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Abstract

Over the last decade, research on automated parameter tun-
ing, often referred to as automatic algorithm configuration
(AAC), has made significant progress. Although the useful-
ness of such tools has been widely recognized in real world
applications, the theoretical foundations of AAC are still very
weak. This paper addresses this gap by studying the perfor-
mance estimation problem in AAC. More specifically, this pa-
per first proves the universal best performance estimator in a
practical setting, and then establishes theoretical bounds on
the estimation error, i.e., the difference between the training
performance and the true performance for a parameter con-
figuration, considering finite and infinite configuration spaces
respectively. These findings were verified in extensive exper-
iments conducted on four algorithm configuration scenarios
involving different problem domains. Moreover, insights for
enhancing existing AAC methods are also identified.

Introduction
Many high-performance algorithms for solving computa-
tionally hard problems, ranging from exact methods such
as mixed integer programming solvers to heuristic methods
such as local search, involve a large number of free parame-
ters that need to be carefully tuned to achieve their best per-
formance. In many cases, finding performance-optimizing
parameter settings is performed manually in an ad-hoc way.
However, the manually-tuning approach is often intensive
in terms of human effort (López-Ibáñez et al. 2016) and
thus there are a lot of attempts on automating this pro-
cess (see (Hutter et al. 2009) for a comprehensive review),
which is usually referred to as automatic algorithm con-
figuration (AAC) (Hoos 2012). Many AAC methods such
as ParamILS (Hutter et al. 2009), GGA/GGA+(Ansótegui,
Sellmann, and Tierney 2009; Ansótegui et al. 2015), irace
(López-Ibáñez et al. 2016) and SMAC (Hutter, Hoos, and
Leyton-Brown 2011) have been proposed in the last few
years. They have been used for boosting the algorithm’s per-
formance in a wide range of domains such as the boolean
satisfiability problem (SAT) (Hutter et al. 2009), the travel-
ing salesman problem (TSP) (López-Ibáñez et al. 2016; Liu,
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Tang, and Yao 2019), the answer set programming (ASP)
(Hutter et al. 2014) and machine learning (Feurer et al. 2015;
Kotthoff et al. 2017).

Despite the notable success achieved in application, the
theoretical aspects of AAC have been rarely investigated. To
our best knowledge, for AAC the first theoretical analysis
was given by Birattari (2004), in which the author analyzed
expectations and variances of different performance estima-
tors that estimate the true performance of a given parameter
configuration on the basis of N runs of the configuration.
It is concluded in (Birattari 2004) that performing one sin-
gle run on N different problem instances guarantees that the
variance of the estimate is minimized, which has served as a
guidance in the design of the performance estimation mech-
anisms in later AAC methods including irace, ParamILS and
SMAC. It is noted that the analysis in (Birattari 2004) as-
sumes that infinite problem instances could be sampled for
configuration evaluation. However, in practice we are often
only given a set of finite training instances (Hoos 2012).

Recently, Kleinberg, Leyton-Brown, and Lucier (2017)
introduced a new algorithm configuration framework named
Structured Procrastination (SP), which is guaranteed to find
an approximately optimal parameter configuration within a
logarithmic factor of the optimal runtime in a worst-case
sense. Furthermore, the authors showed that the gap between
worst-case runtimes of existing methods (ParamILS, GGA,
irace, SMAC) and SP could be arbitrarily large. These re-
sults were later extended in (Weisz, György, and Szepesvári
2018; 2019), in which the authors proposed new meth-
ods, called LEAPSANDBOUNDS (LB) and CapsAndRuns
(CR), with better runtime guarantees. However, there is a
discrepancy between the algorithm configuration problem
addressed by these methods (SP, LB and CR) and the prob-
lem that is most frequently encountered in practice. More
specifically, these methods are designed to find parameter
configurations with approximately optimal performances on
the input (training) instances; while in practice it is more
desirable to find parameter configurations that will perform
well on new unseen instances rather than just the training
instances (Hoos 2012). Indeed, one of the most critical is-
sues that needs to be addressed in AAC is the over-tuning
phenomenon (Birattari 2004), in which the found parame-

2384



ter configuration is with excellent training performance, but
performs badly on new instances 1.

Based on the above observation, this paper extends the re-
sults of (Birattari 2004) in several aspects. First, this paper
introduces a new formulation of the algorithm configuration
problem (Definition 1), which concerns the optimization of
the expected performance of the configured algorithm on an
instance distribution D. Compared to the one considered by
Birattari (2004) in which D is directly given (thus could be
sampled infinitely), in the problem considered here D is un-
known and inaccessible, and the assumption is that the input
training instances (and the test instances) are sampled i.i.d
from D. Therefore when solving this configuration problem,
we can only use the given finite training instances. One key
difficulty is that the true performance of a parameter config-
uration is unachievable. Subsequently, we could only run a
configuration on the training instances to obtain an estimate
of its true performance. Thus a natural and important ques-
tion is that, given finite computational budgets, e.g., N runs
of the configuration, how to allocate them over the train-
ing instances to obtain the most reliable estimate. Moreover,
given that we could obtain an estimate of the true perfor-
mance, is it possible to quantify the difference between the
estimate and the true performance?

The second and the most important contribution of this
paper is that it answers the above questions theoretically.
More specifically, this paper first introduces a universal best
performance estimator (Theorem 1) that always distributes
the N runs of a configuration to all training instances as
evenly as possible, such that the performance estimate is
most reliable. Then this paper investigates the estimation er-
ror, i.e., the difference between the training performance (the
estimate) and the true performance, and establishes a bound
on the estimation error that holds for all configurations in
the configuration space, considering the cardinality of the
configuration space is finite (Theorem 2). It is shown that
the bound deteriorates as the number of the considered con-
figurations increases. Since in practice the cardinality of the
configuration space considered could be considerably large
or even infinite, by making two mild assumptions on the con-
sidered configuration scenarios, we remove the dependence
on the cardinality of the configuration space and finally es-
tablish a new bound on the estimation error (Theorem 3).

The effectiveness of these results have been verified in
extensive experiments conducted on four configuration sce-
narios involving problem domains including SAT, ASP and
TSP. Some potential directions for improving current AAC
methods from these results have also been identified.

Algorithm Configuration Problem

In a nutshell, the algorithm configuration problem concerns
optimization of the free parameters of a given parameter-

1To appropriately evaluate AAC methods, in the literature, in-
cluding widely used benchmarks (e.g., AClib (Hutter et al. 2014))
and major contests (e.g., the Configurable SAT Solver Challenge
(CSSC) (Hutter et al. 2017)), the common scheme is to use an in-
dependent test set that has never been used during the configuration
procedures to test the found configurations.

ized algorithm (called target algorithm) for which the per-
formance is optimized.

Let A denote the target algorithm and let p1, ..., ph be pa-
rameters of A. Denote the set of possible values for each
parameter pi as Θi. A parameter configuration θ (or simply
configuration) of A refers to a complete setting of p1, ..., ph,
such that the behavior of A on a given problem instance is
completely specified (up to randomization of A itself). The
configuration space Θ = Θ1×Θ2...×Θh contains all possi-
ble configurations of A. For brevity, henceforth we will not
distinguish between θ and the instantiation of A with θ. In
real application A is often randomized and its output is de-
termined by the used configuration θ, the input instance z
and the random seed v. Let D denote a probability distribu-
tion over a space Z of problem instances from which z is
sampled. Let G be a probability distribution over a space V
of random seeds from which v is sampled. In practice G is
often given implicitly through a random number generator.

Given an instance z and a seed v, the quality of θ at (z, v)
is measured by a utility function fθ : Z × V → [L,U ],
where L,U are bounded real numbers. In practice, it means
running θ with v on z, and maps the result of this run to
a scalar score. Note how the mapping is done depends on
the considered performance metric. For examples, if we are
interested in optimizing quality of the solutions found by
A, then we might take the (normalized) cost of the solution
output by A as the utility; if we are interested in minimizing
computational resources consumed by A (such as runtime,
memory or communication bandwidth), then we might take
the quantity of the consumed resource of the run as the util-
ity. No matter which performance metric is considered, in
practice the value of fθ is bounded for all θ ∈ Θ, i.e., for all
θ ∈ Θ and all (z, v) ∈ Z × V , fθ(z, v) ∈ [L,U ].

To measure the performance of θ, the expected value of
the utility scores of θ across different (z, v), which is the
most widely adopted criterion in AAC applications (Hoos
2012), is considered here. More specifically, as presented in
Definition 1, the performance of θ, denoted as u(θ), is its ex-
pected utility score over instance distribution D and random
seed distribution G. Without loss of generality, we always
assume a smaller value is better for u(θ). The goal of the
algorithm configuration problem is to find a configuration
from the configuration space Θ with the best performance.

Definition 1 (Algorithm Configuration Problem). Given a
target algorithm A with configuration space Θ, an instance
distribution D defined over space Z , a random seed distri-
bution G defined over space V and a utility function fθ :
Z ×V → [L,U ] that measures the quality of θ at (z, v), the
algorithm configuration problem is to find a configuration
θ� from Θ with the best performance:

θ� ∈ argminθ∈Θ u(θ),

where u(θ) = Ez∼D,v∼G [fθ(z, v)].

In practice, D is usually unknown and the analytical solu-
tion of u(θ) is unachievable. Instead, usually we have a set
of problem instances {z1, ..., zK}, called training instances,
which are assumed to be sampled i.i.d from D. To estimate
u(θ), a series of experiments of θ on {z1, z2, ..., zK} could
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be run. As presented in Definition 2, an experimental setting
SN to estimate u(θ) is to run θ on {z1, ..., zK} for N times,
each time with a random seed sampled i.i.d from G.

Definition 2 (Experimental Setting SN ). Given a configu-
ration θ, a set of K training instances {z1, ..., zK} and the
total number N of runs of θ, an experimental setting SN to
estimate u(θ) is a list of N tuples, in which each tuple (z, v)
consists of an instance z and a random seed v, meaning a
single run of θ with v on z. Let ni denote the number of runs
performed on zi (note ni could be 0, meaning θ will not be
run on zi). It holds that

∑K
i=1 ni = N and SN could be

written as:

SN = [(z1, v1,1), ..., (z1, v1,n1), ..., (zi, vi,1), ...,

(zi, vi,ni
), ..., (zK , vK,1), ..., (zK , vK,nK

)].

After performing the N runs of θ as specified in SN , the
utility scores of these runs are aggregated to estimate u(θ).
The following estimator ûSN

(θ), which calculates the mean
utility across all runs and is widely adopted in AAC methods
(Hutter et al. 2009; López-Ibáñez et al. 2016; Hutter, Hoos,
and Leyton-Brown 2011), is presented in Definition 3.

Definition 3 (Estimator ûSN
(θ)). Given a configuration θ

and an experimental setting SN , the training performance
of θ, which is an estimate of u(θ), is given by:

ûSN
(θ) =

1

N

K∑
i=1

ni∑
j=1

fθ(zi, vi,j).

Since different experimental settings represent different
performance estimators, which have different behaviors. It
is thus necessary to investigate which SN is the best.

Universal Best Performance Estimator

To determine the values of n1, ..., nK in SN , Bi-
rattari (2004) analyzed expectations and variances of
ûSN

(θ), and concluded that ûS◦
N
(θ) with S◦

N :=
[(z1, v1,1), (z2, v2,1), ..., (zN , vN,1)] has the minimal vari-
ance. It is noted that the analysis in (Birattari 2004) assumes
that infinite problem instances could be sampled from D;
thus for performing N runs of θ, as specified in S◦

N , it is
always the best to sample N instances from D and perform
one single run of θ on each instance. In other words, S◦

N
is established on the basis that the number of the training
instances K could always be set equal to N . However, in
practice usually we only have a finite number of training in-
stances. In the case that K �= N , which SN is the best?
Theorem 1 answers this question for arbitrary relationship
between K and N . Before presenting Theorem 1, some nec-
essary definitions are introduced.

Given a configuration θ and an instance z, the expected
utility of θ within z, denoted as uz(θ), is EG [fθ(z, v)|z].
The variance of the utility of θ within z, denoted as σ2

z(θ), is
EG [(fθ(z, v)−uz(θ))

2|z]. Based on uz(θ) and σ2
z(θ), the ex-

pected within-instance variance σ̄2
WI(θ) of θ and the across-

instance variance σ̄2
AI(θ) of θ are defined in Definition 4 and

Definition 5, respectively.

Definition 4 (Expected within-instance Variance of θ).
σ̄2
WI(θ) is the expected value of σ2

z(θ) over instance dis-
tribution D:

σ̄2
WI(θ) = ED[σ2

z(θ)].

Definition 5 (Across-instance Variance of θ). σ̄2
AI(θ) is the

variance of uz(θ) over instance distribution D:
σ̄2
AI(θ) = ED[(uz(θ)− u(θ))2].

The expectation and the variance of an estimator ûSN
(θ)

are presented in Lemma 1 and Lemma 2, respectively.
Lemma 1. The expectation of ûSN

(θ) is u(θ), that is,
ûSN

(θ) is an unbiased estimator of u(θ) no matter how
n1, ..., nK in SN are set:

ESN
[ûSN

(θ)] = u(θ).

Lemma 2. The variance of ûSN
(θ) is given by:

ESN
[(ûSN

(θ)− u(θ))2] =
1

N
σ̄2
WI(θ) +

ΣK
i=1n

2
i

N2
σ̄2
AI(θ).

(1)
Theorem 1. Given a configuration θ, a training set of K
instances and the total number N runs of θ, the universal
best estimator ûS∗

N
(θ) for u(θ) is obtained by setting S∗

N :=

ni ∈ {�N
K �, �N

K �} for all i ∈ {1, 2, ...,K}, s.t.
∑K

i=1 ni =
N . ûS∗

N
(θ) is an unbiased estimator of u(θ) and is with the

minimal variance among all possible estimators.

Proof. By Lemma 1, ûS∗
N
(θ) is an unbiased estimator of

u(θ). We now prove ûS∗
N
(θ) has the minimal variance.

By Lemma 2, the variance of ûSN
(θ) is 1

N σ̄2
WI(θ) +

ΣK
i=1n

2
i

N2 σ̄2
AI(θ). Since N and K are fixed, and σ̄2

WI(θ) and
σ̄2
AI(θ) are constants for a given θ, we need to minimize∑K
i=1 n

2
i , s.t.

∑K
i=1 ni = N . Define Qn =

√∑K
k=1 n

2
i

and n̄ =
∑K

i=1 ni

K = N
K , it then follows that Q2

n =

Kn̄2 +
∑K

i=1(ni − n̄2). Then it suffices to prove that Q2
n

is minimized on the condition ni ∈ {�N
K �, �N

K �} for all
i ∈ {1, 2, ...,K}. Assuming Q2

n is minimized while the con-
dition not satisfied, then there must exist ni and nj , such that
ni−nj > 1; then we have (ni−n̄)2+(nj−n̄)2 > (ni−n̄)2+
(nj− n̄)2−2(ni−nj)+2 = (ni− n̄−1)2+(nj− n̄+1)2.
This contradicts the assumption that Q2

n is minimized. The
proof is complete.

Theorem 1 states that it is always the best to distribute
the N runs of θ to all training instances as evenly as possi-
ble, in which case maxi,j∈{1,...,K} |ni − nj | ≤ 1, no matter
K �= N or K = N . When K = N , S∗

N (θ) is actually
equivalent to S◦

N that performs one single run of θ on each
instance. When K �= N , S∗

N (θ) will perform �N
K � runs of θ

on each of (N mod K) instances and perform �N
K � runs on

each of the rest instances. It is worth mentoring that practi-
cal AAC methods including ParamILS, SMAC and irace ac-
tually adopt the same or quite similar estimators as S∗

N (θ).
Theorem 1 provides a theoretical guarantee for these estima-
tors, and S∗

N (θ) will be further evaluated in the experiments.
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Bounds on Estimation Error
Although Theorem 1 presents the estimator with the uni-
versal minimal variance, it cannot provide any information
about how large the estimation error, i.e., u(θ) − ûSN

(θ),
could be. Bounds on estimation error are useful in both
theory and practice because we could use them to estab-
lish bounds on the true performance u(θ), given that in
algorithm configuration process the training performance
ûSN

(θ) is actually known. In general, given a configuration
θ, its training performance ûSN

(θ) is a random variable be-
cause the training instances and the random seeds specified
in SN are drawn from distributions D and G, respectively.
Thus we focus on establishing probabilistic inequalities for
u(θ) − ûSN

(θ), i.e., for any 0 < δ < 1, with probability at
least 1 − δ, there holds u(θ) − ûSN

(θ) ≤ A(δ). In partic-
ular, probabilistic bounds on uniform estimation error, i.e.,
supθ∈Θ[u(θ) − ûSN

(θ)], that hold for all θ ∈ Θ are estab-
lished. Recalling that Lemma 1 states ESN

[ûSN
(θ)] = u(θ),

the key technique for deriving bounds on u(θ) − ûSN
(θ)

is the concentration inequality presented in Lemma 4 that
bounds how ûSN

(θ) deviates from its expected value u(θ).
Lemma 3 (Bernstein’s Inequality (Bernstein 1927)). Let
X1, X2, ..., Xn be independent centered bounded random
variables, i.e., Prob{|Xi| ≤ a} = 1 and E[Xi] = 0. Let
σ2 = 1

n

∑n
i=1 V ar[Xi] where V ar[Xi] is the variance of

Xi. Then for any ε > 0 we have

Prob{ 1
n

n∑
i=1

Xi ≥ ε} ≤ exp(− nε2

2σ2 + 2aε
3

).

Lemma 4. Given a configuration θ, an experimental set-
ting SN = [(z1, v1,1), ..., (zK , vK,nK

)] and a performance
estimator ûSN

(θ) = 1
N

∑K
i=1

∑ni

j=1 fθ(zi, vi,j). Let τ2θ =

σ̄2
WI(θ) +

∑K
i=1 n2

i

N σ̄2
AI(θ). Let C = U − L, where L,U are

the lower bound and the upper bound of fθ respectively (see
Definition 1), and let n = max{n1, n2, ..., nK}. Then for
any ε > 0, we have

Prob{u(θ)− ûSN
(θ) ≥ ε} ≤ exp(− Nε2

2τ2θ + 2nCε
3

).

Proof. Define random variables xi,j = u(θ) − fθ(zi, vi,j),
and define random variables Xi =

∑ni

j=1 xi,j . First we
prove that X1, ..., XK satisfy the conditions in Lemma 3.
E[Xi] =

∑ni

j=1 E[xi,j ] =
∑ni

j=1[u(θ)−E[fθ(zi, vi,j)]] = 0.
By Definition 1, Prob{L ≤ fθ(zi, vi,j) ≤ U} = 1, it holds
that L ≤ u(θ) ≤ U (since u(θ) = E[fθ(zi, vi,j)]). Thus
we have Prob{|xi,j | ≤ U − L} = 1 and Prob{|Xi| ≤
n(U−L)} = 1. For any p �= q, Xp and Xq are independent.
Thus X1, X2, ..., XK are independent random variables.

Let X̄ = 1
K

∑K
i=1 Xi. By Lemma 3, it holds that, for any

ε > 0, Prob{X̄ > ε} ≤ exp(− Kε2

2σ2+ 2Cε
3

), where σ2 =

1
K

∑K
i=1 V ar[Xi]. Notice that K

N X̄ = u(θ) − ûSN
; thus it

holds that for any ε > 0,

Prob{u(θ)− ûSN
> ε} ≤ exp(− Nε2

2K
N σ2 + 2nCε

3

).

It remains to analyze σ2. Since E[xi] = 0, V ar[Xi] =
E[X2

i ]. Substitute Xi with
∑ni

j=1 xi,j and we have
V ar[Xi] =

∑ni

j=1 E[x
2
i,j ] +

∑
1≤j<l≤ni

2E[xi,jxi,l].
E[x2

i,j ] = V ar[xi,j ] + E[xi,j ]
2 = V ar[xi,j ] + 0 =

σ̄2
WI(θ) + σ̄2

AI(θ) (by setting N,K = 1 in Eq. (1)).
E[xi,jxi,l] = E[(fθ(zi, vi,j)− u(θ))(fθ(zi, vi,l)− u(θ))] =
E[(fθ(zi, vi,j)(fθ(zi, vi,l)] − u(θ)2. Given an instance zi,
fθ(zi, vi,j) and fθ(zi, vi,l) are independent. There holds:

E[(fθ(zi, vi,j)(fθ(zi, vi,l)]

= ED[EG [fθ(zi, vi,j)fθ(zi, vi,l)|zi]]
= ED[EG [fθ(zi, vi,j)|zi]EG [fθ(zi, vi,l)|zi]]
= ED[uzi(θ)

2].

By the fact ED[uz(θ)] = u(θ), ED[uzi(θ)
2] − u(θ)2 =

ED[(uzi(θ)− u(θ))2] = σ̄2
AI(θ). The last step is by Defini-

tion 5. Summing up the above results, we have V ar[Xi] =
ni(σ̄

2
WI(θ) + σ̄2

AI(θ)) + ni(ni − 1)σ̄2
AI(θ) = niσ̄

2
WI(θ) +

n2
i σ̄

2
AI(θ). Thus σ2 = 1

K

∑K
i=1 V ar[Xi] = N

K σ̄2
WI(θ) +∑K

i=1 n2
i

K σ̄2
AI(θ). The proof is complete.

On Configuration Space with Finite Cardinality

Theorem 2 presents the uniform bound for estimation error
when Θ is of finite cardinality.
Theorem 2. Given a performance estimator ûSN

(θ).
Let θ† = argmaxθ∈Θ τ2θ , where τ2θ = σ̄2

WI(θ) +
∑K

i=1 n2
i

N σ̄2
AI(θ), and let τ2 = τ2θ† , σ̄2

WI = σ̄2
WI(θ

†) and
σ̄2
AI = σ̄2

AI(θ
†). Let n = max{n1, n2, ..., nK} and C =

U − L. Given that Θ is of finite cardinality, i.e., Θ =
{θ1, θ2, ..., θm}, then for any 0 < δ < 1, with probability
at least 1− δ, there holds:
sup
θ∈Θ

[u(θ)− ûSN
(θ)]

≤
2nC ln m

δ

3N
+

√
2 ln

m

δ
(
1

N
σ̄2
WI +

∑K
i=1 n

2
i

N2
σ̄2
AI). (2)

Proof. By Lemma 4, for a given configuration
θ, for any ε > 0, it holds that Prob{u(θ) −
ûSN

(θ) ≥ ε} ≤ exp(− Nε2

2τ2
θ+

2nCε
3

). By union

bound, Prob{supθ∈Θ[u(θ) − ûSN
(θ)] ≥ ε} ≤∑m

i=1 Prob{u(θi) − ûSN
(θi) ≥ ε} ≤ mexp(− Nε2

2τ2+ 2nCε
3

).

Let δ = mexp(− Nε2

2τ2+ 2nCε
3

), and ε is solved as:

ε = 1
2N [ 2nC3 ln m

δ +
√
( 2nC3 ln 1

δ )
2 + 8Nτ2 ln m

δ ] ≤
2nC ln m

δ

3N +
√
2 ln m

δ (
τ2

N ). Substituting τ2 with

σ̄2
WI +

∑K
i=1 n2

i

N σ̄2
AI proves Theorem 2.

Note that for different SN , the bounds on the right side
of Eq. (2) are different. The proof of Theorem 1 shows that∑K

i=1 n
2
i , s.t.

∑K
i=1 ni = N , is minimized on the condition

ni ∈ {�N
K �, �N

K �} for all i ∈ {1, 2, ...,K}. Moreover, it is
easy to verify that n = max{n1, n2, ..., nK} is also mini-
mized on the same condition, in which case n = �N

K �. Thus
we can immediately obtain Corollary 1.
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Corollary 1. The estimator ûS∗
N

established in Theorem 1,
has the best bound for uniform estimation error in Theo-
rem 2. Given that K divides N , for any 0 < δ < 1, with
probability at least 1− δ, there holds:

sup
θ∈Θ

[u(θ)− ûS∗
N
(θ)]

≤
2C ln m

δ

3K
+

√
2 ln

m

δ
(
1

N
σ̄2
WI +

1

K
σ̄2
AI).

On Configuration Space with Infinite Cardinality

Since in practice the cardinality of Θ could be considerably
large (e.g., 1012), in which case the bound provided by The-
orem 2 could be very loose. Moreover, when the cardinal-
ity of Θ is infinite, Theorem 2 does not apply anymore. To
address these issues, we establish new uniform error bound
without dependence on the cardinality of Θ based on two
mild assumptions given below.

Assumption 1. (a) We assume there exists R > 0 such that
Θ ⊆ BR, where BR = {w ∈ R

h : ‖w‖2 ≤ R}
is a ball of radius R and ‖w‖2 =

∑h
i=1 w

2
i for w =

(w1, . . . , wh).
(b) We assume for any (z, v) ∈ Z × V , the utility function

f is L-Lipschitz continuous, i.e., |fθ(z, v)− fθ̃(z, v)| ≤
L||θ − θ̃||2 for all θ, θ̃ ∈ Θ.

Part (a) of Assumption 1 means the ranges of the values
of all parameters considered are bounded, which holds in
nearly all practical algorithm configuration scenarios (Hutter
et al. 2014). Part (b) of Assumption 1 poses limitations on
how fast fθ can change across Θ. This assumption is also
mild in the sense that it is expected that configurations with
similar parameter values would result in similar behaviors
of A, thus getting similar performances. The key technique
for deriving the new bound is covering numbers as defined in
Definition 6, and the new bound is established in Theorem 3.

Definition 6. Let F be a set and d be a metric. For any
η > 0, a set F� ⊂ F is called an η-cover of F if for every
f ∈ F there exists an element g ∈ F� satisfying d(f, g) ≤
η. The covering number N (η,F , d) is the cardinality of the
minimal η-cover of F:

N (η,F , d) := min{|F�| : F� is an ε-cover of F}.

Lemma 5 presents a covering number bound on BR.

Lemma 5 ((Gilles 1999)).

lnN (η,BR, d2) ≤ h ln(3R/η),

where d2(w, w̃) = ‖w − w̃‖2.

Since Θ ⊂ BR, it is easy to verify that lnN (η,Θ, d2) ≤
lnN (η,BR, d2). Based on the L-Lipschitz continuity as-
sumption, Lemma 6 establishes a bound for N (η,F , d∞),
where F = {fθ : θ ∈ Θ}.

Lemma 6. Let F = {fθ : θ ∈ Θ} and d∞(fθ, fθ̃) =
sup(z,v)∈Z×V |fθ(z, v) − fθ̃(z, v)|. If Assumption 1 holds,
then lnN (η,F , d∞) ≤ h ln(3RL/η).

Proof. For any θ, θ̃ ∈ Θ, by the Lipschitz continuity we
know d∞(fθ, fθ̃) ≤ L‖θ − θ̃‖2. Then, any (ε/L)-cover of
BR w.r.t. d2 would imply an ε-cover of F w.r.t. d∞. This
together with Lemma 5 implies the stated result. The proof
is complete.

Lemma 7. For any positive constants k, l, b, c, the inequal-
ity εkl + b ln ε ≥ c has a solution

ε0 =

(
c+ bmax(ln l − ln c, 0)/k

l

)1/k

.

Theorem 3. If Assumption 1 holds and h ln(12LR) ≥ 1,
then for any 0 < δ < 1, with probability 1− δ there holds:

sup
θ∈Θ

[u(θ)− ûSN
(θ)]

≤

√√√√ [h ln(12LR) + ln( 1δ ) +
1
2h ln

N
8τ2+4nC

3

]( 24τ
2+4nC
3 )

N
,

where n,C, τ2, σ̄2
WI , σ̄

2
AI are defined as in Theorem 2.

Proof. Without loss of generality we can assume ε ≤
1. Let {fθ1 , ..., fθm} be a ε/4-cover of F with m =
N (ε/4,F , d∞), where F = {fθ : θ ∈ Θ}. By Defini-
tion 6, for any fθ ∈ F there exists fθj ∈ {fθ1 , ..., fθm}, such
that d∞(fθ, fθj ) = sup(z,v)∈Z×V |fθ(z, v) − fθj (z, v)| ≤
ε/4; it follows that |E[fθ(z, v)] − E[fθj (z, v)]| =
|u(θ) − u(θj)| ≤ ε/4 and |ûSN

(θ) − ûSN
(θj)| =

1
N

∑K
i=1

∑ni

j=1 |fθ(zi, vi,j) − fθj (zi, vi,j)| ≤ ε/4. Then,

supθ∈Θ

[
u(θ)−ûSN

(θ)
]
≤ supθ∈Θ

[
u(θ)−u(θj)+u(θj)−

ûSN
(θj)+ûSN

(θj)−ûSN
(θ)

]
≤ ε

2+maxj∈{1,..,m}[u(θj)−
ûSN

(θj)]. It then follows that Prob{supθ∈Θ[u(θ) −
ûSN

(θ)] ≥ ε} ≤ Prob{maxj∈{1,..,m}[u(θj) −
ûSN

(θj)] ≥ ε/2} ≤
∑m

j=1 Prob{[u(θj) − ûSN
(θj)] ≥

ε/2} ≤ mexp(−
N
4 ε2

2τ2+nCε
3

), where the last inequality
is due to Lemma 4. We need to find a ε satisfying
exp(h ln(12RL/ε) − Nε2

8τ2+ 4nCε
3

) ≤ δ, for which it suf-

fices to find a solution of (by ε ≤ 1) Nε2

8τ2+ 4nC
3

+ h ln ε ≥
h ln(12LR)+ ln(1/δ). This inequality takes the form of the
inequality in Lemma 7. We can apply Lemma 7 to show that
a solution is (note h ln(12LR) ≥ 1)

ε =

(h ln(12LR) + ln(1/δ) + 2−1h ln N
8τ2+ 4nC

3

N
8τ2+ 4nC

3

) 1
2

.

Discussion

There are some important findings from the above results.
First, both Theorem 2 and Theorem 3 relate the bounds on
u(θ) − ûSN

(θ) with the complexity of Θ, and the bounds
deteriorate as the complexity increases. This means as the
considered configuration space gets more complex, there is a
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Table 1: Summary of the configuration scenarios and gathered performance matrix in each scenario. h is the #parameters of
the target algorithm. Tmax is the cutoff time. The portgen generator (Johnson and McGeoch 2007) was used to generate the
TSP instances (in which the cities are randomly distributed). For each scenario, ΘM was composed of the default parameter
configuration and M − 1 random configurations.

Scenario Algorithm Domain Bechmark M P Tmax
SATenstein-QCP SATenstein (KhudaBukhsh et al. 2016), h = 54 SAT Randomly selected from QCP (Gomes and Selman 1997) 500 500 5s

clasp-weighted-sequence clasp (Gebser et al. 2007), h=98 ASP ”small” type weighted-sequence (Lierler et al. 2012) 500 120 25s
LKH-uniform-400 LKH (Helsgaun 2000), h=23 TSP Generated by portgen (Johnson and McGeoch 2007), #city=400 500 250 10s

LKH-uniform-1000 LKH (Helsgaun 2000), h=23 TSP Generated by portgen (Johnson and McGeoch 2007), #city=1000 500 250 10s
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ûS◦
N
(θ)

(d) LKH-uniform-1000

Figure 1: Estimation error for different estimators in different scenarios at r1 = 0.5.

possibility that the estimation error could be larger. Second,
as expected, as N and K get larger, the estimation error gets
smaller, and ûSN

(θ) will converge to u(θ) with probability
1 with N → ∞ and K → ∞. Third, Corollary 1 shows that,
for the estimator ûSN

(θ∗) which are widely used in current
AAC methods, the gain on error reduction decreases rapidly
as N and K get larger (which are also shown in Figure 2 in
the experiments), and the effects of increasing N and K also
depend on σ̄2

WI and σ̄2
AI , two quantities varying across dif-

ferent algorithm configuration scenarios. Thus for enhanc-
ing current AAC methods, instead of fixing N as a large
number (e.g., SMAC sets N to 2000 by default) and using
as many training instances as possible, it is more desirable
to use different N and K according to the configuration sce-
nario considered, in which case N and K may be adjusted
dynamically in the configuration process as more data are
gathered to estimate σ̄2

WI and σ̄2
AI .

Experiments

In this section, we present our experimental studies. First
we introduce our experiment setup. Then, we verify our the-
oretical results in two facets: 1) comparison of different per-
formance estimators; 2) the effects of different values of m
(the number of considered configurations), N (the number
of runs of θ to estimate u(θ)) and K (the number of training
instances) on the estimation error.

We conducted experiments based on a re-sampling ap-
proach (Birattari 2004), which is often used for time-
consuming empirical analysis. Specifically, we considered 4
different scenarios. We selected two scenarios SATenstein-
QCP and clasp-weighted-sequence from the Algorithm Con-
figuration Library (AClib) (Hutter et al. 2014) and built two
new scenarios LKH-uniform-400/1000. For each scenario,
we gathered a M×P×5 matrix containing the performances
of M configurations on P instances, with each configuration
running on each instance for 5 times. Let ΘM be the set of
the M configurations and ZP be the set of the P instances.

In the experiments, when acquiring the performance of a
configuration θ on an instance, instead of actually running
θ, the value stored in the corresponding entry of the matrix
was used. The details of the scenarios and the performance
matrices are summarized in Table 1. In the experiments the
optimization goal considered is the runtime needed to solve
the problem instances (for SAT and ASP) or to find the op-
tima of the problem instances (for TSP). In particular, the
performance metric was set to Penalized Average Runtime–
10 (PAR-10) (Hutter et al. 2009), which counts a timeout as
10 times the given cutoff time.

For convenience henceforth we will use “splitP1|P2
” to

denote that we subsequently randomly select, without re-
placement, P1 and P2 instances from ZP as training in-
stances and test instances respectively. For a given θ, we
always used the performance obtained by an estimator on
the training instances as its training performance, and used
its performance on the test instances as its true performance.
We use uniform es error(Θ) to denote the maximal estima-
tion error across the configurations in Θ.

All the experiments were conducted on a Xeon machines
with 128 GB RAM and 24 cores each (2.20 GHz, 30 MB
Cache), running CentOS. The code was implemented based
on AClib (Hutter et al. 2014) 2.

Comparison of Different Estimators. We compared
ûS∗

N
(θ) with two estimators ûS†

N
(θ) and ûS◦

N
(θ). For eval-

uating θ, ûS†
N
(θ) repeatedly randomly selects an instance

from ZP without replacement, and runs θ for 5 times on
the instance as long as the total number of runs of θ not ex-
ceeding N . ûS†

N
(θ) is greedier than ûS∗

N
(θ) in the sense that

it ensures the estimated performance of θ on the used in-
stances is as accurate as possible. Another estimator ûS◦

N
(θ)

is the one presented in (Birattari 2004), which repeatedly

2The code and the complete experiment results are available at
https://github.com/EEAAC/ac estimation error

2389



0 100 200 300 400 500
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0
un
if
or
m

es
ti
m
at
io
n
er
ro
r
by

P
A
R
-1
0

fit function

uniform es error(Θtrain,m)

(a) SATenstein-QCP

0 100 200 300 400 500
m

0

5

10

15

20

25

30

35

un
if
or
m

es
ti
m
at
io
n
er
ro
r
by

P
A
R
-1
0

fit function

uniform es error(Θtrain,m)

(b) clasp-weighted-sequence

0 100 200 300 400 500 600
N

0

20

40

60

80

100

un
if
or
m

es
ti
m
at
io
n
er
ro
r
by

P
A
R
-1
0 fit function

uniform es error(ΘM,N)

(c) LKH-uniform-400

0 20 40 60 80 100 120
K

0

10

20

30

40

50

un
if
or
m

es
ti
m
at
io
n
er
ro
r
by

P
A
R
-1
0 fit function

uniform es error(ΘM,K)

(d) LKH-uniform-1000

Figure 2: Uniform estimation error at different m, N and K and the fit functions based on the theoretical results.
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Figure 3: Estimation error on θ∗ at different m, N and K and the fit functions based on the theoretical results.

randomly selects an instance from ZP with replacement,
and runs θ for a single time on the instance. ûS◦

N
(θ) has

more randomness than ûS∗
N
(θ) since it does not ensure that

N runs of θ are distributed evenly on all instances. We set
K = r1P and N = r2K, and ranged r1 from 0.1 to 0.5
with a step of 0.05, r2 from 0.25 to 4.0 with a step of 0.25.
To reduce the variations of our experiments, for each com-
bination of r1 and r2, we splitK|P/2 for 2500 times, and on
each split, we obtained the estimation error of an estimator
on each θ ∈ Θ, and then calculated the mean value, which
was further averaged over all splits. That is, for each combi-
nation of r1 and r2, we obtained a mean estimation error for
each estimator. Due to space limitations, we only present the
results in terms of error bars (mean ± std) at r1 = 0.5 in Fig-
ure 1. The results at other values of r1 are similar. Figure 1 is
in line with Theorem 1. Overall ûS∗

N
(θ) is the best estimator

among the three, and its performance advantage is remark-
able when N is small. When N gets larger, it is expected,
and as shown in Figure 1, that the estimation error for all
three estimators will converge to 0. The fact that ûS∗

N
(θ) is

better than ûS◦
N
(θ) indicates that it is necessary to distribute

N runs of θ as evenly as possible over all instances.
Estimation Error at Different m, N and K. We always

fixed two values while ranging the other one. We ranged
m from 1 to M , while setting K = P/2 and N = 5K.
We ranged N from 1 to 5K while setting K = P/2
and m = M . We ranged K from 1 to P/2 while setting
N = 5K and m = M . For a given m, we splitK|P/2 for
2500 times, and on each split, we started with an empty
set Θtrain of configurations and then repeatedly expanded
Θtrain by adding a configuration randomly selected from
ΘM \Θtrain. Each time a new configuration θ was added to
Θtrain, uniform es error(Θtrain) was recorded, which was
further averaged over all 2500 splits. That is, for each m,

we obtained a mean value of uniform es error(Θtrain), de-
noted as uniform es error(Θtrain,m). Similarly, for a given
N or a given K, we always splitK|P/2 for 2500 times,
and on each split, we obtained uniform es error(ΘM),
and then averaged it over all splits. Thus for each con-
sidered N and K, we obtained uniform es error(ΘM,N)
and uniform es error(ΘM,K), respectively. Due to space
limitations, we only present parts of the results in Fig-
ure 2 and other results are very similar. To verify whether
our analysis (Theorem 2) correctly captures the depen-
dence of estimation error on N , M and K, we also plot
the function f(m) = a lnm + b

√
lnm for m, f(N) =

a + b
√

1/N for N and f(K) = a/K + b
√
1/K for K

in Figure 2, where the parameters a, b are computed by
fitting f with the data collected in the experiments, i.e.,
{m �→ uniform es error(Θtrain,m) : m ∈ {1, ...,M}},
{N �→ uniform es error(ΘM,N) : N ∈ {1, ..., 5

2P}} and
{K �→ uniform es error(ΘM,K) : K ∈ {1, ..., 1

2P}}, re-
spectively. Overall Figure 2 demonstrates that our analysis
managed to capture the dependence of uniform estimation
error on m, N and K. It is worth noting that in the experi-
ments the effects of increasing m, N and K depend on σ̄2

WI
and σ̄2

AI , which vary across configuration scenarios. More-
over, the estimation error becomes very low and quite stable
when N approaches K/2, which means running θ on half
of the training instances could already obtain a reliable esti-
mate of u(θ).

It is also meaningful to investigate whether our anal-
ysis could reflect how the estimation error on θ∗, i.e.,
the configuration with the best training performance in
Θ, denoted as train es error(Θ), would change. We
conducted the same experiments as described above to
gather train es error(Θtrain,m), train es error(ΘM,N)
and train es error(ΘM,K). Figure 3 plots the results and
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the fit functions. It could be seen that although the bounds
are not directly established for train es error(Θ), the find-
ings also apply to it to a considerable extent.

Conclusion
The main results of this paper include the universal best per-
formance estimator and bounds on the uniform estimation
error, which were verified in extensive experiments. Possi-
ble future directions include data-dependent bounds that are
tighter and computable from realization of training instances
and analysis of the notorious over-tuning phenomenon based
on the results in this paper.
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Ansótegui, C.; Malitsky, Y.; Samulowitz, H.; Sellmann, M.; and
Tierney, K. 2015. Model-Based Genetic Algorithms for Algorithm
Configuration. In Proceedings of the 24th International Joint Con-
ference on Artificial Intelligence, IJCAI’2015, 733–739. Buenos
Aires, Argentina: AAAI Press.
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