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Abstract

Subset selection, i.e., to select a limited number of items
optimizing some given objective function, is a fundamen-
tal problem with various applications such as unsupervised
feature selection and sparse regression. By employing a
multi-objective evolutionary algorithm (EA) with mutation
only to optimize the given objective function and minimize
the number of selected items simultaneously, the recently
proposed POSS algorithm achieves state-of-the-art perfor-
mance for subset selection. In this paper, we propose the
PORSS algorithm by incorporating recombination, a charac-
terizing feature of EAs, into POSS. We prove that PORSS can
achieve the optimal polynomial-time approximation guaran-
tee as POSS when the objective function is monotone, and
can find an optimal solution efficiently in some cases whereas
POSS cannot. Extensive experiments on unsupervised fea-
ture selection and sparse regression show the superiority of
PORSS over POSS. Our analysis also theoretically discloses
that recombination from diverse solutions can be more likely
than mutation alone to generate various variations, thereby
leading to better exploration; this may be of independent in-
terest for understanding the influence of recombination.

Introduction

This paper considers a general problem, i.e., subset selec-
tion, which is to select a subset of size at most k from a
total set of n items for maximizing (or minimizing) some
given objective function f . This problem arises in various
real-world applications, such as maximum coverage (Feige
1998), sparse regression (Miller 2002), influence maximiza-
tion (Kempe, Kleinberg, and Tardos 2003), sensor place-
ment (Krause, Singh, and Guestrin 2008), document sum-
marization (Lin and Bilmes 2011) and unsupervised feature
selection (Farahat, Ghodsi, and Kamel 2011), to name a few.

Subset selection is generally NP-hard, and much efforts
have been devoted to developing polynomial-time approxi-
mation algorithms. The greedy algorithm, which iteratively
selects one item with the largest marginal gain, has been
shown to be a good approximation solver. When the in-
volved objective function f satisfies the monotone prop-
erty, the greedy algorithm can achieve the (1 − e−γ)-
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approximation guarantee, where γ is the submodularity ra-
tio measuring how close f is to submodularity (Das and
Kempe 2011). Particularly, for submodular objective func-
tions, γ = 1 and the approximation guarantee becomes
1 − 1/e, which is optimal, i.e., cannot be improved by any
polynomial-time algorithm (Nemhauser and Wolsey 1978).
Harshaw et al. (2019) have recently proved that the general
approximation guarantee of (1− e−γ) is also optimal.

Based on Pareto optimization, Qian et al. (2015) proposed
the POSS algorithm for subset selection. The idea is to refor-
mulate subset selection as a bi-objective optimization prob-
lem maximizing the given objective and minimizing the sub-
set size simultaneously, then solve the problem by a multi-
objective EA (MOEA), and finally select the best solution
with size at most k from the generated solution set. It has
been shown that POSS can achieve the optimal polynomial-
time approximation guarantee, 1 − e−γ , and can be signifi-
cantly better than the greedy algorithm in applications, e.g.,
unsupervised feature selection and sparse regression. More-
over, POSS is robust against uncertainties (Qian et al. 2017;
Roostapour et al. 2019), and easily distributed for large-scale
tasks (Qian et al. 2016; 2018; Qian 2019).

The optimization engine of POSS is the employed
MOEA, which iteratively reproduces new solutions for solv-
ing the reformulated bi-objective problem. For EAs, muta-
tion and recombination (or called crossover) are two popular
operators for reproduction (Bäck 1996); the former changes
one solution randomly whereas the latter mixes up two or
more solutions. POSS applies mutation only and has per-
formed well, while recombination, as a core feature of EAs,
may be helpful to further improve its performance.

In this paper, we propose the PORSS algorithm for sub-
set selection by introducing recombination into POSS. Two
common recombination operators are considered: one-point
recombination and uniform recombination. In theory, we
prove that for subset selection with monotone objective
functions, PORSS can achieve the optimal polynomial-time
approximation guarantee, 1 − e−γ ; for one concrete exam-
ple of subset selection, PORSS can be significantly faster
than POSS to find an optimal solution. We also conduct ex-
periments on the applications of unsupervised feature selec-
tion and sparse regression with various real-world data sets,
showing that within the same running time, PORSS can al-
most always achieve better performance than POSS.
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Note that recombination is understood only at prelimi-
nary level, though there are great efforts devoted to analyz-
ing its influence, e.g., (Neumann and Theile 2010; Doerr et
al. 2013; Qian, Yu, and Zhou 2013; Oliveto and Witt 2014;
Sudholt 2017; Dang et al. 2018). Our analysis theoretically
discloses that recombining diverse solutions is more likely
than mutation to generate various variations, and thus to es-
cape from local optima; this may help to understand this
kind of operator.

Subset Selection

Given a ground set V = {v1, v2, . . . , vn}, we study the func-
tions f : 2V → R over subsets of V . A set function f is
monotone if ∀S ⊆ T , f(S) ≤ f(T ). Assume w.l.o.g. that
monotone functions are normalized, i.e., f(∅) = 0. A set
function f is submodular (Nemhauser, Wolsey, and Fisher
1978) if ∀S ⊆ T ⊆ V ,

f(T )− f(S) ≤
∑

v∈T\S
(
f(S ∪ {v})− f(S)

)
.

For a general set function f , the notion of submodularity
ratio in Definition 1 is used to measure to what extent f has
the submodular property. When f is monotone, it holds that
(1) ∀S, l : 0 ≤ γS,l(f) ≤ 1, and (2) f is submodular iff
∀S, l : γS,l(f) = 1.

Definition 1 (Submodularity Ratio (Das and Kempe 2011)).
The submodularity ratio of a set function f : 2V → R with
respect to a set S ⊆ V and a parameter l ≥ 1 is

γS,l(f) = min
L⊆S,T :|T |≤l,T∩L=∅

∑
v∈T (f(L ∪ {v})− f(L))

f(L ∪ T )− f(L)
.

The subset selection problem as presented in Definition 2
is to select a subset S of V such that a given objective f
is maximized with the constraint |S| ≤ k. For a mono-
tone function f , the greedy algorithm, which iteratively
adds one item with the largest marginal gain until k items
are selected, can achieve an approximation guarantee of
(1− e−γS,k(f)) (Das and Kempe 2011), where S is the sub-
set output by the greedy algorithm. The optimality of this
approximation guarantee was known only in the case where
γS,k(f) = 1, i.e., f is submodular (Nemhauser and Wolsey
1978), and has recently been proved in the general case (Har-
shaw et al. 2019).

Definition 2 (Subset Selection). Given all items V =
{v1, v2, . . . , vn}, an objective function f and a budget k,
to find a subset of at most k items maximizing f , i.e.,

argmaxS⊆V f(S) s.t. |S| ≤ k. (1)

Here are two applications of subset selection with mono-
tone, but not necessarily submodular, objective functions,
that will be studied in this paper. Unsupervised feature se-
lection as presented in Definition 3 is to select at most k
columns from a matrix A to best approximate A. Some no-
tations: (·)+: Moore-Penrose inverse of a matrix; ‖ · ‖F :
Frobenius norm of a matrix; | · |: number of columns of a
matrix. The goodness of approximation is measured by the
sum of squared errors between the original matrix A and the

approximation SS+A, where SS+ is the projection matrix
onto the space spanned by the columns of S. Note that a
submatrix of A can be seen as a subset of all columns of A.
Definition 3 (Unsupervised Feature Selection). Given a ma-
trix A ∈ Rm×n and a budget k, to find a submatrix S of A
with at most k columns minimizing ‖A− SS+A‖2F , i.e.,

argminS: a submatrix of A ‖A− SS+A‖2F s.t. |S| ≤ k.

For the ease of theoretical treatment, this minimization
problem is often equivalently reformulated as a maximiza-
tion problem (Bhaskara et al. 2016; Ordozgoiti, Canaval,
and Mozo 2018):

argmaxS: a submatrix of A ‖SS+A‖2F s.t. |S| ≤ k.

Sparse regression (Miller 2002) as presented in Defini-
tion 4 is to find a sparse approximation solution to the linear
regression problem. Note that S and its index set {i | vi ∈
S} are not distinguished for notational convenience, and all
variables are assumed w.l.o.g. to be normalized to have ex-
pectation 0 and variance 1.
Definition 4 (Sparse Regression). Given observation vari-
ables V = {v1, . . . , vn}, a predictor variable z and a budget
k, to find at most k variables from V maximizing the squared
multiple correlation (Johnson and Wichern 2007), i.e.,

argmaxS⊆V R2
z,S = 1−MSEz,S s.t. |S| ≤ k,

where MSEz,S denotes the mean squared error, i.e.,

MSEz,S = minα∈R|S| E[
(
z −

∑
i∈S

αivi

)2

].

The POSS Algorithm

Based on Pareto optimization, a new algorithm POSS for
subset selection has been proposed (Friedrich and Neumann
2015; Qian, Yu, and Zhou 2015). Note that a subset S of V
can be represented by a binary vector x ∈ {0, 1}n, where
xi = 1 iff the item vi ∈ S, and we will not distinguish them
for notational convenience. POSS reformulates the original
problem Eq. (1) as a bi-objective minimization problem:

argminx∈{0,1}n (f1(x), f2(x)), (2)

where

f1(x) =

{
+∞, |x| ≥ 2k

−f(x), otherwise
, f2(x) = |x|.

Thus, POSS maximizes the original objective function f and
minimizes the subset size |x| simultaneously. By setting f1
to +∞ for |x| ≥ 2k, overly infeasible solutions, i.e., solu-
tions with large constraint violation, are excluded.

To compare solutions in bi-objective optimization, POSS
uses the domination relationship. For two solutions x and
x′, x weakly dominates x′, denoted as x � x′, if f1(x) ≤
f1(x

′) ∧ f2(x) ≤ f2(x
′); x dominates x′, denoted as x ≺

x′, if x � x′ and either f1(x) < f1(x
′) or f2(x) < f2(x

′);
they are incomparable, if neither x � x′ nor x′ � x.

POSS employs a simple MOEA with mutation only,
which is slightly modified from the GSEMO algorithm (Giel
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Algorithm 1 POSS Algorithm
Input: V = {v1, . . . , vn}; objective f : 2V → R; budget k
Parameter: the number T of iterations
Output: a subset of V with at most k items
Process:

1: Let x = 0n, P = {x} and t = 0;
2: while t < T do
3: Select x from P randomly;
4: Apply bit-wise mutation on x to generate x′;
5: if �z ∈ P such that z ≺ x′ then
6: P = (P \ {z ∈ P | x′ � z}) ∪ {x′}
7: end if
8: t = t+ 1
9: end while

10: return argmaxx∈P,|x|≤k f(x)

2003; Laumanns, Thiele, and Zitzler 2004), to solve the bi-
objective problem Eq. (2). As described in Algorithm 1, it
starts from 0n representing the empty set, and iteratively
tries to improve the solutions in the population P (lines 2-9).
In each iteration, a solution x is selected from P uniformly
at random, and used to generate a new solution x′ by the
bit-wise mutation operator, presented as follows:

Bit-wise mutation: flip each bit of a solution x ∈ {0, 1}n
independently with probability 1/n.
The newly generated solution x′ is then used to update P
in lines 5-7, making P contain only non-dominated solu-
tions generated-so-far. That is, if x′ is not dominated by any
solution in P (line 5), it will be added into P , and mean-
while those archived solutions weakly dominated by x′ will
be deleted (line 6). After running T iterations, the best solu-
tion w.r.t. the original problem Eq. (1) is selected from P in
line 10 as the final output solution.

For subset selection with monotone objective functions,
POSS has been proved to achieve the same general approxi-
mation guarantee as the greedy algorithm in polynomial ex-
pected running time, i.e., to achieve the optimal polynomial-
time approximation guarantee (Qian, Yu, and Zhou 2015).
Furthermore, it has been empirically shown that POSS can
achieve significantly better performance than the greedy
algorithm in some applications, e.g., unsupervised feature
selection (Feng, Qian, and Tang 2019) and sparse regres-
sion (Qian, Yu, and Zhou 2015).

The PORSS Algorithm

To reproduce new solutions in each iteration, POSS applies
the mutation operator, which simulates the mutation phe-
nomena in DNA transformation. It is known that recombina-
tion is another popular operator for reproduction, which sim-
ulates the chromosome exchange phenomena in zoogamy
reproduction, and typically appears in various real EAs, e.g.,
the popularly used algorithm NSGA-II (Deb et al. 2002).

In this section, we propose a new Pareto Optimization al-
gorithm with Recombination for Subset Selection, briefly
called PORSS. As described in Algorithm 2, PORSS em-
ploys recombination and mutation together, rather than mu-
tation only, to generate new solutions in each iteration. In

Algorithm 2 PORSS Algorithm
Input: V = {v1, . . . , vn}; objective f : 2V → R; budget k
Parameter: the number T of iterations
Output: a subset of V with at most k items
Process:

1: Let x = 0n, P = {x} and t = 0;
2: while t < T do
3: Select x,y from P randomly with replacement;
4: Apply recombination on x,y to generate x′,y′;
5: Apply bit-wise mutation on x′,y′ to generate x′′,y′′;
6: for each q ∈ {x′′,y′′}
7: if �z ∈ P such that z ≺ q then
8: P = (P \ {z ∈ P | q � z}) ∪ {q}
9: end if

10: end for
11: t = t+ 1
12: end while
13: return argmaxx∈P,|x|≤k f(x)

line 3, two solutions are selected randomly from the popu-
lation P with replacement, and then recombined to generate
new solutions in line 4. We consider two commonly used re-
combination operators:

One-point recombination: select i ∈ {1, 2, . . . , n} ran-
domly, and exchange the first i bits of two solutions;

Uniform recombination: exchange each bit of two solu-
tions independently with probability 1/2.
For example, for solutions 0n and 1n, two new solutions
0n/21n/2 and 1n/20n/2 can be generated by one-point re-
combination with probability 1/n, and by uniform recom-
bination with probability (1/2n) · 2, where the factor 2 is
included due to the symmetry. In line 5, the two solutions
generated by recombination are further mutated to generate
another two ones, which are used to update the population
P in lines 6-10.

Influence of Recombination

To understand the influence of recombination intuitively,
we compare the distribution of the number of bits flipped
with/without recombination. Suppose two solutions x,y se-
lected in line 3 of Algorithm 2 have Hamming distance d,
denoted as H(x,y) = d. Let x′′,y′′ denote the two solu-
tions generated by recombination and mutation in line 5. We
analyze the probability for x′′ or y′′ to have Hamming dis-
tance j with x, denoted as Q(d, j). That is,

Q(d, j) = P(H(x,x′′)=j ∨H(x,y′′)=j | H(x,y)=d).

For one-point and uniform recombination, we use the nota-
tions Qo(d, j) and Qu(d, j), respectively. Let zm denote the
solution generated from a solution z by bit-wise mutation.
By turning off recombination, i.e., deleting line 4 of Algo-
rithm 2, we analyze the corresponding probability

Qm(d, j)=P(H(x,xm)=j∨H(x,ym)=j|H(x,y)=d).

In the following, we compare Qo(d, j), Qu(d, j) with
Qm(d, j), to examine the influence of recombination.
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Given a solution z with Hamming distance i from x, let
qi,j denote the probability for the Hamming distance to be-
come j by bit-wise mutation, i.e.,

qi,j = P(H(x, zm) = j | H(x, z) = i).

For Qm(d, j), as H(x,x) = 0 and H(x,y) = d, we have

Qm(d, j) = q0,j + qd,j − q0,j · qd,j .
By uniform recombination, x,y exchange i different bits
with probability

(
d
i

)
(1/2)i(1/2)d−i=

(
d
i

)
(1/2)d, generating

two solutions x′,y′ where H(x,x′) = i and H(x,y′) =
d − i. Note that x and y have totally d different bits. Con-
sidering the mutation behavior on x′,y′, we have

Qu(d, j) =

d∑
i=0

(
d

i

)
1

2d
· (qi,j + qd−i,j − qi,j · qd−i,j) .

Consider one-point recombination. ∀1 ≤ i ≤ d, there exists
l ≥ i such that exchanging the first l bits of x,y can generate
two solutions x′,y′ where H(x,x′) = i and H(x,y′) =
d− i. Thus, we have

Qo(d, j) ≥ 1

n

d∑
i=1

(qi,j + qd−i,j − qi,j · qd−i,j).

Because it is sufficient to keep all bits unchanged in mu-
tation, qj,j ≥ (1− 1/n)n ≥ 1/(2e). Thus, we have

(a) ∀j ≤ d : Qo(d, j) ≥ 1/n · q(j, j) = Ω(1/n);

(b) ∀j ≤ d : Qu(d, j) ≥
(
d

j

)
1

2d
· q(j, j)=Ω

((
d

j

)
/2d

)
.

By analyzing q0,j and qd,j , we can derive that, ∃0 < j0 ≤ d,

(c.1) for j < j0 : Ω
(
(1/j)j

) ≤ Qm(d, j) ≤ O
(
(e/j)j

)
;

(c.2) for j ≥ j0 :

Ω

(
1

d− j
· d
n

)d−j

≤ Qm(d, j) ≤ O

(
e

d− j
· d
n

)d−j

.

The detailed analysis for Qm(d, j) is provided in the supple-
mentary material due to space limitations.

According to (c.1) and (c.2), the number of bits flipped by
mutation only is strongly concentrated around two extreme
values, 0 and d. When j increases from 0 to j0 or decreases
from d to j0, Qm(d, j) decays super-exponentially. Particu-
larly, for j = d/2, q(0, d/2) ≤ (

n
d/2

)
(1/n)d/2 ≤ 1/(d/2)!,

q(d, d/2) ≤ (
d

d/2

)
(1/n)d/2 ≤ 1/(d/2)!, and thus,

Qm(d, d/2) ≤ 2

(d/2)!
≤ 2

e(d/(2e))d/2
≤

(
2e

d

)d/2

, (3)

where the second inequality holds by Stirling’s formula. Ac-
cording to (b), the number of bits flipped by uniform re-
combination and mutation is concentrated around d/2, but
Qu(d, j) is always lower bounded by Ω(1/2d), which is
much greater than Qm(d, d/2) in Eq. (3) when d is large.
According to (a), ∀j ≤ d : Qo(d, j) ≥ Ω(1/n), implying
that the number of bits flipped by one-point recombination
and mutation is relatively uniformly distributed.

Therefore, from diverse solutions, i.e., when d is large,
recombination can ease flipping any number of bits, and may
lead to better exploration and thus a better ability of escaping
from local optima. The advantage of recombination will be
verified by theoretical analysis and empirical study.

Theoretical Analysis

As introduced before, the greedy algorithm and POSS can
achieve the optimal polynomial-time approximation guaran-
tee for subset selection with monotone objective functions.
A natural question is whether PORSS can keep the optimal
approximation. We give the positive answer by proving The-
orem 1, i.e., PORSS achieves the approximation guarantee
of (1 − e−γmin) in polynomial expected running time. Let
OPT denote the optimal function value. The proof is in-
spired by the analysis of POSS (Qian, Yu, and Zhou 2015).
Lemma 1. (Qian et al. 2016) Let f : {0, 1}n → R+ be a
monotone function. For any x ∈ {0, 1}n, there exists one
item v /∈ x such that

f(x ∪ {v})− f(x) ≥ γx,k
k

(OPT− f(x)).

Theorem 1. For subset selection with any monotone f , the
expected number of iterations until PORSS with one-point or
uniform recombination finds a solution x with |x| ≤ k and
f(x) ≥ (1 − e−γmin) · OPT is polynomial, where γmin =
minx:|x|=k−1 γx,k.

Proof. Let Jmax be the maximum value of j ∈ {0, 1, . . . , k}
such that in the population P , there exists a solution x with
|x| ≤ j and f(x) ≥ (1− (1− γmin/k)

j) ·OPT. That is,

Jmax = max{j ∈ {0, 1, . . . , k} | ∃x ∈ P :

|x| ≤ j ∧ f(x) ≥ (1− (1− γmin/k)
j) ·OPT}.

We only need to analyze the expected number of iterations
until Jmax = k, which implies that there exists one solution
x ∈ P satisfying that |x| ≤ k and f(x) ≥ (1 − (1 −
γmin/k)

k) ·OPT ≥ (1− e−γmin) ·OPT.
As PORSS starts from 0n, Jmax is initially 0. Assume

that currently Jmax = i < k. Let x denote a solution
corresponding to Jmax = i, i.e., |x| ≤ i and f(x) ≥
(1 − (1 − γmin/k)

i) · OPT. First, Jmax will not decrease.
This is because deleting x from P in line 8 of Algorithm 2
implies that x is weakly dominated by the newly included
solution q, satisfying that |q| ≤ |x| ≤ i and f(q) ≥ f(x) ≥
(1− (1− γmin/k)

i) ·OPT.
Next, we analyze the probability of increasing Jmax in

one iteration. Consider the case that the two selected solu-
tions in line 3 of Algorithm 2 are both x, occurring with
probability (1/|P |) · (1/|P |) due to uniform selection with
replacement. For two identical solutions, either one-point or
uniform recombination in line 4 makes no changes. Thus,
in line 5, x is used to generate a new solution by bit-wise
mutation, and this process is implemented twice indepen-
dently. For bit-wise mutation on x, according to Lemma 1,
a new solution x′ satisfying f(x′) − f(x) ≥ (γx,k/k) ·
(OPT − f(x)) can be generated by flipping only one spe-
cific 0 bit of x (i.e., adding a specific item into x), occur-
ring with probability (1/n)(1 − 1/n)n−1 ≥ 1/(en). As

2411



f(x) ≥ (1− (1− γmin/k)
i) ·OPT, we have

f(x′) ≥ (1− γx,k/k) · f(x) + (γx,k/k) ·OPT

≥ (1− (1− γx,k/k)(1− γmin/k)
i) ·OPT

≥ (1− (1− γmin/k)
i+1) ·OPT.

Note that the last inequality holds by γx,k ≥ γmin, be-
cause |x| < k and γx,k decreases with x. As x is mutated
twice independently in line 5, such a new solution x′ can
be generated with probability at least 1 − (1 − 1/(en))2 =
2/(en)−1/(en)2. It is clear that |x′| = |x|+1 ≤ i+1. Then,
x′ will be added into P ; otherwise, x′ must be dominated by
one archived solution in line 7 of Algorithm 2, and this im-
plies that Jmax has been larger than i, contradicting with the
assumption Jmax = i. After adding x′ into P , Jmax ≥ i+1.
Thus, Jmax can increase by at least 1 in one iteration with
probability at least (1/|P |2) · (2/(en) − 1/(en)2). By the
procedure of updating the population P in lines 6-10, the so-
lutions in P must be incomparable. Thus, each value of one
objective can correspond to at most one solution in P . Be-
cause the solutions with |x| ≥ 2k have +∞ value on the first
objective, they must be excluded from P , and thus, |x| ∈
{0, 1, . . . , 2k − 1}, implying |P | ≤ 2k. We can now con-
clude that the probability of increasing Jmax in one iteration
is at least (1/(4k2)) · (2/(en)− 1/(en)2) = Ω(1/(k2n)).

The above analysis shows that Jmax will not decrease, but
can increase with probability Ω(1/(k2n)) in one iteration.
Thus, the expected number of iterations until Jmax increases
by at least 1 is O(k2n). For Jmax = k, it requires to increase
Jmax by at most k times, implying that the expected number
of iterations until finding a solution with the desired approx-
imation guarantee is O(k3n), which is polynomial.

Next, by an illustrative example of subset selection, we
prove that PORSS can perform much better than the greedy
algorithm and POSS. As presented in Definition 5, the best
subset of size (i + 1) can be generated from the best subset
of size i by adding one specific item, and the only exception
is the best subset of size k, i.e., the optimal solution, which
differs greatly from the best subsets of other sizes. This ex-
ample represents subset selection problems where decisions
have to be made in sequence to some extent.
Definition 5. The objective function f satisfies that

(1) ∀0 ≤ i ≤ n− 1 : f(xi) < f(xi+1);

(2) if |x| = i �= k, then ∀x �= xi : f(x) < f(xi);

(3) if |x|=k, then ∀x /∈{x∗,xk} :f(x)<f(xk)<f(x∗),

where xi = 1i0n−i, x∗ = 0k1k0n−2k and k ≤ n/2.
It is clear that the optimal solution is x∗ = 0k1k0n−2k,

and each xi = 1i0n−i is the best solution for size i ex-
cept that xk = 1k0n−k is the runner-up for size k. Due to
the greedy nature, the greedy algorithm finds x0,x1, . . . ,xk

sequentially, implying that x∗ cannot be found.
Lemma 2. For subset selection with f in Definition 5, the
greedy algorithm cannot find the optimal solution.

Lemmas 3 to 5 show the expected number of iterations
of POSS and PORSS until finding the optimal solution. The

detailed proofs are provided in the supplementary material
due to space limitations, and we introduce the proof intu-
ition here. Both POSS and PORSS can find the solutions
{x0,x1, . . . ,x2k−1} efficiently. After that, the population
will always consist of these solutions before finding the op-
timal one. Because the Hamming distance between xi and
x∗ is at least k, the probability of generating the optimal so-
lution x∗ by mutation is at most (1/n)k, and thus, POSS
is inefficient. For PORSS, recombination from the two di-
verse solutions x0 = 0n and x2k−1 = 12k−10n−2k+1 can
generate the solution 0k1k−10n−2k+1 through exchanging
their first k bits, occurring with a large probability, i.e., 1/n
or (1/22k−1) · 2, by one-point or uniform recombination;
the subsequent mutation operator can generate x∗ by flip-
ping only one specific bit, i.e., the (2k)-th bit, occurring with
probability (1/n)(1 − 1/n)n−1. Thus, PORSS can be effi-
cient. Note that the reason for the effectiveness of recombi-
nation is consistent with that found in the last section.
Lemma 3. For subset selection with f in Definition 5, the
expected number of iterations until POSS finds the optimal
solution is at least (n/(3e4ek))k.
Lemma 4. For subset selection with f in Definition 5, the
expected number of iterations until PORSS with one-point
recombination finds the optimal solution is at most 6ek2n2.
Lemma 5. For subset selection with f in Definition 5, the
expected number of iterations until PORSS with uniform re-
combination finds the optimal solution is at most 5k24kn.

Let E[Tm], E[To] and E[Tu] denote the expected number
of iterations of POSS, PORSS with one-point and uniform
recombination, respectively, for finding the optimal solution.
Considering that the budget k is usually not large in real
applications, we make the following observations.
Remark 1. According to Lemmas 3 to 5, we have

(1) if k ≤ O(1), then E[Tm] ≥ Ω(nk),

E[To] ≤ O(n2) and E[Tu] ≤ O(n);

(2) if ω(1) ≤ k ≤ (log n)/20, then E[Tm] ≥ nk/4,

E[To] ≤ n2(log n)2 and E[Tu] ≤ n1.1(log n)2.

In other words, when k is a constant, i.e., O(1), PORSS is
polynomially faster than POSS, and the gap increases with
k; when k continues to increase to ω(1), the gap becomes
super-polynomially large.

Empirical Study

In this section, we empirically compare PORSS, POSS and
the greedy algorithm on the applications of unsupervised
feature selection and sparse regression with various real-
world data sets.1 PORSS using one-point and uniform re-
combination are denoted by PORSSo and PORSSu, respec-
tively. Note that some common algorithms, e.g., IterFS (Or-
dozgoiti, Canaval, and Mozo 2018) for unsupervised feature
selection and lasso (Tibshirani 1996) for sparse regression,

1https://archive.ics.uci.edu/ml/datasets.html, https://www.csie.
ntu.edu.tw/∼cjlin/libsvmtools/datasets/ and http://www.cl.cam.ac.
uk/research/dtg/attarchive/facedatabase.html.
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Table 1: Unsupervised feature selection: the error ratio (the smaller, the better) of the compared algorithms on ten data sets for
k = 8. The mean±std. is reported for randomized algorithms. In each data set, the smallest values are bolded. The count of
direct win denotes the number of data sets on which POSS has a smaller error ratio than the corresponding algorithm (1 tie is
counted as 0.5 win), where significant cells by the sign-test with confidence level 0.05 are bolded.

Data set (#inst, #feat) OPT Greedy POSS PORSSo PORSSu

sonar (208, 60) 1.353 1.429 1.371±0.007 1.358±0.006 1.363±0.010
phishing (11055, 68) 1.166 1.223 1.168±0.006 1.166±0.000 1.167±0.003
Hill-Valley (606, 100) – 1.544 1.543±0.043 1.492±0.058 1.511±0.029
mediamill (30993, 120) – 1.732 1.604±0.027 1.579±0.018 1.559±0.022
musk (7074, 168) – 1.178 1.169±0.006 1.168±0.005 1.168±0.005
CT-slices (53500, 386) – 1.242 1.240±0.003 1.235±0.002 1.234±0.002
ISOLET (7797, 617) – 1.192 1.192±0.002 1.189±0.001 1.189±0.000
mnist (10000, 780) – 1.352 1.332±0.005 1.326±0.003 1.325±0.003
SVHN (73257, 3072) – 1.446 1.420±0.005 1.402±0.009 1.398±0.005
ORL (400, 10304) – 1.280 1.270±0.007 1.259±0.005 1.252±0.004

POSS: Count of direct win 9.5 - 0 0

Average rank 3.95 3.05 1.60 1.40
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Figure 1: Error ratio (the smaller, the better) vs. running time of POSS, PORSSo and PORSSu on unsupervised feature selection.

are not compared, because POSS has been shown to be bet-
ter (Qian, Yu, and Zhou 2015; Feng, Qian, and Tang 2019).

As suggested in (Qian, Yu, and Zhou 2015), the number
T of iterations of POSS is set to 2ek2n . Note that POSS in
Algorithm 1 requires one objective evaluation for the newly
generated solution x′ in each iteration, whereas PORSS in
Algorithm 2 needs to evaluate two new solutions x′′,y′′.
For the fairness of comparison, the number T of iterations
of PORSS is set to ek2n; thus, the same number of objective
evaluations is used. The budget k is set to 8. As POSS and
PORSS are randomized algorithms, we repeat the running
for ten times independently and report the average f values.

Unsupervised Feature Selection. To evaluate a subma-
trix S, we measure the ratio of its reconstruction error in
Definition 3 w.r.t. the smallest rank-k approximation error
by SVD:

error ratio = ‖A− SS+A‖2F /‖A−Ak‖2F ,
where Ak denotes the best rank-k approximation to A via
SVD. The error ratio is larger than 1, and the smaller the
better. The results are summarized in Table 1. Note that the

standard deviation of error ratio is 0 sometimes (e.g., for
PORSSo on the phishing data set), which is because the
same good solution is found in ten runs. We can see that
the best performance on each data set is always achieved by
PORSSo or PORSSu. By the sign-test (Demšar 2006) with
confidence level 0.05, POSS is significantly better than the
greedy algorithm, consistent with the previous results (Feng,
Qian, and Tang 2019), and significantly worse than PORSSo

and PORSSu, showing the usefulness of recombination. The
rank of each algorithm on each data set is also computed as
in (Demšar 2006), and averaged in the last row of Table 1.

Sparse Regression. We use R2
z,S in Definition 4 to mea-

sure the goodness of a subset S of variables. The larger it is,
the better. We can see from Table 2 that the algorithms have
the similar performance rank as in unsupervised feature se-
lection, i.e., PORSSo and PORSSu are significantly better
than POSS, and the greedy algorithm performs the worst.

To have a more clear comparison, we select the greedy al-
gorithm for the baseline, and plot the curve of error ratio or
R2 over the running time for POSS, PORSSo and PORSSu,
as shown in Figures 1 and 2. Note that the running time is
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Table 2: Sparse regression: the R2 value (the larger, the better) of the compared algorithms on ten data sets for k = 8. The
mean±std. is reported for randomized algorithms. In each data set, the largest values are bolded. The count of direct win denotes
the number of data sets on which POSS has a larger R2 value than the corresponding algorithm (1 tie is counted as 0.5 win),
where significant cells by the sign-test with confidence level 0.05 are bolded.

Data set (#inst, #feat) OPT Greedy POSS PORSSo PORSSu

svmguide3 (1243, 22) 0.221 0.214 0.220±0.001 0.220±0.001 0.221±0.001
triazines (186, 60) 0.328 0.316 0.327±0.000 0.328±0.000 0.328±0.000
clean1 (476, 166) – 0.371 0.386±0.004 0.387±0.006 0.393±0.005
usps (7291, 256) – 0.562 0.570±0.003 0.572±0.003 0.572±0.003
scene (1211, 294) – 0.254 0.268±0.003 0.272±0.002 0.271±0.002
protein (17766, 356) – 0.132 0.132±0.000 0.133±0.000 0.133±0.000
colon-cancer (62, 2000) – 0.890 0.906±0.011 0.909±0.018 0.911±0.014
cifar10 (50000, 3072) – 0.069 0.070±0.001 0.070±0.001 0.071±0.001
leukemia (72, 7129) – 0.947 0.966±0.009 0.968±0.006 0.969±0.007
smallNORB (24300, 18432) – 0.461 0.535±0.007 0.547±0.003 0.550±0.002

POSS: Count of direct win 9.5 – 1 0

Average rank 3.95 2.95 1.85 1.25
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Figure 2: R2 (the larger, the better) vs. running time of POSS, PORSSo and PORSSu on sparse regression.

considered in the number of objective function evaluations,
and one unit on the x-axis corresponds to kn evaluations, the
running time of the greedy algorithm. It can be clearly ob-
served that the curves of PORSSo and PORSSu are almost
always below (above) that of POSS in Figure 1 (Figure 2),
implying that PORSSo and PORSSu consistently outper-
form POSS during the running process. It is known that the
greedy algorithm is an efficient fixed time algorithm, while
PORSS is an anytime algorithm that can use more time to
find better solutions. In fact, we find that PORSS can even
be both better and faster, e.g., in Figures 1(h-j) and 2(j).

Note that the improvement of PORSS over POSS is small
in several cases, which may be because POSS has performed
very well. We compute the optimal solution by exhaustive
enumeration, denoted as OPT. Due to the computation time
limit, OPT is calculated only for the two smallest data sets in
both applications. It can be seen from the second and third
rows of Tables 1 and 2 that POSS achieves the nearly opti-
mal solution, which also implies that PORSS can bring im-
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Figure 3: Comparison for budget k ∈ {6, 7, 8, 9, 10}.

provement even when POSS has been nearly optimal.
Finally, we examine the influence of budget k in Figure 3.

The results for k ∈ {6, 7, 8, 9, 10} on the data set CT-slices
for unsupervised feature selection and scene for sparse re-
gression show that PORSS always performs the best.
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Conclusion

This paper proposes the PORSS algorithm for subset se-
lection, based on Pareto optimization with recombination.
The superiority of PORSS over state-of-the-art algorithms,
i.e., POSS and the greedy algorithm, is shown by theoretical
analysis, as well as empirical study on the applications of
unsupervised feature selection and sparse regression. Theo-
retical analysis also provides insight on the effect of recom-
bination, which may be helpful for designing improved EAs.
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