected
runtime of ((1 + ln(2))/4)n2 + o(n2) ≈ 0.423n2 + o(n2)
when selecting between two operators, and an expected run-
time of ≈ 0.388n2 when selecting between at least 18 op-
erators. Such a performance is called optimal for the hyper-
heuristic, because it is the best that can be achieved with
the available low-level heuristics1. A consequence of the re-
sult is that the hyper-heuristic is also faster than any of its
low-level heuristics applied alone for the problem (includ-
ing the best one, RLS1, which achieves an expected runtime
of 0.5n2) . This result required the hyper-heuristic to have a
learning period of length τ = ω(n) and τ ≤ (1/k−ε)·n lnn
for some constant ε > 0.

However, for problems that are not so well-understood,
the identification of optimal static values for the learning pe-
riod may be more prohibitive. Furthermore, the best value
for τ may change in different areas of the search space
and thus no static value may be optimal throughout the
run. To tackle this issue, an Adaptive Random Gradient
(ARG) hyper-heuristic was recently introduced that incor-

1This does not mean that faster runtimes cannot be achieved
with different low-level heuristics.

2376

porates a self-adjusting mechanism to adapt the value of
τ on the fly (Doerr et al. 2018). It was proven that ARG,
when equipped with low-level heuristics that flip 1 or 2 bits
with replacement (1BITFLIP and 2BITFLIP), also achieves
the optimal expected runtime for LEADINGONES with these
heuristics, i.e. ((1+ln 2)/4)n2+o(n2) ≈ 0.423n2+o(n2).
Furthermore, it was shown that ARG tracks the best learning
period during the run, allowing it to select the optimal oper-
ator (i.e., the operator with the highest probability of provid-
ing a fitness improvement) with high probability in each iter-
ation. ARG also has a parameter, σ, which controls how the
learning period τ is adjusted, both by influencing the mag-
nitude of the adjustments to τ , and by requiring σ improve-
ments to be constructed by an operator within a τ -iteration
period to re-use the operator for another τ iterations. The-
oretical results suggest that σ is considerably more robust
than the learning period τ for LEADINGONES (Doerr et al.
2018).

In this paper, we perform an analysis of the impact and use
of the learning period on the performance of the GRG hyper-
heuristics. We consider two well-studied unimodal bench-
mark functions from the literature with considerably differ-
ent characteristics. Our first aim is to understand whether
optimal performance may be achieved also for other prob-
lems, or whether such a result is singular to LEADINGONES.
Secondly, we wish to evaluate the robustness of the learning
period with respect to different function characteristics (i.e.,
whether considerably different learning periods may be re-
quired for optimal performance on different functions). To
address these two questions we consider the hyper-heuristic
equipped with a low-level heuristic set of size two and anal-
yse whether the best heuristic is used with high probabil-
ity in different regions of the search space. We first con-
sider the RIDGE function, where the improvement probabil-
ities of the operators do not change as the search progresses.
Hence, one low-level heuristic (i.e., RLS1) always performs
far better than the others. For the hyper-heuristic to excel,
a static learning period τ suffices as long as the best low-
level heuristic succeeds in τ iterations while the others fail
with a sufficiently high probability. Afterwards, we consider
the ONEMAX benchmark function, which is much harder
for the hyper-heuristic because the success probabilities of
each operator vary drastically throughout the run. Flipping
many bits has a higher success probability at the beginning
of the run, while flipping fewer bits becomes more advanta-
geous as the search progresses. As a result, identifying the
best static value2 for the learning period is difficult as its best
possible setting changes during the run.

We first analyse the impact of static values for the param-
eter τ . Our first conclusion is that for different functions, the
best static value for the learning period may be drastically
different, even if we restrict the domain to the class of uni-
modal functions. In particular, GRG equipped with RLS1

and any other RLSk operator, with k = o(n), is able to op-
timise RIDGE in optimal expected time, which is achieved
by setting τ ≥ 5/2 · n log n, τ = O

(
n2/ log n

)
. On the

2That is, a fixed value of τ that, when used throughout the run,
minimises the expected runtime of the hyper-heuristic.

other hand, setting τ ≥ n is detrimental for ONEMAX,
in that the expected runtime of GRG with the low-level
heuristic sets {RLS1, RLS2} and {RLS1, RLS3} is asymp-
totically worse than that of the unary unbiased black box
complexity of ONEMAX (Lehre and Witt 2012). Hence, it
is asymptotically slower than RLS1 used on its own (i.e.,
n lnn− 0.1159...n± o(n), Witt 2014). The best setting for
τ is in fact shown to be τ = o(log n), giving a performance
for both sets of heuristics that is at most a constant factor
worse than RLS1, yet still asymptotically optimal.

While the latter result only provides an upper bound on
the expected runtime of GRG, the analysis suggests that a
dynamic learning period may lead to better performance for
ONEMAX (i.e., to achieve asymptotically optimal runtime,
τ should be large enough such that RLS1 succeeds with high
probability, yet other heuristics fail). In any case, since con-
siderably different static values for τ are required for the best
achievable performance on the two problems, we consider
ARG which adapts the learning period on the fly. We rigor-
ously prove that ARG optimises both RIDGE and ONEMAX
in optimal asymptotic expected runtime.

We complement the theoretical results with experiments
for various problem sizes for ONEMAX and RIDGE. For
GRG, the experiments confirm that as τ increases, the run-
time also increases. However, setting τ to a small value is
preferable to having no learning period at all, confirming the
benefits of the learning period. For sufficiently large problem
sizes, ARG is shown to be able to beat GRG experimentally
for all tested static values of τ . The experiments also im-
ply that σ is much more robust than τ and thus confirm that
ARG is preferable in practice.

The rest of this paper is structured as follows. In the next
section, we introduce the benchmark functions, the hyper-
heuristics and the mathematical tools we use in our analysis.
The performance analysis of GRG with respect to τ is pre-
sented in Section 3 and the performance analysis of ARG is
presented in Section 4. Complementary experiments are pre-
sented in Section 5. We conclude the paper with a discussion
of the presented results and avenues for future work.

Due to space constraints, this extended abstract omits
many formal proofs.

2 Preliminaries

In this section, we introduce the unimodal benchmark func-
tions, the selection hyper-heuristics, and the mathematical
techniques considered in the rest of the paper.

2.1 Unimodal Benchmark Functions

The first benchmark function we consider is the standard
RIDGE function (Quick, Rayward-Smith, and Smith 1998)
which consists of a gradient of increasing fitness as the num-
ber of 0-bits in the bit-string increases, and a gradient of
increasing fitness as the number of prefix 1-bits increases as
long as the solution is of the form 1i0n−i, leading to a global
optimum at 1n:

RIDGE(x) :=

{
n+ i if x = 1i0n−i for i ∈ N0

n−∑n
i=1 xi otherwise.

2377

Algorithm 1 Generalised Random Gradient Hyper-heuristic
1: Choose x ∈ S uniformly at random
2: while stopping conditions not satisfied do
3: Choose h ∈ H uniformly at random
4: ct ← 0
5: while ct < τ do
6: ct ← ct + 1; x′ ← h(x)
7: if f(x′) > f(x) then
8: ct ← 0; x← x′

To isolate hyper-heuristic performance on the ridge region
of the search space, we consider algorithms initialised at 0n.
As a consequence, no offspring with fitness smaller than n
are ever accepted, and the improvement probability of each
low-level heuristic remains the same throughout almost all
of the search space.

In order for a local search operator RLSk to increase the
fitness, it needs to flip exactly the first k consecutive 0-bits,
an event that occurs with probability Θ(n−k) when at least
k = O(1) 0-bits are present. Hence, RLS1 is the mutation
operator with the highest success probability (i.e., 1/n) and
applying this operator throughout the run yields the best ex-
pected runtime, namely E[TRLS1

] =
∑n−1

i=0 n = n2.
The other benchmark function we consider is ONEMAX

(OM for brevity). The goal is to minimise the Hamming
distance to a hidden bit-string (i.e., the optimum). For an-
alytical convenience, the optimum is usually set at 1n, such
that OM(x) =

∑n
i=1 xi. The function exhibits the com-

mon hillclimbing property expected to appear in optimisa-
tion problems, i.e., that improving solutions are harder to
find as the global optimum is approached. This class of func-
tions is known to be the easiest among all functions with
a unique global optimum for unary unbiased black box al-
gorithms (Lehre and Witt 2012). Amongst these, the best
is RLS1, which has an expected runtime of E[TRLS1

] =
n lnn− 0.1159...n± o(n) (Witt 2014).

Since we initialise all algorithms at 0n on RIDGE, we opt
to do so also for ONEMAX. However, for ONEMAX, we
expect the difference in results to be minor, as any RLSk

operator with a constant k ≥ 1 would be able to construct
an individual with n/2 1-bits in expected O(n) iterations.

2.2 Selection Hyper-heuristics

Throughout the paper, we refer to the expected runtime of a
hyper-heuristic that matches the leading constant in the best
expected runtime that can be achieved with the given low-
level heuristic set H as the optimal expected runtime.

The Generalised Random Gradient (GRG) hyper-
heuristic was analysed (Lissovoi, Oliveto, and Warwicker
2019b) as an extension of the classical Random Gradient
hyper-heuristic (Cowling, Kendall, and Soubeiga 2001). It
applies a randomly chosen low-level heuristic for a learning
period of τ iterations. As soon as the heuristic finds an im-
proving solution, a new period of length τ is started. If by
the end of a learning period an improvement has not been
found, then GRG chooses a new low-level heuristic at ran-
dom. Algorithm 1 shows the pseudocode for GRG.

Algorithm 2 Adaptive Random Gradient Hyper-Heuristic
1: τ ← τ0
2: Choose x ∈ S uniformly at random
3: while stopping conditions not satisfied do
4: Choose h ∈ H uniformly at random
5: ct ← 0; cs ← 0
6: while ct < τ do
7: ct ← ct + 1; x′ ← h(x)
8: if f(x′) > f(x) then
9: cs ← cs + 1; x← x′

10: if cs ≥ σ then
11: cs ← 0; ct ← 0
12: τ ← τ · F−1/σ2

13: τ ← τ · F 1/σ

Since the optimal value of the learning period may
change throughout the search space, GRG has recently been
equipped with a mechanism to automatically adapt the dura-
tion of the learning period during the run (Doerr et al. 2018).
As a result, the value of τ does not need to be manually set
in advance. The resulting hyper-heuristic was named Adap-
tive Random Gradient (ARG), and its pseudocode is shown
as Algorithm 2. The adaptive mechanism uses a 1 − 1/σ-
rule, which increases the learning period (τ ← τ · F 1/σ)
when the low-level heuristics construct fewer than σ fitness
improvements during a learning period, while it decreases it
by a smaller amount (τ ← τ · F−1/σ2

) if they succeed at
improving solution fitness at least σ times.

It has previously been proved that ARG with H =
{1BITFLIP, 2BITFLIP}3 achieves optimal expected runtime
for LEADINGONES (i.e., (1 + o(1)) · (1 + ln 2)/4 · n2 ≈
0.423n2+o(n2)), with σ = Ω(log4 n)∩o(√n/ log n) (Do-
err et al. 2018).

2.3 Mathematical Analysis Tools

The following drift analysis theorems are often used to
bound the expected runtime of a randomised search heuris-
tic by considering its drift (i.e, the expected decrease in dis-
tance from the optimum in each step). We use the Hamming
distance as a measure of distance to the optimum and write
Δ(i) = E(X(t) − X(t+1) | X(t) = n − i) to refer to the
drift conditioned on the parent solution having a Hamming
distance of n− i to the optimum.

The following additive drift theorem provides bounds on
the expected runtime given bounds on the drift which hold
throughout the process.

Theorem 1. [Additive Drift Theorem (He and Yao 2001)]
Let {X(t)}t≥0 be a sequence of random variables over a
finite set of states S ∈ R

+
0 and let T be the random variable

that denotes the first point in time for which X(t) = 0. If
there exist δu ≥ δl > 0 such that for all t ≥ 0 we have

δu ≥ E(X(t) −X(t+1) | X(t)) ≥ δl,

3Unlike RLS2, 2BITFLIP heuristic flips two bits chosen uni-
formly at random with replacement.

2378

then the expected optimisation time satisfies

E(X(0))/δu ≤ E(T) ≤ E(X(0))/δl.

If the drift changes considerably throughout the process,
then the variable drift theorem may provide sharper upper
bounds on the expected runtime.

Theorem 2. [Variable Drift Theorem (Johannsen 2010)]
Let {X(t)}t≥0 be a sequence of random variables over some
state space S ∈ {0} ∪ [xmin, xmax], where xmin > 0.
Let h(x) be an integrable, monotone increasing function
on [xmin, xmax] such that E(X(t) − X(t+1) | X(t) ≥
xmin) ≥ h(X(t)). Then it holds for the first hitting time
T := min{t | X(t) = 0} that,

E(T | X(0)) ≤ xmin

h(xmin)
+

∫ X(0)

xmin

1

h(x)
dx.

3 Static Learning Periods

In this section, we identify the optimal static learning pe-
riods for the Generalised Random Gradient (GRG) hyper-
heuristic for RIDGE and for ONEMAX, when it is equipped
with two low-level heuristics. In Subsection 3.1, we prove
that for RIDGE, the optimal value for τ is super-linear, lead-
ing to the optimal expected runtime. In Subsection 3.2, we
show that for ONEMAX, such a value for the learning period
leads to an expected runtime that is asymptotically worse
than that of one of its low level heuristics (i.e., RLS1). On
the other hand, setting the learning period to τ = o(log n)
leads to optimal asymptotic expected runtime.

3.1 RIDGE

In this subsection we consider GRG with the low-level
heuristic set H = {RLS1, RLSk} where k = o(n).

We first show that if the learning period of GRG is too
short, then neither low-level heuristic is able to succeed re-
liably and the hyper-heuristic devolves to simply using both
heuristics uniformly at random.

Theorem 3. Starting at 0n, the expected runtime of the Gen-
eralised Random Gradient hyper-heuristic for RIDGE with
H = {RLS1, RLSk} (k ≥ 2, k = o(n)) and τ = o(n) is
(1± o(1)) · 2n2.

In Theorem 4, we prove that if the learning period of
GRG is set sufficiently high, yet not excessively so, then
the hyper-heuristic can learn to use RLS1 in each iteration
with high probability and thus has optimal expected runtime
for RIDGE up to lower order terms. Intuitively, the proof
exploits that while RLSk usually fails after being chosen,
RLS1 can usually succeed multiple times before failing, and
is thus used much more often.

Theorem 4. Starting at 0n, the expected runtime of the
Generalised Random Gradient hyper-heuristic for RIDGE
with H = {RLS1, RLSk} and τ ≥ (1 + ε)n lnn, τ =
O
(
n2/ log n

)
is (1 + o(1)) · n2 for any k = o(n) and any

constant ε ≥ 0.

3.2 ONEMAX

In this subsection, we consider GRG using H =
{RLS1, RLS3}, i.e., the two best low-level heuristics for
ONEMAX4. In Theorem 5, we prove that if τ is too large,
then the suboptimal operator is used too often, leading to
poor performance.

Theorem 5. Starting at 0n, the expected runtime of
the Generalised Random Gradient hyper-heuristic for
ONEMAX with H = {RLS1, RLS3} and τ ≥ n is
Ω
(
n
√
n/(
√
log n)

)
= ω(n log n).

Proof. The probability of a fitness improvement (of any
amount) of RLS3 in one iteration for ONEMAX, at the state
OM(x) = i, denoted p3(i), is (Doerr, Doerr, and Yang
2016b, Section 4.1),

p3(i) =
(n− i)(n− i− 1)(n− i− 2 + 3 · i)

n(n− 1)(n− 2)
.

This is a monotonically decreasing function with respect
to i (as p3(0) = p3(1) = 1 and dp3(i)

di ≤ 0 for 1 ≤
i ≤ n − 1). As the algorithm progresses towards the
global optimum, it is harder for the heuristics (including
RLS3) to find improving solutions and the probability of
finding an improvement decreases. Hence, the probability
of improvement of RLS3 at OM(x) = n − √n lnn (i.e.,√

n lnn(
√
n lnn−1)(3n−2

√
n lnn−2)

n(n−1)(n−2) ≥ 5/2 · lnn
n) gives a lower

bound on the probability of improvement of RLS3 when
OM(x) ≤ n − √n lnn. The probability that RLS3 fails
to find an improvement within τ ≥ n iterations while
OM(x) ≤ n−√n lnn is at most

(1− p3(i))
τ ≤

(
1− 5 lnn

2n

)n

≤
(
1− 5 lnn

2n

) 2n
5 lnn · 5 lnn

2

≤ exp(−(5/2) lnn) = n−5/2.

Let G be the event that the time between improvements
constructed by RLS3 is below τ until a solution with fitness
of at most n−√n lnn is constructed. Equivalently, G is the
event that RLS3, once picked, does not fail before reaching a
fitness of at least n−√n lnn. In the worst case, this requires
RLS3 to succeed in at most n−√n lnn consecutive periods
of τ iterations, and thus

P (G) ≥ (1− n−5/2)n−
√
n lnn > 1− n−3/2 = 1− o(1).

If only RLS3 is used, we can bound the expected time T ′

to reach a fitness of OM(x) = n−√n lnn using the lower
bound variant of the variable drift theorem (Doerr, Fouz, and
Witt 2011, Theorem 7). Let X(t) = max{0, n − OM(x) −√
n lnn} and let c(X(t)) = X(t) − 3. The drift in one step

of RLS3 for OM is h(c(X(t))) = 3(n−i)(n−i−1)
n(n−1) per (Doerr,

Doerr, and Yang 2016b). Let xmin = 1. Hence, X(0) =

4This pair of heuristics, when applied optimally, has a smaller
expected runtime than any other {RLSa, RLSb} pair.

2379

n−√n lnn and h(xmin) = Θ(
√
n log n/n2) and,

E(T ′) ≥ Ω

(
n2

√
n log n

)
+

∫ n−√
n lnn

1

1

h(X(t))
dX(t)

= Ω

(
n2

√
n log n

)
+

∫ n−√
n lnn−1

0

n(n− 1)

3(n− i)(n− i− 1)
di

= Ω
(
n
√
n/

√
log n

)
.

Additionally, a matching upper bound can be obtained by
applying Theorem 2:

E(T ′) ≤ xmin

h(xmin)
+

∫ n−√
n lnn

1

1

h(x)
dx

≤ O

(
n
√
n√

log n

)
+

∫ n−√
n lnn−1

0

n(n− 1)

3(n− i)(n− i− 1)
di

≤ O

(
n
√
n√

log n

)
+

1

3

n
√
n√

lnn
= O

(
n
√
n√

log n

)
.

We apply the law of total expectation to obtain a bound
on the expected time for RLS3 to reach a fitness of n −√
n lnn conditional on the event G occurring (i.e. on RLS3

not failing before reaching the required fitness):

E(T ′) = E(T ′ | G)P (G) + E(T ′ | ¬G)P (¬G), ⇔
E(T ′ | G) =

(
E(T ′)− E(T ′ | ¬G)P (¬G)

)
/P (G)

≥ E(T ′)− E(T ′ | ¬G)P (¬G)

≥ E(T ′)− (τ + E(T ′))P (¬G) = Ω(E(T ′)),

as E(T ′) = Ω
(

n
√
n√

logn

)
, P (¬G) ≤ n−3/2 already for

τ = n, and E(T ′ | ¬G) ≤ τ + E(T ′) (i.e., adding τ it-
erations where no progress is made satisfies the gap require-
ment of ¬G, allowing the rest of the optimisation to proceed
without any additional constraints on when improvements
can occur).

As RLS3 is selected initially with probability 1/2, the ex-
pected runtime of GRG with τ ≥ n for ONEMAX is at least,

E(T) ≥ 1/2 · P (G) · E(T ′ | G) = Ω

(
n
√
n√

log n

)
,

by the law of total expectation.

An equivalent result for H = {RLS1, RLS2} can be ob-
tained by following the same proof strategy.

We now analyse the expected runtime of GRG when τ is
sub-linear. In this setting, both operators fail reliably once
the hyper-heuristic reaches the difficult portion of the search
space, and the frequent failures produce an almost even split
between using the two low-level heuristics.
Theorem 6. Starting at 0n, the expected runtime of the Gen-
eralised Random Gradient hyper-heuristic for ONEMAX
with H = {RLS1, RLS3} and τ = o(n), τ > 0 is at most
(1 + o(1)) · (6τn+ 2n lnn).

An equivalent result for H = {RLS1, RLS2} can be ob-
tained by following the same proof strategy.

Furthermore, if an operator is chosen at random in ev-
ery iteration (akin to setting τ = 0), the expected runtime is

(1+o(1)) ·2n lnn by an application of the variable drift the-
orem. Using short learning periods, i.e. τ = o(log n), min-
imises the leading term in the upper bound of Theorem 6. In
Section 5, empirical results show that short learning periods
of more than 1 iteration are beneficial in practice.

4 Adaptive Learning Periods

In the previous section, we proved that considerably differ-
ent static values for τ are required for the best achievable
performance on the two considered benchmark functions. In
this section, we study whether the Adaptive Random Gradi-
ent (ARG) hyper-heuristic achieves optimal asymptotic ex-
pected performance for both problems. For our purposes,
we consider ARG equipped with the two individually best
low-level heuristics for each problem. In this setting, we
have provided contrasting results for both problems for each
range of the learning period τ . We prove that optimal per-
formance up to the leading constant in the expected runtime
is achieved for RIDGE, and asymptotically optimal perfor-
mance is achieved for ONEMAX.

4.1 RIDGE

As before, we begin the analysis of the impact of adap-
tive learning periods for RIDGE. The behaviour of ARG
on RIDGE is substantially similar to its behaviour on
LEADINGONES, which has been analysed previously (Doerr
et al. 2018). Throughout the entire optimisation process, the
optimal and non-optimal operators have sufficiently differ-
ent probabilities of producing an improvement to be distin-
guished by ARG’s learning mechanism, and the optimal op-
erator has the highest probability of producing an improve-
ment. For RIDGE, the analysis of Doerr et al. can be sim-
plified somewhat as the probability of RLSk producing an
improvement does not change until fewer than k 0-bits re-
main in the solution, and so the optimal operator does not
change throughout the run. The absence of free-rider bits,
causing improvements by RLS1 to always increase fitness
by 1 and improvements by RLSk to always increase fitness
by k, does not compensate sufficiently for the much lower
improvement probability of RLSk. By making minor adap-
tations to the analysis of ARG for LEADINGONES, we can
achieve an equivalent result for RIDGE. We remark that us-
ing H = {RLS1, RLS2} allows us to directly reuse some
analysis of this heuristic set on the LEADINGONES problem
(Doerr et al. 2018), but we do expect that substantially sim-
ilar bounds can be made for H = {RLS1, RLSk} for any
k = O(1), as well as for larger sets H .
Theorem 7. The expected runtime of the Adaptive Ran-
dom Gradient hyper-heuristic for RIDGE with H =
{RLS1, RLS2}, F = 1.5, τ0 = 1, and σ = Ω(log4 n) ∩
o(
√

n/ log n), when initialised at x0 = 0n is (1+o(1)) ·n2.

4.2 ONEMAX

Theorem 8 shows that ARG optimises ONEMAX in the opti-
mal asymptotic expected runtime achievable by unary unbi-
ased black box heuristics (including its low level heuristics).
Theorem 8. Starting at 0n, the expected runtime of the
Adaptive Random Gradient hyper-heuristic for ONEMAX

2380

with H = {RLS1, RLS3}, for τ0 = 1, σ ∈ Ω
(
(log n)3/4

)∩
o(log n) and F = 1 + 1√

lnn
, is E[TARG] = O(n log n).

The statement of Theorem 8 requires σ ∈ Ω((log n)3/4)∩
o(log n). While this is a narrow range of values to select
from, this is necessary only for the proof to hold. The exper-
imental results presented in Section 5 suggest that the pa-
rameter σ is a lot more robust in practice, since a wide range
of σ values lead to a performance for ONEMAX that is better
than most naı̈ve choices of static τ (e.g., τ = 1 or τ = n),
while the best σ outperforms the best τ for sufficiently large
problem sizes (i.e., n ≥ 105). For technical reasons, our re-
sult requires that F decreases toward 1 as the problem size n
increases; experimental results presented in Section 5 show
that the standard choice of F = 1.5, as suggested by (Doerr,
Doerr, and Ebel 2015) and used in Theorem 7 for RIDGE,
works even better in practice.

We now present an outline of the proof of Theorem 8,
which follows a similar structure to the proof of Theorem 3.1
in (Doerr et al. 2018).

We call a period of at most τ iterations in which a muta-
tion operator produces σ ONEMAX improvements by muta-
tion a successful phase and call a period of τ iterations in
which a mutation operator produces less than σ ONEMAX
improvements a failed phase. We bound TARG = TR+TS+
TNS + TF by bounding each of the four components:

• TR, the number of iterations spent taken until the candi-
date solution has a fitness of at least OM(x) = 3n/4 for
the first time.

• TS, the number of iterations spent in successful phases
applying RLS1 when OM(x) ≥ 3n/4,

• TNS, the number of iterations spent in successful phases
applying RLS3 when OM(x) ≥ 3n/4.

• TF, the number of iterations spent in failed phases when
OM(x) ≥ 3n/4.

To prove the theorem, we will bound E[TS] ≤ E[TRLS1
] =

n ln(n) ± O(n) and show that the expected values of the
other contributing terms are at most O(n log n).

Firstly, we prove that E[TR] = O(n) in Lemma 9.

Lemma 9. The expected time for the Adaptive Random Gra-
dient hyper-heuristic with H = {RLS1, RLS3} to reach a
fitness value of ONEMAX(x) ≥ 3n/4 is O(n).

We then define a threshold τmax(i), which the learning
period τ with high probability does not exceed while the
solution contains i 1-bits:

τmax(i) :=
3

2
· σ · 1

popt(i)
=

3

2
· σ · n

n− i
,

where popt(i) is the improvement probability of the RLS1

operator at the state OM(x) = i. To bound E[TNS] and
E[TF], we will prove the following:

1. While OM(x) ≥ 3n/4, and τ < τmax(i), RLS3 fails a
phase with probability 1− exp(−Ω(σ)) (Lemma 10).

2. With high probability, τ remains below τmax(i) through-
out the optimisation process (Lemma 11).

1 10 100 1,000 10,000
1.2

1.4

1.6

1.8

2

τ

A
ve

ra
ge

R
un

tim
e/
n
ln
n

n = 104

n = 106

n = 108

Figure 1: The runtime of Generalised Random Gradient
for ONEMAX, with H = {RLS1, RLS3}, as τ increases
through constant values, for three different problem sizes.

Lemma 10. Consider a run of Adaptive Random Gra-
dient for ONEMAX, with H = {RLS1, RLS3}. While
ONEMAX(x) = i ≥ 3n/4 and τ < τmax(i), RLS3 pro-
duces at least σ improvements within τ iterations with prob-
ability at most exp(−Θ(σ)).

Lemma 11. With probability at least 1−n−c′ for any c′ > 0,
Adaptive Random Gradient with H = {RLS1, RLS3} finds
the global optimum before τ ≥ τmax(i) occurs, where i is
the ONEMAX value of the ancestor individual in any given
iteration.

We can now bound E[TNS] (Lemma 12) and E[TF]
(Lemma 13), conditioned on the event that τ < τmax(i)
holds throughout the optimisation process (i.e., L4 holds).

Lemma 12. While τ < τmax(i) and ONEMAX(x) ≥ 3n/4,
the expected number of iterations Adaptive Random Gradi-
ent with H = {RLS1, RLS3} spends in successful phases
when applying RLS3 is o(n log n).

Lemma 13. While τ < τmax(i) and ONEMAX(x) ≥ 3n/4,
the expected number of iterations Adaptive Random Gradi-
ent with H = {RLS1, RLS3} spends in failed phases is
O(n log n).

Finally, we present an unconditional bound on the ex-
pected runtime of ARG for ONEMAX (i.e., τ ≥ τmax(i)
might occur at some point throughout the optimisation pro-
cess). The proof of the following lemma largely matches
a similar result for LEADINGONES (Doerr et al. 2018,
Lemma 3.3), while the prerequisite lemmata also hold.

Lemma 14. Consider a run of Adaptive Random Gradient
with H = {RLS1, RLS3}, started with an arbitrary initial
search point x and an arbitrary initial period length τ0 ≤
n3, for ONEMAX. Let T be the number of fitness evaluations
performed up to the point when for the first time the optimal
solution is evaluated. Then E[T] = O(σn3).

Theorem 8 is proved by combining these results.

5 Experimental Analysis

We complement our theoretical results with an experimental
analysis which fills in some gaps left open by the theorems.

2381

0.01 0.1 1 10
1

10

100

τ/n

A
ve

ra
ge

R
un

tim
e/
n
ln
n

n = 104

n = 106

n = 108

Figure 2: The runtime of Generalised Random Gradient
for ONEMAX, with H = {RLS1, RLS3}, as τ increases
through linear values, for three different problem sizes.

Figure 3: The runtime of Adaptive Random Gradient with
H = {RLS1, RLS3} for ONEMAX, for various problem
sizes n and parameter values σ, with contour values show-
ing the average observed runtime over 1000 runs divided by
n lnn. Several strategies for setting σ depending on n are
shown as line plots.

Figures 1 and 2 show the runtime of GRG (initialised at
0n) for ONEMAX with various values of τ fixed through-
out the run, averaged over 500 runs for each τ value. The
most significant term in the theoretical upper bound on the
runtime presented in Theorem 6 is minimised by choosing
τ = o(log n), and the experiments confirm that short, but
increasing with respect to n, static learning periods produce
the best results: using e.g. τ = 2500 results in an average
runtime of 1.589n lnn for n = 106, while τ = 1 resulted in
an average runtime of 1.820n lnn. While the average run-
times approach our theoretical upper bound, it is unclear
whether the leading constant in this bound is tight.

ARG is able to adapt the learning period τ during the run,
with the adaptation speed determined by the parameter σ.
Our theorem for RIDGE holds for larger σ intervals than
those required for our proof for ONEMAX to hold. While
the following sets of experiments confirm that the best pa-
rameter values for each problem are those given by our the-
orems already for small problem sizes, they also show that

Figure 4: The runtime of Adaptive Random Gradient with
H = {RLS1, RLS2} for RIDGE, for various problem sizes
n and parameter values σ, with contour values showing the
average observed runtime over 1000 runs divided by n2.
Several strategies for setting σ depending on n are shown
as line plots.

ARG performs extremely well for both problems for all the
considered values for σ.

Figure 3 shows the average runtime of ARG (initialised
at 0n) for ONEMAX for various problem sizes and choices
of σ (using F = 1.5 for which our theory for RIDGE holds,
which performs slightly better for ONEMAX than the value
of F = 1 + 1/

√
lnn used by Theorem 8), as well as curves

showing the boundaries of the policies suggested by our the-
oretical results for setting σ (with leading constants chosen
to achieve σ = 4 at n = 103).

The parameter σ is quite robust: the observed average run-
time of ARG for ONEMAX remains below 1.86n lnn for all
considered values of n and σ. The optimal choice of σ out-
performs the best static choice of τ , while for large enough
n, any tested value of σ outperforms the best static choice
of τ : thus, even if σ is chosen based on what is optimal on
RIDGE, ARG still outperforms the optimal static choice of
τ for ONEMAX.

Figure 4 shows the performance of ARG on the RIDGE
problem when using the two best-performing low-level
heuristics. ARG is able to adapt the learning period τ ad-
equately during the run, achieving leading constants in the
runtime that are extremely close to the optimal (i.e., 1) for
all tested values of σ. In particular, ARG also achieves close-
to-optimal performance for RIDGE when σ is set to values
which have the best performance for ONEMAX.

6 Conclusion

In this paper, we analysed the impact of the learning pe-
riod τ on the performance of a random gradient hyper-
heuristic equipped with two low-level heuristics. Two uni-
modal functions with different characteristics, i.e., RIDGE
and ONEMAX, were considered for the analysis.

We first considered static values of τ . We rigorously
proved that while super-linear values of τ lead to expected
optimal performance of the Generalised Random Gradient

2382

hyper-heuristic for RIDGE (up to lower order terms), the
same parameter setting for ONEMAX leads to suboptimal
asymptotic expected runtimes (i.e., ω(n log n)). We then
proved that a small value for τ is preferable for ONEMAX,
providing O(n log n) expected runtime as desired.

Due to this discrepancy, we analysed whether the Adap-
tive Random Gradient hyper-heuristic can adapt τ during
the run effectively for both problems. We proved that it
achieves optimal expected asymptotic runtime for ONEMAX
and proved that it can optimise RIDGE in optimal expected
runtime up to the leading constant. An experimental analysis
confirms the robustness of the adaptation speed σ compared
to that of the learning period τ for realistic problem sizes.
It remains an open problem whether ARG achieves optimal
runtime on ONEMAX, or whether a more complex learning
mechanism such as reinforcement learning, which has been
proven to do so (Doerr, Doerr, and Yang 2016b), is neces-
sary.

Future work should evaluate the impact of the learning pe-
riod on other problems, including ones from classical com-
binatorial optimisation.

Acknowledgements This work was supported by the EP-
SRC under Grant No. EP/M004252/1.

References

Alanazi, F., and Lehre, P. K. 2014. Runtime analysis of se-
lection hyper-heuristics with classical learning mechanisms.
In Proceedings of IEEE Congress on Evolutionary Compu-
tation, CEC ‘14, 2515–2523. IEEE.
Alanazi, F., and Lehre, P. K. 2016. Limits to learning in rein-
forcement learning hyper-heuristics. In Evolutionary Com-
putation in Combinatorial Optimization, EvoCOP ‘16, 170–
185. Springer.
Burke, E. K.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan,
E.; and Woodward, J. R. 2010. A Classification of Hyper-
heuristic Approaches. Springer. 449–468.
Burke, E.; Gendreau, M.; Hyde, M.; Kendall, G.; Ochoa, G.;
Özcan, E.; and Qu, R. 2013. Hyper-heuristics: A survey of
the state of the art. Journal of the Operational Research
Society 64(12):1695–1724.
Cowling, P.; Kendall, G.; and Soubeiga, E. 2001. A hyper-
heuristic approach to scheduling a sales summit. In Practice
and Theory of Automated Timetabling, PATAT ‘01, 176–190.
Springer.
Doerr, B., and Doerr, C. 2019. Theory of parameter control
for discrete black-box optimization: Provable performance
gains through dynamic parameter choices. In Doerr, B., and
Neumann, F., eds., Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization (to appear).
Springer. CoRR, abs/1804.05650.
Doerr, B.; Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A.
2018. On the runtime analysis of selection hyper-heuristics
with adaptive learning periods. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, GECCO
’18. ACM.

Doerr, B.; Doerr, C.; and Ebel, F. 2015. From black-box
complexity to designing new genetic algorithms. Theoreti-
cal Computer Science 567:87 – 104.
Doerr, B.; Doerr, C.; and Yang, J. 2016a. k-bit mutation with
self-adjusting k outperforms standard bit mutation. In Pro-
ceedings of the International Conference on Parallel Prob-
lem Solving from Nature, PPSN ’16, 824–834. Springer.
Doerr, B.; Doerr, C.; and Yang, J. 2016b. Optimal param-
eter choices via precise black-box analysis. In Proceedings
of the Genetic and Evolutionary Computation Conference,
GECCO ’16, 1123–1130. ACM.
Doerr, B.; Fouz, M.; and Witt, C. 2011. Sharp bounds by
probability-generating functions and variable drift. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO ’11, 2083–2090. ACM.
He, J., and Yao, X. 2001. Drift analysis and average time
complexity of evolutionary algorithms. Artificial Intelli-
gence 127(1):57–85.
Johannsen, D. 2010. Random combinatorial structures and
randomized search heuristics. Ph.D. Dissertation, Univer-
sität des Saarlandes, Saarbrücken.
Lehre, P. K., and Özcan, E. 2013. A runtime analysis of sim-
ple hyper-heuristics: To mix or not to mix operators. In Pro-
ceedings of Foundations of Genetic Algorithms XII, FOGA
‘13, 97–104. ACM.
Lehre, P. K., and Witt, C. 2012. Black-box search by unbi-
ased variation. Algorithmica 623–642.
Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A. 2019a. On
the time complexity of algorithm selection hyper-heuristics
for multimodal optimisation. In Proceedings of the AAAI
Conference on Artificial Intelligence, AAAI ’19, 2322–
2329. MIT Press.
Lissovoi, A.; Oliveto, P. S.; and Warwicker, J. A.
2019b. Simple hyper-heuristics control the neighbour-
hood size of randomised local search optimally for
LeadingOnes. Evolutionary Computation. Early Access.
doi:10.1162/evco a 00258.
Özcan, E.; Bilgin, B.; and Korkmaz, E. E. 2008. A compre-
hensive analysis of hyper-heuristics. Intelligent Data Anal-
ysis 12(1):3–23.
Qian, C.; Tang, K.; and Zhou, Z.-H. 2016. Selection hyper-
heuristics can provably be helpful in evolutionary multi-
objective optimization. In Proceedings of the International
Conference on Parallel Problem Solving from Nature, PPSN
’16, 835–846. Springer.
Quick, R. J.; Rayward-Smith, V. J.; and Smith, G. D. 1998.
Fitness distance correlation and ridge functions. In Proceed-
ings of the International Conference on Parallel Problem
Solving from Nature, PPSN ‘98, 77–86. Springer.
Witt, C. 2014. Fitness levels with tail bounds for the analy-
sis of randomized search heuristics. Information Processing
Letters 114(1-2):38–41.

2383

