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Abstract

The Bézier simplex fitting is a novel data modeling tech-
nique which utilizes geometric structures of data to approxi-
mate the Pareto set of multi-objective optimization problems.
There are two fitting methods based on different sampling
strategies. The inductive skeleton fitting employs a stratified
subsampling from skeletons of a simplex, whereas the all-at-
once fitting uses a non-stratified sampling which treats a sim-
plex as a single object. In this paper, we analyze the asymp-
totic risks of those Bézier simplex fitting methods and derive
the optimal subsample ratio for the inductive skeleton fitting.
It is shown that the inductive skeleton fitting with the optimal
ratio has a smaller risk when the degree of a Bézier simplex
is less than three. Those results are verified numerically un-
der small to moderate sample sizes. In addition, we provide
two complementary applications of our theory: a generalized
location problem and a multi-objective hyper-parameter tun-
ing of the group lasso. The former can be represented by a
Bézier simplex of degree two where the inductive skeleton
fitting outperforms. The latter can be represented by a Bézier
simplex of degree three where the all-at-once fitting gets an
advantage.

1 Introduction

Given functions f1, . . . , fM : X → R on a subset X of a
Euclidean space R

N , consider the multi-objective optimiza-
tion problem

minimize f(x) := (f1(x), . . . , fM (x))

subject to x ∈ X(⊆ R
N )

with respect to the Pareto ordering defined as follows:

x ≺ y
def⇐=⇒ ∀i [fi(x) ≤ fi(y)] ∧ ∃j [fj(x) < fj(y)] .

The goal is to find the Pareto set and its image, called the
Pareto front, which are denoted by

X∗(f) := { x ∈ X | ∀y ∈ X [y �≺ x] }
and

f(X∗(f)) :=
{
f(x) ∈ R

M
∣∣ x ∈ X∗(f)

}
,

Copyright c© 2020, Association for the Advancement of Artificial
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respectively. Most numerical optimization approaches (e.g.,
goal programming (Miettinen 1999; Eichfelder 2008), evo-
lutionary computation (Deb 2001; Zhang and Li 2007;
Deb and Jain 2014), homotopy methods (Hillermeier 2001;
Harada et al. 2007), Bayesian optimization (Hernandez-
Lobato et al. 2016; Yang et al. 2019)) give a finite num-
ber of points as an approximation of the Pareto set or front.
Since the Pareto set and front usually have an infinite num-
ber of points, such a point approximation cannot reveal the
complete shapes of the Pareto set and front. In order to gain
richer information, we consider in this paper a fitting prob-
lem of the Pareto set and front.

It is known that the Pareto set and front often have skele-
ton structures that can be used to enhance fitting accuracy.
An M -objective problem is simplicial if the Pareto set and
front are homeomorphic to an (M − 1)-dimensional sim-
plex and each m-dimensional subsimplex corresponds to
the Pareto set of an (m + 1)-objective subproblem for all
0 ≤ m ≤ M − 1 (see (Hamada et al. 2019) for precise
definition and an example is shown in Figure 1). There are
a lot of practical problems being simplicial: location prob-
lems (Kuhn 1967) and a phenotypic divergence model in
evolutionary biology (Shoval et al. 2012) are shown to be
simplicial, and an airplane design (Mastroddi and Gemma
2013) and a hydrologic modeling (Vrugt et al. 2003) have
numerical solutions which imply those problems are simpli-
cial. The Pareto set and front of any simplicial problem can
be approximated with arbitrary accuracy by a Bézier simplex
of an appropriate degree (Kobayashi et al. 2019). There are
two fitting algorithms for Bézier simplices: the all-at-once
fitting is a naı̈ve extension of Borges-Pastva algorithm for
Bézier curves (Borges and Pastva 2002), and the inductive
skeleton fitting (Kobayashi et al. 2019) exploits the skeleton
structure of simplicial problems discussed above.

An important problem class which is (generically) sim-
plicial is strongly convex problems. It has been shown that
many practical problems can be considered as strongly con-
vex via appropriate transformations preserving the essential
problem structure, i.e., the Pareto ordering and the topol-
ogy (Hamada et al. 2019). For example, the multi-objective
location problem (Kuhn 1967) becomes strongly convex by
squaring each objective function. The resulting problem has
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Figure 1: A simplicial problem f = (f1, f2, f3) : R
3 → R

3. An M -objective problem f is simplicial if the following conditions
are satisfied: (i) there exists a homeomorphism Φ : ΔM−1 → X∗(f) such that Φ(ΔI) = X∗(fI) for all I ⊆ { 1, . . . ,M }; (ii)
the restriction f |X∗(f) : X

∗(f) → R
M is a topological embedding (and thus so is f ◦ Φ : ΔM−1 → R

M ).

a Pareto set that can be represented by a Bézier simplex of
degree two (Hamada et al. 2019). As we will show in this
paper, the group lasso (Yuan and Lin 2006) can be refor-
mulated as a multi-objective simplicial problem. It has a
twice-curving Pareto set that requires a Bézier simplex of
degree three. The same reformulation can also be applied
to a broad range of sparse modeling methods, including the
(original) lasso (Tibshirani 1996), the fused lasso (Tibshirani
et al. 2005), the smooth lasso (Hebiri and van de Geer 2011),
and the elastic net (Zou and Hastie 2005). Since the required
degree is observed to be problem-dependent, we need to un-
derstand the performance of the two Bézier simplex fittings
with respect to the degree.

Moreover, use cases of the Bézier simplex fitting are not
limited to post-optimal analysis. It can be applied to general
data modeling problems as well. In the filed of evolutionary
biology, (Shoval et al. 2012) showed that the phenotype of a
species distributes like a curved simplex. Such a distribution
can be modeled by a Bézier simplex for a better understand-
ing of biological phenomena.

In this paper, we study the asymptotic risk of the two
fitting methods of the Bézier simplex: the all-at-once fit-
ting and the inductive skeleton fitting, and compare their
performance with respect to the degree. While asymptotics
on a Euclidean space (having no boundary) is well-studied,
the Bézier simplex fitting is a regression method on a sim-
plex (having a complex boundary, i.e., the skeleton), and its
asymptotics have not been studied ever.

Our contributions are as follows:

• We have evaluated the asymptotic �2-risk, as the sample
size tends to infinity, of two Bézier simplex fitting meth-
ods: the all-at-once fitting and the inductive skeleton fit-
ting.

• In terms of minimizing the asymptotic risk, we have de-
rived the optimal ratio of subsample sizes for the inductive
skeleton fitting.

• We have shown when the inductive skeleton fitting with
optimal ratio outperforms the all-at-once fitting when the
degree of a Bézier simplex is two, whereas the all-at-once
has an advantage at degree three.

• We have demonstrated that the location problem and the
group lasso are transformed into strongly convex prob-
lems, and their Pareto sets and fronts are approximated by
a Bézier simplex, which numerically verifies the asymp-
totic results.
The rest of this paper is organized as follows: Section 2

describes the problem definition. Section 3 analyzes the
asymptotic risks of the all-at-once fitting and the inductive
skeleton fitting. For the inductive skeleton fitting, the opti-
mal subsample ratio in terms of minimizing the risk is de-
rived. Those analyses are verified in Section 4 via numerical
experiments. Section 5 concludes the paper and addresses
future work.

2 Problem definition

Let M be a non-negative integer. The standard (M − 1)-
simplex is denoted by

ΔM−1 =

{
(t1, . . . , tM ) ∈ R

M

∣∣∣∣∣
M∑

m=1

tm = 1, tm ≥ 0

}
.

We define the I-subsimplex for an in-
dex set I ⊆ { 1, . . . ,M } by ΔM−1

I =
{ (t1, . . . , tM ) ∈ ΔM−1 | tm = 0 (m �∈ I) }. In addition,
the m-skeleton of ΔM−1 for an integer 0 ≤ m ≤ M − 1 is
defined by

Δ(m) =
⋃

I⊆{ 1,...,M } s.t. |I|=m+1

ΔM−1
I .

2.1 Bézier simplex and its fitting methods

We denote the set of non-negative integers (including
zero!) by N. Let M,D,L be arbitrary integers in N

and N
M
D := { (d1, . . . , dM ) ∈ N

M | ∑M
m=1 dm = D }. As

shown in Figure 2, an (M − 1)-Bézier simplex of degree D
is a mapping b : ΔM−1 → R

L determined by control points
pd ∈ R

L (d ∈ N
M
D ) as follows:

b(t) :=
∑

d∈NM
D

(
D

d

)
tdpd (1)
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Figure 2: A Bézier simplex for M = 3, D = 3.

where
(
D
d

)
:= D!

d1!d2!···dM ! is a multinomial coefficient, and
td := td1

1 td2
2 · · · tdM

M is a monomial (not vector) for each
t := (t1, . . . , tM ) ∈ ΔM−1 and d := (d1, . . . , dM ) ∈ N

M
D .

(Kobayashi et al. 2019) proposed two Bézier sim-
plex fitting algorithms: the all-at-once fitting and the
inductive skeleton fitting. They are different in not
an only fitting algorithm but also sampling strategy.
The all-at-once fitting requires a training set SN :=
{ (tn,xn) ∈ ΔM−1 × R

L | n = 1, . . . , N } and adjusts all
control points at once by minimizing the OLS loss:
1
N

∑N
n=1 ‖xn − b(tn)‖2.

The inductive skeleton fitting, on the other hand, re-
quires skeleton-wise sampled training sets SN(m) :=

{ (t(m)
n ,x

(m)
n ) ∈ Δ(m) × R

L | n = 1, . . . , N (m) } (m =
0, . . . ,M − 1). It also divides control points as pd(m) such
that d(m) has exactly m+ 1 non-zero elements. Such pd(m)

determines the m-skeleton of a Bézier simplex. The induc-
tive skeleton fitting inductively adjusts pd(m) from m = 0
to M − 1 by minimizing the OLS loss of the m-skeleton

1
N(m)

∑N(m)

n=1

∥∥∥x(m)
n − b(t

(m)
n )

∥∥∥2.

2.2 The �2-risk

In this paper, we consider the following fitting problem: As
Figure 3 illustrates, a sample point (t,x) ∈ ΔM−1 × R

L

is taken from an unknown Bézier simplex b : ΔM−1 →
R

L with additive Gaussian noise ε ∼ N(0, σ2I), that is,
x = b(t) + ε. For the all-at-once fitting, SN = { (tn,xn) }
follows the uniform distribution on the domain of the Bézier
simplex: tn ∼ U(ΔM−1) and xn = b(tn) + εn. For the
inductive skeleton fitting, SN(m) = { (t(m)

n ,x
(m)
n ) } follows

the uniform distribution on the m-skeleton of the domain of
the Bézier simplex: t(m)

n ∼ U(Δ(m)) and x
(m)
n = b(t

(m)
n )+

ε
(m)
n . A Bézier simplex estimated from SN is denoted by

b̂(t|SN ). For both method, we asymptotically evaluate the
�2-risk below as N → ∞.

RN := ESN

[
Et∼U(ΔM−1)

∥∥∥b(t)− b̂(t|SN )
∥∥∥2] . (2)

For the inductive skeleton fitting, we put SN = SN(0)∪· · ·∪
SN(M−1) subject to N = N (0) + · · ·+N (M−1).

Figure 3: An illustration of taking a sample point on the true
Bézier simplex with additive noise.

3 Asymptotic risk of Bézier simplex fitting

Let us first focus on the fact: the subtraction inside the �2-
norm in (2) can be also written as a Bézier simplex:

b(t)− b̂(t|SN ) =

|NM
D |∑

A=1

(
D

dA

)
tdAp′

dA
. (3)

Each A-th control point p′
dA

of this Bézier simplex is de-
fined by difference between the target control point pdA

and the model control point ˆpdA
(SN ), i.e. p′

dA
= pdA

−
p̂dA

(SN ). To simplify the summation notation, we introduce
a size

∣∣NM
D

∣∣× L matrix P composed by the l-th element of
the A-th control point and a column vector z:

(P )Al = (p′
dA

)l, z
� =

[(D

d1

)
td1 , . . . ,

(
D

d|NM
D |

)
t
d|NMD |].

(4)

Note that td = td1
1 td2

2 · · · tdM

M is scalar, and z is a vector.
Then, the Bézier simplex (3) can be represented by column
vector P�z, and its squared norm is equal to

∥∥P�z
∥∥2 =

z�PP�z, or
∑

A,B zAzB(PP�)AB in component. The
risk (2) is defined by an expectation value of this norm. Et

only acts to z and ESN
only acts to P . Therefore, we arrive

at

RN =
∑

dA,dB∈NM
D

ΣABESN

[
(PP�)AB

]
, (5)

where

ΣAB = Et[zAzB ] =

(
D

dA

)(
D

dB

)
Et[t

dA+dB ]. (6)

We can get closed form of ΣAB by performing integral Et

explicitly. The following theorem provides the result.

Theorem 1 The matrix element ΣAB is calculated by

ΣAB =

(
2D +M − 1

M − 1

)−1(
D

dA

)(
D

dB

)(
2D

dA + dB

)−1

(7)

The proof is provided in the supplementary materials. 1. The
equation (5) means that the asymptotic value of the risk
function depends only on a choice of the matrix P .

1A longer version of this paper including appendix is available
at https://arxiv.org/abs/1906.06924
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3.1 All-at-once fitting

The matrix P determined by the all-at-once fitting algo-
rithm, PAAO, is minimizing the OLS loss:

1

N

N∑
n=1

∥∥∥ b(tn) + εn︸ ︷︷ ︸
xn

−b̂(tn)
∥∥∥2 =

1

N

N∑
n=1

∥∥P�zn + εn
∥∥2

=
1

N
‖ZP + Y ‖2F , (8)

where ‖·‖F is the Frobenius norm. Here, we introduced an
N × ∣∣NM

D

∣∣ matrix Z and an N × L matrix Y :

Z = [z1z2 · · · zN ]
�
, Y = [ε1ε2 · · · εN ]

�
. (9)

Minimizing (8) is a traditional problem and we get PAAO =

− (
Z�Z

)−1
Z�Y . Note that Z includes N sample points

on ΔM−1 and Y is a set of N noises on R
L. These are all

independent, so the expectation ESN
can be factorized to

EZEY .

Calculation of the asymptotics We need to calculate
the expectation value of the matrix PAAOP

�
AAO =(

Z�Z
)−1

Z�Y Y �Z
(
Z�Z

)−1
over Z and Y . As eas-

ily checked, EY [Y Y �] = σ2LIN×N , so we get

ESN

[
PAAOP

�
AAO

]
= σ2L · EZ

[(
Z�Z

)−1
]
. (10)

Now, the matrix (Z�Z) is an average over the sample:

1

N

(
Z�Z

)
AB

=

(
D

dA

)(
D

dB

) N∑
n=1

1

N
tdA+dB
n , (11)

and it converges to the matrix ΣAB defined in (6) and (7) as
N → ∞ by using the law of large numbers:

(
Z�Z

)
AB

p→
NΣAB . To substitute it to (10), however, we need to guar-
antee ΣAB has the inverse matrix. We can show it by the
following theorem.

Theorem 2 Let VM,D be a vector space spanned by

Z =

{
td

d!

∣∣∣∣ d = (d1, . . . , dM ) ∈ N
M
D

}
.

Then the map
L : VM,D × VM,D −→ R

∈ ∈

(P,Q) �−→ ∫
ΔM−1 P (t)Q(t)dt

,

is a non-degenerate bilinear form. Moreover, the matrix cor-
responding to this bilinear form is ΣAB in (7). In particular,
for any D,M , the matrix ΣAB is non-singular.

The precise proof is given in the supplementary materials.
In summary, our formula for the asymptotic form of the risk
for the all-at-once fitting is

RN
p→ σ2L

N

∑
A,B

ΣABΣ−1
AB =

σ2L

N

(D +M − 1

D

)
(N → ∞).

We can further simplify the result by using:∑
AB ΣABΣ

−1
AB =

∣∣NM
D

∣∣ =
(
D+M−1

D

)
, which is rela-

tively easy to show (see the supplementary materials).

3.2 Inductive skeleton fitting

So far, we did not take any explicit order of the control point
indices A. From now on, let us take a specific order

P� = [P (0)�P (1)� · · ·P (M−1)�], (12)

where P (m) is the submatrix of P composed by control
points on Δ(m). Similarly, we introduce an order of control
point indices dA as follows:

[d
(0)
1 , . . . ,d(0)

n0
,d

(1)
1 , . . . ,d(1)

n1
, . . . ,d

(M−1)
1 , . . . ,d(M−1)

nM−1
],

where d
(m)
n is the n-th index of control points on the m-

skeleton and nm is the number of control points on the m-
skeleton. The inductive skeleton fitting is described by an
inductive procedure of determining control points matrices
P (m) from low m = 0, 1, . . . ,M − 1. That is, first it fits the
vertices of a Bézier simplex by moving the control points
of the lowest dimension (P (0)); then, it fits the edges by
moving the control points of the second lowest dimension
(P (1)); this process goes on with increasing dimensions and
finishes at the highest dimension (P (M−1)). In the m-th
step, sample points t(m) on Δ(m) are given. The correspond-
ing z(m) defined in (4) has the following form:

z(m)� = [z(m)[0]�z(m)[1]� · · · z(m)[m]�0 · · ·0],where

z(m)[k]� =

[(
D

d
(k)
1

)
(t(m))d

(k)
1 , . . . ,

(
D

d
(k)
nk

)
(t(m))d

(k)
nk

]
,

because (t(m))d
(k>m)

includes 0d
(k)
• �=0 = 0 by definition.

Thanks to these zeros, the OLS loss reduces as follows:

N(m)∑
n=1

∥∥∥∥∥(P (m))Tz(m)[m]
n +

∑
k<m

(P (k))Tz(m)[k]
n + ε(m)

n

∥∥∥∥∥
2

=

∥∥∥∥∥Z(m)[m]P (m) +
∑
k<m

Z(m)[k]P (k) + Y (m)

∥∥∥∥∥
F

. (13)

Each matrix is defined as follows.

Z(m)[k] =
[
z
(m)[k]
1 · · · z(m)[k]

N(m)

]�
,Y (m) =

[
ε
(m)
1 · · · ε(m)

N(m)

]�
.

In addition, we regard lower-dimensional control points al-
ready fixed, so the net objective control points are ones in-
cluded in P (m). By repeating similar procedure done in the
all-at-once fitting, we can conclude P (m) is determined as

P
(m)
ISK = −[(Z(m))�Z(m)]−1(Z(m))�

×
(
Y (m) +

∑
k<m

Z(m)[k]P
(k)
ISK

)
(14)

Calculation of the asymptotics From this expression,
we get PISKPISK

� = ⊕M−1
i,j=0P

(i)
ISK(P

(j)
ISK)

�. The expected
value of each (i, j)-term is needed to evaluate the risk (5).
The following theorem provides us an algorithm to asymp-
totically calculate the expectation.
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Theorem 3 Let Id = { i | di �= 0 } ⊆ { 1, . . . ,M } and
Λ(m)[k] be an nm × nk matrix defined by

(Λ(m)[k])d(m)d(k) = 1I
d(m)⊇I

d(k)

( M

m+ 1

)−1

Σ
(m)

d(m)d(k) ,

where Σ
(m)
dAdB

:=
(2D +m

m

)−1(D

dA

)( D

dB

)( 2D

dA + dB

)−1

,

and 1X = 1 if X is true, otherwise 0. Then we get the asymp-
totic submatrix X(i)(j)

ESN

[
P

(i)
ISK(P

(j)
ISK)

�
]

p→ X(i)(j) :=

σ2L
∑
m≤i
m≤j

∑
m≤k1<···<k♥<i
m≤l1<···<l♠<j

(−1)♥+♠

N (m)
Λ♥Λ(m)Λ♠ (15)

where the summation runs for all possible increasing se-
quences [k1, . . . , k♥] and [l1, . . . , l♠], and

Λ♥ = Λ(i)Λ
(i)[k♥]Λ(k♥) · · ·Λ(k1)[m],

Λ♠ = Λ[m](l1) · · ·Λ(l♠)Λ
[l♠](j)Λ(j),

Λ[k](m) = (Λ(m)[k])�, Λ(m) = (Λ(m)[m])−1. (16)

For the complete derivation, see the supplementary materi-
als. The asymptotic form of the risk for the inductive skele-
ton fitting is, therefore, calculated by

RN(0),...,N(M−1) =
∑

dA,dB∈NM
D

ΣAB

(M−1⊕
i,j=0

X(i)(j)
)
AB

.

We found a candidate of closed-form with M = 2 risks as
(D − 1)/N (1) + 4/D(D + 2)N (0), but postpone deriving
the closed-form of it for arbitrary (D,M) for future work.
Instead, we show numerically computed risks in Table 1.

Table 1: Numerically computed asymptotic risks of the in-
ductive skeleton fitting RN(0),...,N(M−1) (M : the dimension
of the Bézier simplex, D: the degree of the Bézier simplex,
N (m): the sample size for the m-skeleton).

M D = 2 D = 3

2
1.00

N (1)
+

0.50

N (0)

2.00

N (1)
+

0.27

N (0)

3
3.00

N (1)
+

0.38

N (0)

1.00

N (2)
+

3.54

N (1)
+

0.15

N (0)

4
5.14

N (1)
+

0.46

N (0)

5.33

N (2)
+

4.70

N (1)
+

0.17

N (0)

5
7.14

N (1)
+

0.64

N (0)

13.33

N (2)
+

6.67

N (1)
+

0.21

N (0)

6
8.93

N (1)
+

0.82

N (0)

24.24

N (2)
+

9.74

N (1)
+

0.26

N (0)

7
10.50

N (1)
+

1.02

N (0)

37.10

N (2)
+

13.84

N (1)
+

0.31

N (0)

8
11.87

N (1)
+

1.21

N (0)

51.17

N (2)
+

18.73

N (1)
+

0.37

N (0)

3.3 All-at-once vs. Inductive skeleton

Given a total sample size N , we can minimize the ISK-risk
by finding the optimally-decoupled subsample sizes:

RN := min
N(0),...,N(M−1)

N=N(0)+···+N(M−1)

{
RN(0),...,N(M−1)

}
. (17)

We calculated optimal risks for all cases shown in Table 1
and compared them to the risks of the all-at-once fitting. Ta-
ble 2 shows the results.

Table 2: Comparison of asymptotic risks of the all-at-once
RAAO

N vs. the inductive skeleton with the optimal subsam-
ple ratio RISK

N (M : the dimension of the Bézier simplex, D:
the degree of the Bézier simplex, N : the sample size). The
winner is shown in bold.

D = 2 D = 3
RAAO

N RISK
N RAAO

N RISK
N

M = 2 3.0/N 2.91/N 4.0/N 3.73/N
M = 3 6.0/N 5.50/N 10.0/N 10.650/N
M = 4 10.0/N 8.67/N 20.0/N 23.88/N
M = 5 15.0/N 11.99/N 35.0/N 44.76/N
M = 6 21.0/N 15.17/N 56.0/N 73.14/N
M = 7 28.0/N 18.07/N 84.0/N 107.57/N
M = 8 36.0/N 20.68/N 120.0/N 146.21/N

As one can see, the optimum inductive skeleton fitting
outperforms the all-at-once fitting for D = 2, but it is not
always true for D = 3. On D = 2, in fact, we can show
that the minimum value of the inductive skeleton always less
than the asymptotic risk of the corresponding all-at-one fit-
ting.

4 Numerical examples

We examine the empirical performances of the all-at-once
fitting and the inductive skeleton fitting and verify the
asymptotic risks derived in Section 3.1 over synthetic in-
stances and multi-objective optimization instances. Exper-
iment programs were implemented in Python 3.7.1 and run
on a Windows 7 PC with an Intel Core i7-4790CPU (3.60
GHz) and 16 GB RAM2.

4.1 Synthetic instances

We consider the fitting problem where the true Bézier
simplex b(t) (t ∈ ΔM−1) is an (M − 1)-dimensional
unit simplex on R

L, and randomly generate N training
points { (tn,xn) }Nn=1 as xn = b(tn) + εn (εn ∼
N(0, 0.12I)). This synthetic instance is parameterized by
a tuple (L,M,N). The detailed data generation processes
are shown in the supplementary materials.

In this experiment, we estimated the Bézier simplex with
degree D = 2 or 3, and compared the following three fitting
methods:
all-at-once the all-at-once fitting (Section 3.1);

2The source code and library dependencies are provided in
https://github.com/rafcc/aaai-20.1534.

2420



inductive skeleton (non-optimal) the inductive skeleton
fitting (Section 3.2) with N (0) = · · · = N (M−1) =
N/M , which does not provide the optimal value of the
risk shown in Table 1;

inductive skeleton (optimal) the inductive skeleton fitting
(Section 3.2) where N (0), . . . , N (M−1) are determined
by minimizing the risk shown in Table 1 under the con-
straints

∑M−1
m=0 N (m) = N and N (m) ≥ 0 (m =

0, . . . ,M − 1). The actual sample size N (m) for each
(D,M) are shown in the supplementary materials.

When we calculated an approximation of the ex-
pected risk for each method, we randomly chose other
10000 parameters { t̂n }10000n=1 from U(ΔM−1) as a test
set and measured the mean squared error, MSE :=

1
10000

∑10000
n=1

∥∥∥b(t̂n)− b̂(t̂n)
∥∥∥2, where b̂ is the estimated

Bézier simplex. This experiment was conducted with the fol-
lowing tuple (L,M,N) to observe how the empirical MSEs
depend on L,M and N respectively:

• N ∈ { 250, 500, 1000, 2000 } with (L,M) = (100, 8),

• M ∈ { 3, 4, 5, 6, 7, 8 } with (L,N) = (100, 1000),

• L ∈ { 8, 25, 50, 100 } with (M,N) = (8, 1000),

For each (L,M,N) with D ∈ { 2, 3 }, we ran 20 trials and
measured MSEs.

Owing to space limitation, we only present typical re-
sults here. The remaining results are provided in the sup-
plementary materials. Figure 4 shows box plots of MSEs
over 20 trials and our theoretical risks (5) and Table 1 for
each N ∈ { 250, 500, 1000, 2000 } with (L,M) = (100, 8)
and D ∈ { 2, 3 }. We observe that these figures empirically
show that our theoretical risks are correct for both D = 2
and 3, and the gaps between the MSEs and the risks are suf-
ficiently small at N = 1000. For both D = 2 and 3, the
inductive skeleton (optimal) always achieved lower MSEs
than that of the inductive skeleton (non-optimal). This re-
sult suggests the effectiveness of minimizing the risk (Ta-
ble 2) with respect to the sample size of each skeleton. In
addition, the inductive skeleton fitting (optimal) also outper-
formed the all-at-once fitting in the case of D = 2. This
result also supports the discussion described in Section 3.3.

4.2 Multi-objective optimization instances

To investigate the relationship between the generalization
performance and our theoretical risk, we provide two com-
plementary instances of multi-objective optimization prob-
lems: a generalized location problem called MED (Harada,
Sakuma, and Kobayashi 2006; Hamada et al. 2010) and a
multi-objective hyper-parameter tuning of the group lasso
(Yuan and Lin 2006) on the Birthwt dataset (Hosmer
and Lemeshow 1989; Venables and Ripley 2002). The lo-
cation problem has 3 objectives and 100 variables (that is
(M,L) = (3, 100)). Its Pareto set/front can be represented
by a Bézier simplex with degree D = 2. On the other hand,
the group lasso has 3 objectives and 6 variables (that is
(M,L) = (3, 6)). Its Pareto set/front cannot be represented

with degree D = 2 but can be with D = 3 (see the supple-
mentary materials). We will describe the details of problem
settings in the subsequent sections.

A generalized location problem This problem is a gen-
eralization of the multi-objective location problem (Kuhn
1967) to a higher dimension:

minimize f(x) = (f1(x), f2(x), f3(x)) subject to x ∈ R
100

where fm(x) = ‖x− em‖2 (m = 1, . . . , 3)

e1 = (1, 0, 0, 0, 0, . . . , 0) ∈ R
100,

e2 = (0, 1, 0, 0, 0, . . . , 0) ∈ R
100,

e3 = (0, 0, 1, 0, 0, . . . , 0) ∈ R
100.

(18)

Note that this is a special case of the MED benchmark prob-
lem (Hamada et al. 2010). The MED problem is simplicial
(Hamada 2017) and its Pareto set is known to be the convex
hull of the minimizers of separate objective functions, i.e.,
the 2-simplex spanned by e1, e2, e3. For each vertex, edge,
face of this simplex, which is the Pareto set of each 1-, 2-,
3-objective subproblem, we generate a subsample according
to the uniform distribution on it.

The group lasso We applied the Bézier simplex fittings to
multi-objective hyper-parameter tuning of the group lasso.
In this problem, we used the dataset, Birthwt in the R-
package MASS, which contains 189 births at the Baystate
Medical Centre, Springfield, Massachusetts during 1986
(Hosmer and Lemeshow 1989; Venables and Ripley 2002).
From the dataset, we adopted six continuous features age1,
age2, age3, lwt1, lwt2, lwt3 as predictors and one
continuous feature bwt as a response for regression analy-
sis. Since the predictors are classified into two groups, age
and lwt, the group lasso (Yuan and Lin 2006) was em-
ployed.

Put N = 189 and M = 6. Let A be an N ×M matrix of
observations of the predictors, x ∈ R

M be a row vector of
the predictor coefficients to be estimated, separated into two
groups xage = (x1, x2, x3)

� and xlwt = (x4, x5, x6)
�, and

y ∈ R
N be a row vector of observations of the response.

The group lasso regressor is the solution to the following
problem:

minimize
1

2N
‖Ax− y‖2 + λ√

3
(‖xage‖+ ‖xlwt‖)

subject to x ∈ R
6

(19)

where ‖·‖ is the Euclidean norm, and λ is a positive number
to be tuned by users. This original form suffers from two
drawbacks:

• Choosing an appropriate value for λ involves a grid search
on an unbounded domain.

• Since two groups have physically different units of mea-
surement, same weights are not always appropriate even
if their values are normalized.
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(a) D = 2 (b) D = 3

Figure 4: Sample size N vs. MSE with (L,M) = (100, 8) (boxplots: empirical MSEs over 20 trials, lines: theoretical risks).

Table 3: MSE (avg. ± s.d. over 20 trials) for the Pareto sets of the location problem and the group lasso. The winners with
significance level p < 0.05 are shown in bold.

(a) Location problem

D N All-at-once Inductive-skeleton (optimal)

2 250 1.0246e+00 ± 1.7031e-03 1.0227e+00 ± 2.3045e-03
500 1.0119e+00 ± 5.3916e-04 1.0108e+00 ± 7.5912e-04

1000 1.0060e+00 ± 2.6182e-04 1.0055e+00 ± 4.7063e-04
2000 1.0029e+00 ± 1.8406e-04 1.0028e+00 ± 2.7489e-04

3 250 1.0430e+00 ± 3.3097e-03 1.0458e+00 ± 4.4068e-03
500 1.0203e+00 ± 1.1845e-03 1.0219e+00 ± 1.4369e-03

1000 1.0100e+00 ± 3.9162e-04 1.0112e+00 ± 6.2094e-04
2000 1.0049e+00 ± 2.3927e-04 1.0056e+00 ± 3.4550e-04

(b) Group lasso

D N All-at-once Inductive-skeleton (optimal)

2 250 2.9440e-04 ± 9.8629e-06 1.6387e-03 ± 2.5544e-05
500 2.8576e-04 ± 3.3213e-06 1.6213e-03 ± 1.8418e-05

1000 2.8395e-04 ± 2.3915e-06 1.6133e-03 ± 1.4468e-05
2000 2.8219e-04 ± 1.3681e-06 1.6110e-03 ± 8.2639e-06

3 250 9.4367e-05 ± 8.2106e-06 3.6896e-04 ± 1.0013e-05
500 8.7906e-05 ± 3.2759e-06 3.6264e-04 ± 4.6550e-06

1000 8.6296e-05 ± 1.9045e-06 3.5979e-04 ± 2.5247e-06
2000 8.5007e-05 ± 9.5520e-07 3.5846e-04 ± 1.8742e-06

Instead, we consider each term in (19) as a separate ob-
jective function:

minimize f(x) = (f1(x), f2(x), f3(x)) subject to x ∈ R
6

(20)

where f1(x) = ‖Ax− y‖2 , f2(x) = ‖xage‖2 , f3(x) =

‖xlwt‖2. Notice that the use of the squared norm in f2 and
f3 does not change their solutions. It is easy to see that every
objective function in (20) is convex but not strongly convex.
We make them strongly convex by the following perturba-
tion:

f̃1 = f1 + ε ‖x‖2 ,
f̃2 = f2 + ε ‖x‖2 ,
f̃3 = f3 + ε ‖x‖2

where ε is an arbitrarily small positive number (we set
ε = 10−4). Now the problem of minimizing a mapping
f̃ = (f̃1, f̃2, f̃3) is strongly convex. By (Hamada et al. 2019,
Theorems 1.1 and 3.1), this problem is weakly simplicial
and the mapping

x∗(w) = argmin
x

〈w, f(x)〉 (21)

is well-defined and continuous on Δ2, satisfying x∗(Δ2
I) =

X∗(f̃I) for all I ⊆ { 1, 2, 3 }.

Then, we obtained subsamples by solving (21) repeatedly
with varying w ∈ Δ2

I for each I ⊆ { 1, 2, 3 }. For each such
I , the weight w was drawn from the uniform distribution on
Δ2

I and the problem (21) was solved by the steepest descent
method.

The same idea can be applied to a broad range of sparse
learning methods, including the original lasso (Tibshirani
1996), the fused lasso (Tibshirani et al. 2005), the smooth
lasso (Hebiri and van de Geer 2011), and the elastic net (Zou
and Hastie 2005). For those methods, their group-wise reg-
ularization terms can be considered as separate objectives,
and the resulting problems would be many-objective (four-
objective or more) where the all-at-once fitting will much
outperform over the inductive skeleton fitting. We however
remark that the bridge regression (lldiko E. Frank and Fried-
man 1993) is not the case since its regularization term us-
ing a nonconvex �p-norm (i.e., p < 1) cannot change into a
strongly convex function via perturbations.

Data generation process and evaluation As we con-
ducted in the previous experiments, we generated a train-
ing set and a test set on a Pareto set/front randomly. For
the location problem, to evaluate the generalized perfor-
mance for the noisy test data, we added the Gaussian noise
(N(0, 0.12I)) to each point of the training and test sets.
Then, we fitted a Bézier simplex to the training set and eval-
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uated the MSE between the estimated Bézier simplex and
the test set. We changed the size of the training set from
N ∈ { 250, 500, 1000, 2000 }. The size of the test set is
10000 and 1000 for the location problem and the group
lasso, respectively. We repeated experiments 20 times for
each (D,N).

Results and discussion Here, we show the results of fit-
ting Pareto sets. The results of fitting Pareto fronts are pro-
vided in the supplementary materials. For each problem in-
stance and method, the average and the standard deviation of
the MSE are shown in Table 3. In the table, we highlighted
the best score of MSE out of all-at-once fitting and inductive
skeleton fitting (optimal) and added the results of one-sided
Student’s t-test3 with significance level 0.05.

Table 3a shows results that the inductive skeleton (opti-
mal) outperformed the all-at-once for D = 2, and the op-
posite results for D = 3. Note that these magnitude rela-
tionships of MSEs for the test data accord with those of the
theoretical risks described in Table 2. Therefore, we found
that the difference in MSEs can be derived from the risk of
each fitting method.

Since the variance of added noise is relatively so large
that the Pareto ordering of the training data points may
be changed (see the scatter plots shown in the supplemen-
tary materials), this experimental setting is more challeng-
ing than those of real multi-objective optimization problems.
Thus, the result of the location problem suggests that, even
for a real problem, we are expected to see a significant differ-
ence in the generalized performance between the all-at-once
and the inductive skeleton (optimal).

In case of the group lasso, on the other hand, Table 3b
shows that the all-at-once was always better for both D = 2
and 3, and the differences are almost all significant. While
our analysis assumes that the target hyper-surface to be fitted
can be represented by a Bézier simplex, the Pareto set of the
group lasso cannot for D = 2 but for D = 3. Therefore,
we can see that the results for D = 3 that the all-at-once
achieved better MSEs accords with our analysis.

From the above results, the validity of the analytic results
is confirmed in practical situations.

5 Conclusion

In this paper, we have shown that the asymptotic �2-risk
of the two Bézier simplex fitting methods developed pre-
viously: the all-at-once fitting and the inductive skeleton fit-
ting. From our risk analysis, the optimal ratio of subsamples
for the inductive skeleton fitting has been derived, which
is useful for design of experiments to maximize the good-
ness of fit. We have discussed that superiority between the
two fitting methods depends on the degree of a Bézier sim-
plex to be fit: the inductive skeleton fitting with optimally-
decoupled subsamples outperforms for degree two whereas
the all-at-once fitting becomes the better for degree three,
independent of the dimensionality of the Bézier simplex and
its ambient space. The above theoretical results have been

3When we conducted a one-sided Student’s t-test, we used a log
transformation to MSEs in advance.

confirmed via numerical experiments under small to moder-
ate sample sizes. We have demonstrated two applications of
the analytic results in multi-objective optimization: a gener-
alized location problem and a hyperparameter tuning of the
group lasso.

As a remark for future work, we point out two important
cases which the current theory does not cover. The first one
is the case discussed in Section 4.2 that the true surface is not
representable by a model. The second one is presented in the
literature (Kobayashi et al. 2019). When the parameters of a
Bézier simplex are not given in a sample and to be estimated
as well as the control points, the inductive skeleton fitting
outperforms the all-at-once fitting even if the Bézier simplex
is of degree three. We believe that those cases would offer
insightful examples to extend the scope of our theory.
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