
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Cakewalk Sampling

Uri Patish, Shimon Ullman
Weizmann Institute of Science, Rehovot, Israel

Abstract

We study the task of finding good local optima in combina-
torial optimization problems. Although combinatorial opti-
mization is NP-hard in general, locally optimal solutions are
frequently used in practice. Local search methods however
typically converge to a limited set of optima that depend on
their initialization. Sampling methods on the other hand can
access any valid solution, and thus can be used either directly
or alongside methods of the former type as a way for finding
good local optima. Since the effectiveness of this strategy de-
pends on the sampling distribution, we derive a robust learn-
ing algorithm that adapts sampling distributions towards good
local optima of arbitrary objective functions. As a first use
case, we empirically study the efficiency in which sampling
methods can recover locally maximal cliques in undirected
graphs. Not only do we show how our adaptive sampler out-
performs related methods, we also show how it can even ap-
proach the performance of established clique algorithms. As
a second use case, we consider how greedy algorithms can
be combined with our adaptive sampler, and we demonstrate
how this leads to superior performance in k-medoid cluster-
ing. Together, these findings suggest that our adaptive sam-
pler can provide an effective strategy to combinatorial opti-
mization problems that arise in practice.

1 Introduction
Combinatorial optimization is one of the foundational prob-
lems of computer science. Though in general such problems
are NP-hard (Papadimitriou 2003), it is often the case that
locally optimal solutions can be useful in practice. In cluster-
ing for example, a common objective is to divide a given set
of examples into a fixed number of groups so as to minimize
the distances between group members. Since enumerating
all the possible groupings is usually intractable, local search
methods such as k-means (MacQueen and others 1967) are
frequently used to approach such problems. In many prob-
lems however, methods that transform one solution to an-
other can be highly sensitive to their initialization. In some
cases this is a result of applying a local search to a problem
which has multiple local optima. In others, the search space
is simply disconnected, and transforming one valid solution
to another is only possible within a small sub-space. In such

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cases, the quality of the final solution is determined by how
the search is initialized. One common heuristic around this
is to sample few initial solutions, and to apply the search
multiple times. However, the success of this heuristic mostly
depends on the sampling distribution that produces these ini-
tial solutions. Thus, if we can have an algorithm that adapts
a sampling distribution towards solutions that are associated
with good objective values, then we might be able to use it
to find good local optima. Such a method could potentially
sample locally optimal solutions on its own, or be used as
an algorithm that learns how to initialize a particular local
search.

One type of algorithms which seem suitable for the task,
and which have drawn considerable interest in the last few
years are policy gradient methods (Sutton and Barto 2017).
Such methods construct a parametric sampling distribution
over the search space, and optimize the expected value of
some objective function by applying gradient updates in the
parameters’ space. On the surface, when provided with the
right sampling distribution, such methods can access any
valid solution, and can therefore provide a strategy that is
suitable to our setting. Nonetheless, a closer inspection re-
veals these methods are highly sensitive to perturbations of
the objective function. In particular, the objective values di-
rectly affect the sign and the magnitude of the gradient, mak-
ing these methods notoriously hard to tune. Since the ob-
jective in this construction is essentially a random variable
whose distribution changes from problem to problem, find-
ing a general rule for tuning them seems impractical. Fol-
lowing this understanding, we propose to circumvent this
sensitivity by utilizing a generic surrogate objective function
that has the following two properties. First, the surrogate
should preserve the set of locally optimal solutions. Second,
the surrogate should have a predetermined distribution for
every possible objective. Once in this form, such construc-
tions can provide us with a generic adaptive sampler. With
this idea in mind, we show how the empirical cumulative
distribution function (CDF henceforth) of the original objec-
tive can be used to construct such surrogate objectives, and
we present a version which makes the basis of our method.
Since the crux of our method is based on capitalizing on
the CDF of the original objective, we refer to our method
as CAkEWaLK which stands for CumulAtivEly Weighted
LiKelihood.

2400

We start by considering adaptive sampling methods for
combinatorial optimization problems in section 2, and pro-
ceed to present Cakewalk in section 3. In section 4 we dis-
cuss how Cakewalk is related to policy-gradient methods
in reinforcement learning, to multi-arm bandit algorithms,
and to the cross-entropy (CE henceforth) method. Since ide-
ally we would like to have an adaptive sampler which can
recover locally optimal solutions on its own, we use the
problem of finding inclusion maximal cliques in undirected
graphs as a controlled experiment for testing this property
in a non-trivial setting. For that matter, in section 5 we in-
vestigate how to apply such methods to the clique problem,
and we report experimental results on a dataset of 80 graphs
that is regularly used as a benchmark for clique algorithms.
In section 6 we consider how Cakewalk can be combined
with greedy algorithms, and we demonstrate such a use case
on k-medoid clustering, the combinatorial counterpart of k-
means. We test how Cakewalk compares to two greedy algo-
rithms commonly used to approach the problem on 38 small
datasets, and we show how using Cakewalk for learning how
to initialize these methods produced the best performance.
We then conclude with a few final remarks in section 7.

2 Background
We construct an adaptive sampler for combinatorial opti-
mization problems, and start by stating the problem. Let f
be an objective function which we need to maximize, and
let x ∈ [M]N be a string that describes N items such that
each xj is one of a discrete set of M items. In this text we
denote discrete sets {1, . . . ,K} using [K]. Our goal is to
search a possibly constrained space X ⊆ [M]N for some
x∗ that achieves an optimal f (x∗) = y∗ (for constrained
problems X � [M]N). Since X is discrete and high-
dimensional, in general this problem is NP-hard (maximum
clique can be reduced to this description), hence we focus
only on finding locally optimal solutions. For the purpose
of defining locally optimal solutions, we rely on a neighbor-
hood function N that maps each x to its neighboring set.
For example, if X = {0, 1}N , then a neighborhood func-
tion could be N (x) =

{
x′ ∈ X |∑N

i=1 |xi − x′
i| = 1

}
.

Note however that the methods we describe treat f as a
black-box, and do not require N for their operation. Our
goal is to find some locally optimal solution x∗ ∈ X ∗

f

where the set of locally optimal solutions is defined as
X ∗

f = {x ∈ X |∀x′ ∈ N (x) .f (x) ≥ f (x′)}. Preferably,
we would like to find some x∗ whose objective value y∗ =
f (x∗) is as large as possible, though in general, this cannot
be guaranteed.

We describe a learning algorithm for problems of this
type. Let X be a random variable that is defined over X ,
and which is distributed according to a parametric distribu-
tion Pθ that the algorithm maintains. In addition, let Y be
a random variable that is defined over the values of the ob-
jective function f , i.e. Y = f (X). We emphasize that in
this text we refer to random variables using capital English
letters in bold such as X or Y , and we use x and y to refer
to elements in their appropriate sample spaces (determin-

istic quantities). The algorithm we describe iteratively sam-
ples solutions according to Pθ , and it updates the parameters
θ ∈ Rd which govern Pθ in a manner that reflects the qual-
ity of those solutions. Initially Pθ is set to have high entropy,
but as the algorithm progresses, the entropy in the distribu-
tion is decreased until eventually only few solutions become
likely (for a discussion of entropy as measure of uncertainty
see (Cover and Thomas 2012)). At this point, sampling some
x from Pθ should return some locally optimal solution with
high probability. Since we discuss an iterative algorithm that
at each iteration t updates the parameters θt, we refer to the
random variables that are associated with Pθt

by Xt and
Y t. Lastly, as a short hand notation, we refer to Pθ (X = x)
simply by Pθ (x).

Since we learn a distribution function, we say that our
learning objective J(θ) is to maximize the expectation over
x ∼ Pθ of the original objective which we denote as Eθ [Y].
To find the parameters θ which maximize J (θ) = Eθ [Y],
we derive a gradient ascent algorithm which relies on esti-
mates of ∇θEθ [Y]. To calculate the gradient, we use the
log-derivative trick, ∇θEθ [Y] = Eθ [Y ∇θ logPθ (X)],
which allows us to estimate Eθ [Y ∇θ logPθ (X)] through
Monte Carlo sampling (Wasserman 2013). Traditionally, at
each iteration t, a large sample St =

{
xk
t , y

k
t

}K

k=1
of some

fixed size K is sampled using Pθt
. Denoting this estimate by

Δt, then the update at iteration t takes the following form,
θt = θt−1 + ηtΔt (1)

Δt =
1

K

K∑
k=1

[
ykt ∇θ logPθ

(
xk
t

)]
(2)

where ηt is a positive learning rate parameter that is prede-
termined. We describe the update step using a vanilla gradi-
ent update mostly for illustratory purposes, though in prac-
tice any gradient based update such as Adam (Kingma and
Ba 2014) or AdaGrad (Duchi, Hazan, and Singer 2011) can
be used instead.

While this stochastic optimization scheme can theoreti-
cally converge to a local maximum of J (Williams 1992), in
practice it is highly sensitive to choices of K and {ηt}Tt=1,
and to the distributions of {Y t}Tt=1 (exemplified in the next
section). One way to handle this sensitivity is to draw large
samples in each iteration, which can reduce the variance
of the gradient estimator (in the combinatorial setting, this
might require exponentially sized samples). However, even
if we increase the sample size, we still need to find a rule
that adjusts ηt to the distribution of Yt if we are to produce
a generic sampler. Thus, we approach this problem differ-
ently, and consider instead how can we adjust the distribu-
tion of the objective regardless of the sample size. We focus
on online updates (setting K = 1), and accordingly drop the
superscript k when referring to xk

t and ykt for the remainder
of the text.

3 Cakewalk
We start by examining equations 1 and 2, and observing that
we update θt by making a step ηtyt in the gradient’s direc-
tion ∇θ logPθ (xt). Thus, the sign and magnitude of ηtyt

2401

essentially determine whether we increase or decrease the
(log) likelihood of xt, and to what extent we do so. Such
direct dependence on the objective values could make our
sampler susceptible to perturbations of the objective func-
tion. For example, suppose that we have two functions such
that f2 (x) = cf1 (x) for every x, with c being some fixed
positive constant. Clearly, X ∗

f1
= X ∗

f2
, nonetheless, sam-

pling and updating the parameters using equations 1 and 2
would change the magnitude of the gradient updates by a
factor c. Though one can adjust the learning rates to the par-
ticularities of some given objective, such an approach would
require that we tune our method on a case by case basis.

More generally, it appears that the distributions of
{ηtY t}Tt=1 play a critical role in our gradient process. If for
example |ηtY t| is unbounded from above for all t, we might
take steps that are too large which may cause the gradient
process to diverge. Steps that are too small are unfavorable
as well, as these will maintain too much entropy in Pθ, and
due to the discrete nature of X , finding good xs can take
exponentially many examples. Since in general we do not
know ahead of time the distribution of each Y t, if we fol-
low the construction presented in section 2, we will not be
able to determine the series {ηt}Tt=1 in a manner that would
fit all scenarios. This reasoning leads us to conclude that if
we wish to obtain generic updates, we must come up with
some surrogate objective function which preserves X ∗

f , and
for which we can determine the distributions of {Y t}Tt=1
ahead of time. To that end, we introduce a weight function
w that when composed over f (i.e. w ◦ f) produces a surro-
gate objective that meets these criteria.

Preserving the original set of optimal solutions is the easy
part, as we just need to require that w will be monotonically
increasing, and that would imply that X ∗

f ⊆ X ∗
w◦f (and strict

monotonicity would ensure that X ∗
f = X ∗

w). The harder part
is to construct w in a manner that would fix the distribu-
tion of w(Y t) for all t. Nonetheless, basic probability tells
us that if Ft is the CDF of Yt, then Ft (Y t) is uniformly
distributed on [0, 1] (Wasserman 2013). Since every CDF is
monotonic increasing, if we construct w using Ft, we can
preserve the original set of optimal solutions. More impor-
tantly, if we can estimate Ft, we could use it to produce our
surrogate objective as it would fix the surrogate’s distri-
bution once and for all, thus making significant progress
towards our goal. Since w (Yt) ∼ U (0, 1) might not be
ideal, we can utilize another monotonic increasing function
g for which g (Ft (Y t)) can be distributed differently. For
purposes that we specify next, we also require that g will be
bounded.

Since we do not have access to Ft in general, as was the
case with the gradient, we need to estimate it from data. For-
tunately enough, since the image of f is one dimensional (an
optimization objective), order statistics can supply us with
highly reliable non-parametric estimates for each Ft. At this
point however, it is worth considering how can we estimate
Ft without drawing a large sample at each iteration. Due
to equation 2, if we use a sampling distribution for which
‖∇θ logPθ (xt)‖ is bounded, then since w (yt) is bounded
as well, ‖Δt‖ will be bounded for every xt and yt. This im-

plies that we can control how different the parameters will
be between any two iterations: for any two iterations t and
t− k where k ∈ [t− 1], we can make ‖θt − θt−k‖ as small
as we want simply by changing ηt. Thus, instead of drawing
a large sample in each iteration, we can say the last objective
values yt−1, . . . , yt−k are approximately i.i.d from Pθt−1

.
Therefore, if we use small enough learning rates, we can use
F̂t−1 (y) = 1

k

∑k
i=1 I [yt−i < y] as an estimator for Ft−1,

where I [·] is the indicator function. In our experiments, us-
ing some fixed learning rate η ∈ (0, 1) along with k = 1

η

seem to work quite well. Overall, the updates we suggest
have the following form,

Δt = g
(
F̂t−1 (yt)

)
∇θ logPθ (xt) (3)

Surrogate Objectives
In this section we focus on a single iteration t, and thus, drop
the subscript t when discussing two possible weight func-
tions. One simple option is to use the empirical CDF F̂ di-
rectly, which would make F̂ (Y) uniform discrete on [0, 1].
However, this surrogate has a major drawback: it leads to
an increase in the likelihood of every example it sees. This
creates a bias towards xs that have already been sampled,
compared with xs that were not, even though their associ-
ated objective value might be better. Since X grows expo-
nentially with N , examples that are drawn early in the pro-
cess can influence the course of the optimization dramati-
cally. Following this reasoning, we adjust F̂ so that it would
increase the likelihood of only half of the examples, and de-
crease the likelihood of the other half. To do so, we make
ŵ (y) = 2F̂ (y) − 1. By construction, it follows that ŵ (Y)
is uniform discrete on [−1, 1]. In this fashion, when applied
with some fixed learning rate, ŵ determines whether the
likelihood of some example will be increased or decreased,
and to what extent. Notably, this is achieved along with full
specification of the distribution of ŵ (Y). This is a major ad-
vantage compared with, for example, transforming Y with
its estimated z-score, as in this case we cannot determine
how w (Y) is distributed, nor can we guarantee that |w (Y)|
is bounded (leading to a risk of divergence, and disrupting
the online estimation of ŵ). We summarize Cakewalk with
ŵ, and any gradient addition rule Add (this includes hyper-
parameters) in algorithm 1.

4 Related Work
Cakewalk is closely related to policy gradient methods. The
research on these methods was initiated by Williams with
REINFORCE (Williams 1988), an algorithm which we con-
sider as the prototype to Cakewalk, and which provides
Cakewalk with convergence guarantees. Most of the work on
policy gradient methods derives from REINFORCE, essen-
tially discussing how to transform the objective in various
scenarios. Most commonly these involve a baseline estimate
μ̂ of E (Y) that can be used to make E (Y − μ̂) = 0, or
a problem specific model for Y as is done in actor-critic
methods (Sutton and Barto 2017). While sometimes use-
ful, in these constructions the distribution of the objective

2402

Algorithm 1 Cakewalk
input f , Pθ , k, Add � objective function f , sampling
distribution Pθ , integer k, gradient addition rule Add
initialize θ0

while not converged, t = 1, 2, . . . do
xt ∼ Pθt−1 � sampling an example
yt = f (xt) � objective value
if t > k then

wt = 2
(

1
k

∑k
i=1 I [yt−i < yt]

)
− 1

Δt = wt∇θ logPθ (xt)
θt = Add (θt−1,Δt)

end if
end while
return x∗ which had the highest y∗

usually remains unknown, and as a result these methods re-
quire careful tuning that is mostly done through trial and
error. Cakewalk on the other hand uses a surrogate objec-
tive whose distribution is predetermined, and therefore can
be applied to a variety of problems in the same way.

Cakewalk is also reminiscent of multi-arm bandit algo-
rithms. In the bandit setting, a learner is faced with a sequen-
tial decision problem, where in each round an arm is cho-
sen, and each arm is associated with some non-deterministic
loss. Initially suggested by Thompson (Thompson 1933),
this setting has been explored extensively with the notable
successes of the UCB algorithm (Auer 2002; Auer, Cesa-
Bianchi, and Fischer 2002) for cases where the losses are
stochastic, and Exp3 (Auer et al. 1995; 2002) for when
they can even be determined by an adversary. Over the
years these have become a basis for a wide variety of al-
gorithms (Bubeck, Cesa-Bianchi, and others 2012) for vari-
ous settings which even extend to cases that involve high di-
mensional structured arms (Awerbuch and Kleinberg 2004;
McMahan and Blum 2004; Cesa-Bianchi and Lugosi 2012).
The key difference between the bandit and the optimization
setting is that the losses associated with each of the arms are
non-deterministic, and thus in the bandit setting the main
challenge is to balance estimating the statistics associated
with each of the arms, with exploiting the information that
was already gathered. In the optimization setting however,
the goal is to find the best deterministic solution using the
least number of steps. Thus, in spite of the apparent sim-
ilarity, it is this fundamental difference that separates the
optimization from bandit settings, and which leads to fun-
damentally different algorithms.

Cakewalk is also related to the CE method, an iterative
algorithm for adapting an importance sampler towards some
event of interest. CE was initially introduced by Rubinstein
for estimating low probability events (Rubinstein 1997), and
later adapted to combinatorial optimization problems (Ru-
binstein 2001). In CE, at each iteration a large set of ex-
amples are sampled. Then, the examples are sorted accord-
ing to some performance measure (objective function in op-
timization), and the examples that belong to some highest
percentile are selected. For the update step, the distribution’s
parameters are set to the maximum likelihood estimate of the

selected examples. In this sense, CE is similar to Cakewalk
as both methods are only sensitive to the objective values
order. However, CE requires large samples at each iteration,
and it requires distributions for which maximum likelihood
estimates can be produced efficiently (usually this means in
closed form). Cakewalk on the other hand only requires a
single example at each iteration, and can be applied with
any differentiable sampling distribution. Thus, not only can
Cakewalk be considerably less costly than CE, its potential
applications are much broader.

5 Maximum Clique
In this section, we study whether adaptive samplers can re-
cover locally optimal solutions. We emphasize that our goal
in this section is mostly to investigate this question, rather
than compete with iterative algorithms that transform so-
lutions, and search the input space directly. We study this
question on a NP-hard problem instead of problem in which
the global optimum can be found in polynomial time, as it is
important to verify that such methods can recover non-trivial
optima in challenging scenarios. We focus on the problem of
finding inclusion maximal cliques, as the notion of inclusion
maximal cliques naturally entails what neighborhood func-
tion should be used to judge local optimality. Formally, a
graph G is a pair (V,E) where V = [N] is a set of vertices,
and E ⊆ V × V is a set of edges. G is undirected if for
every (i, j) ∈ E it follows that (j, i) ∈ E. A clique in an
undirected graph is a subset of vertices U ⊆ V such that
each pair of which is connected by an edge. An inclusion
maximal clique U is such that there is no other v ∈ V \ U
for which U ∪ {v} is also a clique.

We design an objective that could inform algorithms that
only rely on function evaluations how densely connected is
some subgraph, and which favors larger subgraphs. We refer
to this objective as the soft-clique-size function, and denote
it by fSCS . For our purposes, we say the space X = {0, 1}N
correspond to strings which determine membership in some
subgraph U . Let x ∈ X , then for each vertex j ∈ V , we
say that j ∈ U if and only if xj = 1, and accordingly
we denote such subgraphs by Ux. If some Ux is a clique,
for every i, j ∈ Ux, i �= j it follows that (i, j) ∈ E, and
therefore

∑
i,j∈Ux,i �=j

I [(i, j) ∈ E] = |Ux| (|Ux| − 1). As a

consequence, for a general subgraph Ux dividing the LHS
by the RHS produces a subgraph density term. However,
simply returning a density term would not indicate to an
algorithm it should prefer larger subgraphs over smaller
ones. Accordingly, we add a parameter κ ∈ [0, 1] that re-
wards larger subgraphs, and we change the denominator to
|Ux| (|Ux| − 1 + κ). To see why higher κ can reward larger
cliques we focus on the case that |Ux| ≥ 2, and observe that
for Ux which is clique our subgraph density term will be 1
when κ = 0 . However, when κ = 1, the subgraph den-
sity will be |Ux|(|Ux|−1)

|Ux|2 = |Ux|−1
|Ux| , and thus, the larger Ux

is, the closer this ratio is to 1. In this manner, increasing κ
gives larger subgraphs a ’boost’ compared to smaller ones.
This of course comes at a price, as it could be that some
subgraph which is not a clique will have a higher score than

2403

Table 1: Rate of locally optimal solutions, higher is better

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA 0.000∗ 0.001∗ 0.001∗ 0.097 0.001∗ 0.000∗ 0.002∗ 0.042
AdaGrad 0.000∗ 0.000∗ 0.352∗ 0.427∗ 0.077∗ 0.691∗ 0.164∗ 0.835
Adam 0.000∗ 0.000∗ 0.525∗ 0.616∗ 0.106∗ 0.353∗ 0.184∗ 0.753

Table 2: Rate of inclusion maximal cliques, higher is better

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA 0.000 0.000 0.000 0.138 0.000 0.000 0.000 0.037
AdaGrad 0.000∗ 0.000∗ 0.637∗ 0.688∗ 0.063∗ 0.875 0.175∗ 0.912
Adam 0.000∗ 0.000∗ 0.662∗ 0.787 0.100∗ 0.412∗ 0.212∗ 0.887

some smaller subgraph which is a clique (only for κ = 0 a
score of 1 necessarily means that Ux is clique). Empirically,
we see that the algorithms we have tested are not very sen-
sitive to the value of κ. Lastly, to avoid division by zero for
cases |Ux| < 2, we wrap the denominator with max (·, 1).
Altogether, our soft-clique-size function is as follows,

fSCS (x, G, κ) =

∑
i,j∈Ux,i �=j

I [(i, j) ∈ E]

max (|Ux| (|Ux| − 1 + κ) , 1)

Experimental Results
As a benchmark for the clique problem, we used 80 undi-
rected graphs that were published as part of the second DI-
MACS challenge (Johnson and Trick 1996). Each graph was
generated by a random generator that specializes in a partic-
ular graph type that conceals cliques in a different manner.
The graphs contain up to 4000 nodes, and are varied both in
their number of nodes and in their edge density. We tested
each method on all 80 graphs, letting it maximize the soft-
clique-size function using various values of κ. Since a-priori
we do not know which κ will lead some method towards
an inclusion maximal clique, we have executed each method
with each of the values 0.0, 0.1, . . . , 1.0 as κ. We have exe-
cuted a method for 100 |V | samples (hence runtime is fixed
per graph), and recorded the following items at the execu-
tion’s end. We recorded the best solution that was found
during an execution, along with its objective value, and the
sample number in which that solution was found.

In terms of the methods tested, following the discussion
on related work, we experimented with a version of CE,
three versions of REINFORCE, and of the bandit algorithms
we used Exp3. As a sampling distribution, we followed Ru-
binstein’s construction that assumes independence between
the different dimensions, and we used N softmax distribu-
tions defined over the N dimensions of a problem (the dis-
tribution is fully specified in the supplementary material).
Since we focus on online algorithms, for CE, we derived
a surrogate objective that causes the parameters to update
only when we encounter an example whose objective value
belongs to some ρ-highest percentile (also specified in the
supplementary material). For this surrogate, we get an on-
line algorithm that operates like CE with parameter smooth-

ing (De Boer et al. 2005), and thus we refer to it as OCE
with O standing for online. We applied OCE with two values
that were suggested by Rubinstein, ρ = 0.1 and ρ = 0.01,
and refer to these as OCE0.1 and OCE0.01. Next, we exper-
imented with three versions of REINFORCE. First is the
vanilla version, second is a version where the mean μ̂ is
subtracted from y as a baseline, and a third uses the objec-
tive’s estimated z-score y−μ̂

σ̂ . We refer to these by REINF,
REINFB , and REINFZ . For Cakewalk, we used both the un-
scaled empirical CDF F̂ , and its scaled counterpart ŵ, de-
noting these as CW F̂ and CW ŵ respectively. Note how-
ever that the former is only used for comparison, and that
we identify Cakewalk with the latter. For estimating μ̂, σ̂ and
F̂ , we have used the last 100 objective values. We empha-
size that both REINFB , and REINFZ are important compar-
isons as these methods only transform the objective values,
but they do not fix the distribution of the objective as CE
and Cakewalk do. For the gradient update steps, we have
used vanilla stochastic gradient ascent (SGA henceforth),
AdaGrad, and the Adam gradient updates. The latter two
updates are considered scale invariant, and could therefore
help Exp3, REINF, and REINFB handle changes in the ob-
jective’s scale. Altogether, we have tested 8 adaptive sam-
plers, 3 gradient updates, on 80 graphs, and 11 values of κ,
leading to a total of 21120 separate executions. We specify
the complete experimental details in the supplementary ma-
terial.

We analyzed 4 performance measures for each of the 8
samplers, and the 3 gradient update types, and accordingly
we report results in four 3×8 tables. In the following, we re-
fer to each combination of a sampler and gradient update as
a method. First, we examined whether a locally optimal so-
lution was found using a simple neighborhood function. To
that end, given a result x in some graph, we compared x to
every other x′ such that

∑
i |xi − x′

i| = 1, and checked that
no x′ in that graph achieved higher soft-clique-size than x.
We report the rates at which locally optimal solutions were
found in table 1. Then, we proceeded to test if the returned
solutions were inclusion maximal. Since the soft-clique-size
does not guarantee convergence to cliques, for every graph,
we tested whether a method returned at least one inclusion

2404

Table 3: Best-sample to total-samples ratio, lower is better

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA - - 0.654 0.907 0.874 0.945 0.939 0.927
AdaGrad - - 0.821∗ 0.821∗ 0.966∗ 0.820∗ 0.926∗ 0.657
Adam - - 0.743∗ 0.731∗ 0.835∗ 0.697∗ 0.741∗ 0.619

Table 4: Largest-returned-clique to largest-known-clique ratio, higher is better

Exp3 REINF REINFB REINFZ OCE0.01 OCE0.1 CW F̂ CW ŵ

SGA 0.000 0.000 0.000 0.135 0.000 0.000 0.000 0.038
AdaGrad 0.000∗ 0.000∗ 0.538∗ 0.567∗ 0.062∗ 0.738 0.161∗ 0.756
Adam 0.000∗ 0.000∗ 0.577 0.657 0.091∗ 0.364∗ 0.190∗ 0.737

maximal clique when applied with some κ. We report the
rates at which inclusion maximal cliques were found in table
2. Since some methods find their best solution earlier than
others, to analyze the sampling efficiency of each method we
calculated the ratio of the best-sample and the total-samples
used in that execution. Since this comparison only makes
sense when controlling for the quality of the solution, we
excluded REINF and Exp3 from it as they did not return
locally optimal solutions. We report average best-sample to
total-samples ratios in table 3. To ensure returned solutions
are not trivial (say cliques of size 2), for each graph, we
compared the largest inclusion maximal clique found by that
method, and compared it to the best known solution for that
graph, using results from (Nguyen 2017). We report average
largest-found-clique to largest-known-clique ratios in table
4. Lastly, we performed multiple hypothesis tests to compare
every sampler to CW ŵ in all the experimental conditions
using one sided sign test (Gibbons and Chakraborti 2011).
To control the false discovery rate (Wasserman 2013), we
determined the significance threshold at a level of 10−2 us-
ing the Benjamini-Hochberg method (Wasserman 2013). In
all the tables in this section, when a method is out performed
in a statistically significant manner by CW ŵ this is denoted
by ∗. The best sampler in each table is emphasized using
bold fonts.

The results in tables 1 and 2 clearly support our main
proposition: in our setting, a surrogate objective function
whose distribution is predetermined significantly improves
the robustness of a sampler, and accordingly improves the
rate at which locally optimal solutions are found. Both
CW ŵ and OCE0.1 rely on such surrogates, and both outper-
form Exp3 and all versions of REINFORCE which do not.
Importantly, since the previous comparison also includes
REINFZ , it follows that it is not enough to simply normal-
ize the objective values, and it is better to actually fix the
distribution of the objective. Nonetheless, not all distribu-
tions are as effective (OCE0.01 and CW F̂ did not perform
as well), and of the ones that we have tested, uniform on
[−1, 1] as used by CW ŵ achieved the best results. CW ŵ
clearly outperforms OCE0.1 in table 1, and the latter only
comes close in the more permissive comparison which se-
lects the best result out of 11 different executions (different

values of κ) as reported in table 2. In terms of sampling effi-
ciency, the results in table 3 show that even though OCE0.1

can recover locally optimal solutions, it is not as efficient
as CW ŵ which finds the best solution considerably faster.
When considering the various gradient updates, CW ŵ with
AdaGrad produces the best results in almost all measures
(CW ŵ with Adam converges slightly faster, though at the
cost of worse optimality rates). This is unsurprising as Ada-
Grad’s classical use case is sparse data (indicator vectors in
this case). Lastly, the comparisons to the best known results
in table 4 show that the recovered solutions are far from triv-
ial, and that Cakewalk might even approach the performance
of problem specific algorithms which have access to a com-
plete specification of the problem.

6 K-Medoid Clustering
In this section we demonstrate how Cakewalk can be used
as a method that learns how to initialize greedy algorithms.
The key idea we utilize in this section is the following. Since
Cakewalk only relies on function evaluations, it does not
matter if we let it optimize some function f : X → R, or a
composition f ◦ T where T : X ′ → X is some determinis-
tic transformation (X ′ can be identical to X , or some other
space that specifies possible initializations of a procedure
T). As long as some input x is associated with some fixed
objective value y = f (T (x)), Cakewalk will be able to op-
timize it. Thus, we can treat a deterministic greedy algorithm
as such T, and use Cakewalk to optimize its initialization.

To demonstrate such a usage we study the k-medoids
(Hastie et al. 2009) problem, the combinatorial counterpart
of k-means. As in the k-means, we are given a set of m data
points, and our goal is to divide these into k clusters which
minimize the points’ distances to a set of cluster represen-
tatives. In contrast to k-means, in k-medoids the represen-
tatives must be a subset of the original points that we are
given. Thus, one can think of the problem as selecting k rep-
resentatives from the m data points, and in the general case
where we allow points to represent more than one cluster, the
solution space becomes [m]

k. Since in k-medoids the repre-
sentatives are a subset of the data points, it is enough to con-
sider as input a distance matrix D ∈ Rm×m

+ where Di,j is

2405

Table 5: K-medoid clustering results
Rank1 P-Value Rank2 P-Value Rank3 P-Value Rank4

Objective CWV 0.003816∗ PAM 7.276e-12∗ CW 1.419e-10∗ VOR
1.0002 1.0025 1.0426 1.6373

Evaluations VOR 3.638e-12∗ CWV 3.638e-12∗ CW 0.1279 PAM
1.0000 1764.1380 4352.3860 4922.3370

the distance between point i and j, and R+ is the set of non-
negative reals. Given a set of representatives x ∈ [m]

k, each
point i is assigned to the representative xj which minimizes
the distance Di,xj

to it. In this formulation, the k-medoids
optimization problem can be stated as follows,

minimize
x∈[m]k

m∑
i=1

[
min
j∈[k]

{
Di,xj

}]

Since the problem is combinatorial, going over all the possi-
ble solutions quickly becomes intractable, and greedy algo-
rithms are usually used to approach the problem. Of these,
probably the two most commonly used algorithms are the
Voronoi iteration (Hastie et al. 2009), and the more computa-
tionally expensive, Partitioning Around Medoids (Kaufman
and Rousseeuw 2009) (PAM henceforth).

Experimental Results
Using a publicly available collection (White 2017), we gath-
ered 38 datasets that had between 500 and 1000 data points.
In each dataset we extracted all the numerical attributes,
and used these to represent each data point. Then, for each
dataset we calculated pairwise Mahalanobis distances, us-
ing diagonal covariance matrices (Bishop 2006). At this
point, we were able to test the aforementioned algorithms
on these datasets. Specifically, we used the Voronoi itera-
tion and PAM, as well as vanilla Cakewalk. As an example
for a use case where Cakewalk is combined with a greedy
method, we also used Cakewalk with the Voronoi iteration.
We did not combine Cakewalk with PAM as it is consid-
erably more computationally expensive than the former. In
the result table which we specify next, we refer to these by
VOR, PAM, CW, and CWV. We applied Cakewalk using the
best configuration found in section 5, and the same factor-
ized distribution. We applied each of the 4 algorithms on
all datasets with k = 10, and recorded the best objective
value that was returned, as well as the number of objective
evaluations that were performed. We specify the complete
experimental details in the supplementary material.

In the analysis our goal was to produce two statistically
significant rankings of the methods tested. First, we ranked
the methods by the objective values they returned. Second,
as the former criterion is influenced by the number of ob-
jective function evaluations, we also recorded the number
of evaluations each method performed. To produce rankings
for both criteria, we compared the 4 methods in a manner
that is invariant to the specifics of a given dataset. For that
matter, we first calculated the ratio between a method’s score

(objective value, or number of evaluations) in some dataset,
and the minimal score achieved by any method on that
dataset. Then, we averaged these ratios on all 38 datasets,
and used that averaged ratio as a method’s score. This pro-
vided us with two scores for each of the 4 methods. Sorting
these averaged ratios provided us with a ranking which we
could then test for statistical significance. For each two con-
secutive methods in a ranking, we performed one sided sign
test using the original values measured on the 38 datasets.
This procedure produced 3 p-values for the ranking of the
objective values, and another 3 for the number of evalua-
tions. Lastly, to control the false discovery rate, we deter-
mined the significance threshold at a level of 10−2 using the
Benjamini-Hochberg method. We report the results of this
analysis in table 5, where rank1 one is the best method, and
rank4 is the worst. In table 5, the ranking in terms of ob-
jective values is displayed in the first row, and the ranking
in terms of number of evaluations is displayed in the sec-
ond row. For each ranking, presented are the methods names,
along with the p-values for the difference between each pair.
When the difference between a pair of methods is statisti-
cally significant, this is denoted by ∗. In addition, under each
method are the averaged ratios used to produce the ranking.

These results demonstrate that combining Cakewalk with
a greedy algorithm can produce a method that outperforms
the components that make it up. Notably, here we combined
Cakewalk with the Voronoi iteration, the weaker of the two
greedy methods we tested, and that already produced the
best results. Furthermore, vanilla Cakewalk outperformed
the Voronoi iteration, showing that Cakewalk can outper-
form some greedy algorithms as these might be limited by
the transformations they apply, and the initializations they
rely on. In terms of function evaluations, it appears that pro-
viding Cakewalk with the Voronoi iteration leads to faster
convergence compared to vanilla Cakewalk, another positive
outcome for this combined optimization strategy.

7 Conclusion

In this paper we presented Cakewalk, a generic adap-
tive sampler for combinatorial optimization problems. We
demonstrated how Cakewalk outperforms similar adaptive
samplers, and how Cakewalk can be combined with greedy
algorithms to produce highly effective optimizers. We be-
lieve that future research will prove Cakewalk’s effective-
ness in combinatorial problems that arise in practice, as well
as in other domains such as continuous non-convex opti-
mization, and reinforcement learning.

2406

8 Acknowledgment
Supported by Israeli Science Foundation grant 320/16.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
1995. Gambling in a rigged casino: The adversarial multi-
armed bandit problem. In Foundations of Computer Science,
1995. Proceedings., 36th Annual Symposium on, 322–331.
IEEE.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2002. The nonstochastic multiarmed bandit problem. SIAM
journal on computing 32(1):48–77.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.
Auer, P. 2002. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search 3(Nov):397–422.
Awerbuch, B., and Kleinberg, R. D. 2004. Adaptive routing
with end-to-end feedback: Distributed learning and geomet-
ric approaches. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, 45–53. ACM.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. springer.
Bubeck, S.; Cesa-Bianchi, N.; et al. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends R© in Machine Learning 5(1):1–122.
Cesa-Bianchi, N., and Lugosi, G. 2012. Combinatorial ban-
dits. Journal of Computer and System Sciences 78(5):1404–
1422.
Cover, T. M., and Thomas, J. A. 2012. Elements of informa-
tion theory. John Wiley & Sons.
De Boer, P.-T.; Kroese, D. P.; Mannor, S.; and Rubinstein,
R. Y. 2005. A tutorial on the cross-entropy method. Annals
of operations research 134(1):19–67.
Duchi, J. C.; Hazan, E.; and Singer, Y. 2011. Adaptive
subgradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research 12:2121–
2159.
Gibbons, J. D., and Chakraborti, S. 2011. Nonparametric
statistical inference. In International encyclopedia of statis-
tical science. Springer. 977–979.
Hastie, T.; Tibshirani, R.; Friedman, J.; Hastie, T.; Friedman,
J.; and Tibshirani, R. 2009. The elements of statistical learn-
ing, volume 2. Springer.
Johnson, D. S., and Trick, M. A. 1996. Cliques, coloring,
and satisfiability: second DIMACS implementation chal-
lenge, October 11-13, 1993, volume 26. American Math-
ematical Soc.
Kaufman, L., and Rousseeuw, P. J. 2009. Finding groups in
data: an introduction to cluster analysis, volume 344. John
Wiley & Sons.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. CoRR abs/1412.6980.

MacQueen, J., et al. 1967. Some methods for classification
and analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, 281–297. Oakland, CA, USA.
McMahan, H. B., and Blum, A. 2004. Online geometric
optimization in the bandit setting against an adaptive adver-
sary. In International Conference on Computational Learn-
ing Theory, 109–123. Springer.
Nguyen, T. H. 2017. Clique benchmark instances.
http://cse.unl.edu/ tnguyen/npbenchmarks/clique.html. Last
update: 2017-02-01, Accessed: 2018-05-16.
Papadimitriou, C. H. 2003. Computational complexity. John
Wiley and Sons Ltd.
Rubinstein, R. Y. 1997. Optimization of computer simula-
tion models with rare events. European Journal of Opera-
tional Research 99(1):89–112.
Rubinstein, R. Y. 2001. Combinatorial optimization, cross-
entropy, ants and rare events. Stochastic optimization: algo-
rithms and applications 54:303–363.
Sutton, R. S., and Barto, A. G. 2017. Reinforcement learn-
ing an introduction–second edition, in progress (draft).
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3/4):285–294.
Wasserman, L. 2013. All of statistics: a concise course in
statistical inference. Springer Science & Business Media.
White, J. M. 2017. Julia package for load-
ing many of the data sets available in r.
https://github.com/johnmyleswhite/RDatasets.jl. Last
update: 2018-04-15, Accessed: 2018-05-15.
Williams, R. J. 1988. On the use of backpropagation in
associative reinforcement learning. In Proceedings of the
IEEE International Conference on Neural Networks, vol-
ume 1, 263–270. San Diego, CA.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning 8(3-4):229–256.

2407

