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Abstract

Scaling Bayesian optimisation (BO) to high-dimensional
search spaces is a active and open research problems par-
ticularly when no assumptions are made on function struc-
ture. The main reason is that at each iteration, BO requires
to find global maximisation of acquisition function, which
itself is a non-convex optimization problem in the original
search space. With growing dimensions, the computational
budget for this maximisation gets increasingly short lead-
ing to inaccurate solution of the maximisation. This inac-
curacy adversely affects both the convergence and the effi-
ciency of BO. We propose a novel approach where the acqui-
sition function only requires maximisation on a discrete set
of low dimensional subspaces embedded in the original high-
dimensional search space. Our method is free of any low di-
mensional structure assumption on the function unlike many
recent high-dimensional BO methods. Optimising acquisition
function in low dimensional subspaces allows our method to
obtain accurate solutions within limited computational bud-
get. We show that in spite of this convenience, our algorithm
remains convergent. In particular, cumulative regret of our
algorithm only grows sub-linearly with the number of iter-
ations. More importantly, as evident from our regret bounds,
our algorithm provides a way to trade the convergence rate
with the number of subspaces used in the optimisation. Fi-
nally, when the number of subspaces is ”sufficiently large”,
our algorithm’s cumulative regret is at most O∗(

√
TγT ) as

opposed to O∗(
√
DTγT ) for the GP-UCB of Srinivas et al.

(2012), reducing a crucial factor
√
D where D being the di-

mensional number of input space. We perform empirical ex-
periments to evaluate our method extensively, showing that its
sample efficiency is better than the existing methods for many
optimisation problems involving dimensions up to 5000.

Introduction

Bayesian optimization (BO) offers an efficient solution to
find the global optimum of expensive black-box functions, a
problem that is all pervasive in real-world experimental de-
sign applications. However, the scalability of BO is particu-
larly compromised in high dimensions (> 15 dimensions).

The main difficulty that a BO algorithm faces in high
dimensions is that at each iteration, it needs to find the
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global maximum of a surrogate function called the acquisi-
tion function in order to suggest the next function evaluation
point. The acquisition function balances two conflicting re-
quirements: evaluating the function at a location where the
function may peak as indicated by knowledge collected so
far (exploitation) and evaluating the function at a location
to reduce our uncertaiity about the function (exploration).
The acquisition function itself is a non-convex optimisation
problem in the original search space. With growing dimen-
sions, any fixed computational budget for this optimisation
becomes quickly insufficient leading to inaccurate solutions.
This inaccuracy adversely affects both the convergence and
the efficiency of the BO algorithm.

In order to make the problem scalable, most of the cur-
rent methods make restrictive structural assumptions such as
the function having an effective low-dimensional subspace
(Wang et al. 2013; Djolonga, Krause, and Cevher 2013;
Garnett, Osborne, and Hennig 2014; Eriksson et al. 2018;
Nayebi, Munteanu, and Poloczek 2019; Zhang, Li, and Su
2019), or being decomposable in subsets of dimensions
(Kandasamy 2015; Li 2016; Rolland et al. 2018; Mutný and
Krause 2018; Hoang et al. 2018). Through these assump-
tions, the acquisition function becomes easier to optimise
and the global optimum can be found. However, such as-
sumptions are rather strong and since we are dealing with
unknown function, we have no way of knowing if such as-
sumptions hold in reality.

Without these assumptions, the high-dimensional BO
problem is more challenging. There have been some re-
cent attempts to develop scalable BO methods. For example,
(Rana et al. 2017) use an elastic Gaussian process model
to reduce the ”flatness” of the acquistion function in high
dimensions and thus improve the solution. Although this
method helps obtains improved optimum of the acquistion
function, it still does not provide any way to scale BO to
high dimensions. (Oh, Gavves, and Welling 2018) devise
a method under the assumption that the solution does not
lie at the boundary of the search space and thus drive the
BO search towards the interior of the search space using
polar co-ordinate transformations. Thus, the convergence
analysis of (Oh, Gavves, and Welling 2018) depends on
whether their assumptions holds. Some other methods are
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based on subspaces (Qian, Hu, and Yu 2016; Li et al. 2017;
Kirschner et al. 2019), which are more amenable to con-
vergence analysis. Among them, LineBO (Kirschner et al.
2019) is the first to provide a complete analysis. In LineBO,
the maximisation of the acquisition function is performed on
a one-dimensional random subspace. Although this solution
is computationally effective, the regret bound of LineBO
does not scale well with the search space dimension and
gets increasingly worse compared to the regret of the GP-
UCB (Srinivas et al. 2012). Thus we still need a method that
is both computationally efficient and offers optimal sample
efficiency in high dimensions in a flexible manner.

We propose a novel algorithm for high-dimensional BO
without making any restrictive assumptions on the function
structure and show that our algorithm attains better regret
than previous methods. The key insight of our method is that
instead of maximizing the acquisition function on the full
search space that is computationally prohibitive in high di-
mensions, we will maximize it on a restricted space that con-
sist of multiple low-dimensional subspaces. This approach
has several benefits. If the acquisition function is maximised
in low-dimensional subspaces then computations involved
in finding the solution of acquisition function optimisation
are practically feasible while multiple subspaces can still
cover the search space well if they are chosen in a princi-
pled manner. Further, this method allows us to theoretically
derive a cumulative regret as a function of the number of
subspaces. The crucial advantage is that we can trade be-
tween the computations and the convergence rate of the al-
gorithm while still maintaining efficient convergence (i.e. a
sublinear growth of cumulative regret). Our contributions in
this paper are:

• A novel BO algorithm based on multiple random sub-
spaces that offers the flexibility to trade between the com-
putations and the convergence rate. To do this, we pro-
pose to decompose the original search space into multiple
lower-dimensional spaces via a randomisation technique.

• We derive an upper bound on the cumulative regret for our
algorithm and theoretically show that it has a sublinear
growth rate and further, larger the number of subspaces,
tighter the cumulative regret. Further, when the number
of subspaces is large enough, the cumulative regret is at
most of order O∗(

√
TγT ) as opposed to the regret bound

of GP-UCB O∗(
√
DTγT ). The regret bound of our al-

gorithm is tighter by a factor of
√
D. In some situations

(detailed in the paper), this improvement is possible with
fewer computations than GP-UCB - a double advantage.

• We also study a special case when the objective function
has an effective low dimensional subspace as assumed by
many previous methods e.g. REMBO (Wang et al. 2013).
We show that our algorithm automatically benefits from
this low dimensional structure with the tighter bound.

• We extensively evaluate our method using a variety of op-
timisation tasks including optimisation of several bench-
mark functions as well as learning the parameters of
a moderately sized neural network and a classification
model based on non-convex ramp loss. We compare our

method with several existing high dimensional BO algo-
rithms and demonstrate that given equal computational
budget, the sample efficiency of our method is consis-
tently better than that of the existing methods.

Preliminaries

We consider the global maximization problem of the form

x∗ = argmaxx∈X f(x) (1)

in a compact search space X = [−1, 1]D. In this paper we
are especially concerned about problems with high values of
D. We consider functions f that are blackbox and expensive
to evaluate, and our goal is to find the optimum in a minimal
number of samples. We further assume we only have access
to noisy evaluations of f in the form u = f(x) + ε where
the noise ε ∼ N (0, σ2) is i.i.d. Gaussian.

Bayesian Optimization

BO offers a principal framework to approach the global op-
timisation problem. The standard BO routine consists of two
key steps: estimating the black-box function from function
evaluation data and maximizing an acquisition function to
suggest next function evaluation point balancing exploration
and exploitation. Gaussian process (GP) (Rasmussen and
Williams 2005) is a popular choice for the first step due
to its tractability for posterior and predictive distributions:
f(x) = GP(m(x), k(x,x′)), where m(x) and k(x,x′) are
the mean and the covariance (or kernel) functions. Popu-
lar covariance functions include linear kernel, squared expo-
nential (SE) kernel, Matern kernel etc. The predictive mean
and variance of Gaussian process is a Gaussian distribution.
Given a set of observations D1:t = {xi, ui}ti=1, the pre-
dictive distribution can be derived as: P (ft+1|D1:t,x) =

N (μt+1(x), σ
2
t+1(x)), where μt+1(x) = kT [K+σ2I]−1u+

m(x) and σ2
t+1(x) = k(x, x) − kT [K + σ2I]−1k. In the

above expression we define k = [k(x,x1), ..., k(x,xt)],
K = [k(xi,xj)]1≤i,j≤t and u = [u1, . . . , ut].

The acquisition functions are designed to trade off be-
tween exploration of the search space and exploitation
of current promising region. Some examples of acquisi-
tion functions include Expected Improvement (EI) (Mockus
1974) and GP-UCB (Srinivas et al. 2012). A GP-UCB ac-
quisition function at iteration t+ 1 is defined as

at+1(x) = μt(x) +
√
βt+1σt(x) (2)

where βt+1 is a parameter to balance exploration and ex-
ploitation. There are guidelines (Srinivas et al. 2012) for set-
ting βt+1 to achieve sublinear regret.

Proposed Method

To solve the Bayesian optimization problem in high dimen-
sions, the main difficulty is the prohibitive computational
burden when maximising the acquisition function which re-
quires solving a non-convex optimization problem in the
same search space. Working with a small computational
budget usually directly affects the quality of the point sug-
gested by the acquisition step and consequently, many BO
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algorithms that require finding exactly the maximisers of
the acquisition function (e.g. EI, GP-UCB) perform poorly
in high dimensions. We propose a novel approach for this
problem as follows. Instead of maximising the acquisition
function on the whole space, we perform it only on a discrete
set of low-dimensional subspaces generated by random sam-
pling. This approach brings several benefits. First, it solves
the computation challenge effectively. Second, it provides a
way to trade between the computations and the sample ef-
ficiency for convergence. Finally, our analysis suggests that
when the number of subspaces are sufficiently high, our ap-
proach can simultaneously offer both lower computational
requirement and better sample efficiency.

Before introducing our method, we formally define the
low dimensional subspaces (see Definition 1) that will be
used in our method.

Subspace Description

Lemma 1. Given a d ∈ {1, ..., D − 1}, for any x ∈
[−1, 1]D, there exists a y ∈ [−1, 1]d and a z ∈ [−1, 1]D−d

such that
x = Ay +Bz

where matrix A = [0d×(D−d), Id×d]T and matrix B =
[I(D−d)×(D−d),0(D−d)×d]T .

Proof. Given any x ∈ X , we denote the first D−d elements
of vector x by [x]1:D−d and the last d elements of vector x
by [x]D−d+1:D. We set y = [x]D−d+1:D ∈ [−1, 1]d and
z = [x]1:D−d ∈ [−1, 1]D−d. Thus, we have x = Ay +Bz
with y ∈ [−1, 1]d and z ∈ [−1, 1]D−d.

The main idea is that we split the dimensions of any point
x in D dimensional space into two groups: the first D − d
dimensions correspond to z and the last d dimensions corre-
spond to y. Next, we define a set of subspaces based on this
idea in the following form:

Definition 1 (Embedding Subspace). Given a d ∈
{1, ..., D− 1} and a vector z ∈ Z = [−1, 1]D−d. We define
an embedding subspace S(A, z) as

S(A, z) = {Ay +Bz|y ∈ Y = [−1, 1]d} (3)

where matrix A = [0d×(D−d), Id×d]T and matrix B =
[I(D−d)×(D−d),0(D−d)×d]T .

The Proposed Algorithm

Our algorithm (presented in Algorithm 1) closely follows
the standard BO algorithm. The main difference lies in the
acquisition step that guides the selection of the next function
evaluation point. We refer to our algorithm as MS-UCB.

Lemma 1 implies that there exists a y∗ ∈ [−1, 1]d and
z∗ ∈ [−1, 1]D−d such that

x∗ = Ay∗ +Bz∗ (4)

Therefore, we can preserve any optimum point x∗ in the
original space via y∗, z∗ in two lower-dimensional spaces
(via dimension splitting). This observation gives rise to our

new idea that instead of optimising f on the original space,
we can perform it in the lower dimensional spaces Y and Z:

y∗, z∗ = argmaxy∈Y,z∈Zf(Ay +Bz) (5)

where we denote the range [−1, 1]d by Y and the range
[−1, 1]D−d by Z . Note that this is different from (Wang et
al. 2013; Djolonga, Krause, and Cevher 2013) where they
assume an effective subspace on f . In that case, using a
low-dimensional subspace can solve the BO problem. In our
problem without any restrictive assumption on f , we need to
use two low-dimensional subspaces to preserve an optimum.
As a result, when Eq (5) is established, maximising the ac-
quisition function at will be performed in spaces Y and Z
as

yt, zt = argmaxy∈Y,z∈Zat(Ay +Bz) (6)

In high dimensions where we may set d << D, the (D−d)-
dimensional space Z would itself be a high-dimensional
space. Therefore, maximising the acquisition function in this
space is still computationally expensive. To deal with this
problem, we work with a finite set of samples z ∈ Z and
maximise the acquisition function only on this finite set in-
stead of the whole space Z . Let Zt be the set of all z gener-
ated up to iteration t. With this modification, our acquisition
step becomes:

yt, zt = argmaxy∈Y,z∈Zt
at(Ay +Bz) (7)

Once z is sampled, a subspace S(A, z) as in Definition 1 is
generated. Let Xt � {S(A, zi) | zi ∈ Zt}. The Eq (7) can
then be re-written as

xt = argmaxx∈Xt
at(x) (8)

By Definition 1, we can see that for any subspace S(A, zi),
S(A, zi) ⊂ X . Thus, the suggested point xt is always
within X . This is a benefit of our dimension splitting
based subspace projection as opposed to complex correc-
tions required for previous methods ((Wang et al. 2013;
Qian, Hu, and Yu 2016)). We note that for our method
at(x) = μt−1(x) +

√
βtσt−1(x) where βt = 2log(π

2t2

δ ) +

2dlog(2bd
√
log( 6Da

δ )t2). The βt of GP-UCB depends lin-
early on D whereas the dependence of our βt on D is only√

logD.
A simple way to maximise at on Xt is to maximise at

on each subspace S(A, zit) separately and thus the returned
value xt is the maximizer on the all subspaces at iteration
t. For a small d, S(A, zi) is a low-dimensional subspace
of X . Thus, maximizing the acquisition function on such a
subspace is computationally cheaper.

Importantly, we can show that maximising at on a dis-
crete set of subspaces can result in low regret by proposing
a strategy to choose set Zt. At iteration t, we uniformly ran-
domly draw Nt samples of z, {zit ∈ Z | i = 1, ..., Nt} and
then construct Zt as Zt = Zt−1 ∪ {z1t , ..., zNt

t }. We choose
Nt = N0t

α, where N0, α ∈ N, N0 ≥ 1 and α ≥ 0.
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Algorithm 1 MS-UCB Algorithm
Input: Input space X = [−1, 1]D; a low dimension 1 ≤ d <
D, Z0 = ∅, the parameters N0 and α.

1: Sample initial points to construct D0.
2: Build a Gaussian process using D0.
3: for t = 1, 2, ..., T do
4: Sample uniformly at random Nt values of zit ∈

[−1, 1]D−d, where 1 ≤ i ≤ Nt = N0t
α.

5: Update Zt = Zt−1 ∪ {z1t , ..., zNt
t }.

6: Maximise acquisition function to obtain xt by fol-
lowing Eq (8).

7: Sample ut = f(xt) + εt.
8: Augment the data Dt = {Dt−1, (xt, ut)}.
9: Update the Gaussian process using Dt.

10: end for

Convergence Analysis
In this section, we analyse the convergence of our proposed
MS-UCB algorithm. For this, we use the regret, which tells
us how much better we could have done in iteration t had we
known x∗, formally rt = f(x∗) − f(xt). In many applica-
tions, such as recommender systems, robotic control, etc, we
care about the quality of the points chosen at every iteration
t, and thus a natural quantity to consider is the cumulative
regret that is defined as RT =

∑
1≤t≤T rt , the sum of re-

grets incurred over a horizon of T iterations. If we can show
that the cumulative regret is sublinear for a given algorithm,
then limT→∞RT /T = 0, meaning the algorithm efficiently
converges to the optimum.

To derive a cumulative regret Rt =
∑T

t=1 rt, we will
seek to bound rt = f(x∗) − f(xt) for any t. At each it-
eration t, we denote by S0

t � {Ay∗ + Bzi}zi∈Zt
. Let

z∗t � argminz∈Zt
||z − z∗||1 and fmax

S0
t

� f(Ay∗ + Bz∗t ).
To obtain a bound on rt, we write it as

rt = f(x∗)− f(xt) (9)
= f(x∗)− fmax

S0
t︸ ︷︷ ︸

Term 1

+ fmax
S0
t︸ ︷︷ ︸

Term 2

− f(xt)︸ ︷︷ ︸
Term 3

(10)

Term 1 will be bounded from the result of Lemma 4, Term 2
will be bounded from the result of Lemma 3 and Term 3 will
bounded from the result of Lemma 2. Before proceeding to
the proofs, we need to make the following assumption.
Assumption 1 (Gradients of GP Sample Paths (Ghosal and
Roy 2006)). Let f ∼ GP(0, k) and k is a stationary kernel.
The partial derivatives of f satisfies the following condition.
There exist constants a, b > 0 such that

P[supx∈X | ∂f
∂xi

| > L] ≤ ae−(L/b)2

for all L > 0 and for all i ∈ {1, 2, ..., D}
Similar to Lemma 5.5 of (Srinivas et al. 2012), we have

the following bound on the actual function observations.
Lemma 2 (Bounding Term 3). Pick a δ ∈ (0, 1) and set
β0
t = 2log(π2t2/(6δ)). Then we have

f(xt) ≥ μt−1(xt)−
√
β0
t σt−1(xt) (11)

holds with probability ≥ 1− δ.

Lemma 3 (Bounding Term 2). Pick a δ ∈ (0, 1) and set

β1
t = 2log(π

2t2

3δ ) + 2dlog(2bd
√
log( 2Da

δ )t2). Then, under
Assumption 1 there exists a x′ ∈ S(A, z∗t ) such that

fmax
S0
t

≤ μt−1(x
′) +

√
β1
t σt−1(x

′) +
1

t2
(12)

holds with probability ≥ 1− δ.

Lemma 4 (Bounding Term 1). Pick a δ ∈ (0, 1) and set

v0 = 2b
√

log( 2Da
δ )(Γ(D− d+ 1))

1
D−d , where Γ(D− d+

1) = (D − d)!. With probability at least 1− δ, we have

f(x∗)− fmax
S0
t

≤ v0(
1

|Zt|
log(

2

δ
))

1
D−d . (13)

All proofs are provided in details in Supplementary Ma-
terial. Different from confidence bound techniques that are
used to bound Term 2 and Term 3, we use the randomisation
techniques on sampled set Zt and a result from (Wang 2005)
to bound Term 1. Combining the results from Lemmas 2, 3
and 4 we obtain a bound on rt and then sum it over iteration
1 to T to obtain the following theorem providing an upper
bound on the cumulative regret RT . The notation O∗ is a
variant of O, where log factors are suppressed.

Theorem 1. Pick a δ ∈ (0, 1). Then, the cumulative regret
of the proposed MS-UCB algorithm is bounded as

• RT ≤ O∗(
√
dTγT +D) if α ≥ D − d− 1.

• RT ≤ O∗(
√
dTγT + D2−Dd

D−d−α−1T
1− α+1

D−d ) if 0 ≤ α <
D − d− 1.

with probability greater than 1−δ, where γT is the maximum
information gain about the function f from any set of obser-
vations of size T . α is related to the number of subspaces
chosen as Nt = N0t

α.

Next, we show that if the objective function has a low
dimensional effective subspace meaning when there are di-
rections in which the function is constant, our algorithm
can benefit automatically from this structure. The following
Theorem provides a regret bound for this scenario.

Theorem 2 (For functions having an effective subspace).
Pick a δ ∈ (0, 1). If there exists a linear subspace T ⊂ R

D

with de dimensions such that ∀x ∈ R
D, f(x) = f(x�)

where x� ∈ T is the orthogonal projection of x onto T ,
then

• RT ≤ O∗(
√
dTγT + de) if α ≥ de − 1.

• RT ≤ O∗(
√
dTγT +

d2
e

de−α−1T
1−(α+1)/de) if 0 ≤ α <

de − 1.

with probability greater than 1 − δ, where γT is the maxi-
mum information gain about the function f from any set of
observations of size T .
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Discussion

There are two important parameters in our method, (1) the
dimension d that is used for acquisition function maximi-
sation and (2) parameter α that is related to the number of
subspaces on which the acquisition function is maximised.
In this section, we provide a discussion on these parameters.
We also analyse the computational cost involved in max-
imising the acquisition function comparing it with that of
GP-UCB.

On Dimension d. The proposed MS-UCB algorithm is ap-
plied for 1 ≤ d < D, We consider two extreme cases where
d = 0 or d = D.

• For d = 0, our Definition 1 is still valid however, in
this case, the space Y is degenerated to 0. It follows that
S(A, z) = {z} that means that the subspace becomes a
unique point. The acquisition step becomes finding the
maximiser of the acquisition function of a set of sam-
pled points. We obtain the same result as in Theorem 1 for
d = 0 with a slight modification of βt = 4log(π2t2/2δ)
for Algorithm 1.

• For d = D, the space Z is degenerated into 0 and space Y
becomes space X . In this case, the idea of using sampling
on space Z is not being utilised and the algorithm reduces
to the standard GP-UCB algorithm working directly on
the original high-dimensional space X .

On the Number of Subspaces. In Theorem 1, the param-
eter N0 does not affect the convergence rate of RT . We thus
only discuss the different cases of α. When α = 0, Theo-
rem 1 says that RT ≤ O∗(

√
dTγT + D2−Dd

D−d−1T
1−1/(D−d)).

Although the regret growth now has an additional term
T 1−1/(D−d), but even in this case our algorithm has a sub-
linear cumulative regret. As expected, larger the value of α,
tighter the cumulative regret until α ≥ D − d − 1, after
which the cumulative regret no longer depends on α as the
term T 1−(α+1)/(D−d) gets dominated by

√
dTγT . In this

case, RT ≤ O∗(
√
dTγT ) for a large enough T . Compar-

ison with regret bound of GP-UCB O∗(
√
DTγT ), our al-

gorithm’s bound is tighter by the factor
√
D. To our best

knowledge, ours is the first algorithm that obtains a cumula-
tive regret bound better than GP-UCB’s for any D being the
dimensional number of input space under the Assumption 1.

On the Computation Complexity. As mentioned in
(Kandasamy 2015), in any grid or branch and bound meth-
ods, maximising a function to within ζ accuracy, requires
O(ζ−D) calls to at. Since we need to solve |Zt| d dimen-
sional optimization problems for acquisition functions, it re-
quires only O(|Zt|ζ−d) calls.

In our algorithm, we consider Nt = N0t
α, and thus

|Zt| =
∑t

j=1 N0j
α, which can be bounded by (t+1)α+1−1

α+1
using the results from (Chlebus 2009). The largest com-
putation is at iteration T where |ZT | =

∑T
j=1 N0j

α <

N0(T + 1)α+1/(α + 1). To have reduced computations in

maximising the acquisition function, we should set α so
that (N0(T + 1)α+1/(α + 1))ζ−d < ζ−D. If we choose
ζ = 1

(T+1)2 and N0 = 1 then by choosing α < 2(D−d)−1,
the condition is satisfied. Thus, combining with Theorem 1,
we can say, if there exists

D − d− 1 ≤ α < 2(D − d)− 1

then our algorithm can obtain both a cumulative regret
O∗(

√
dTγT ) that is tighter than GP-UCB’s and a computa-

tional cost that is cheaper than GP-UCB’s when maximising
the acquisition function with 1

(T+1)2 - accuracy.

Experiments

To evaluate the performance of our MS-UCB, we have con-
ducted a set of experiments involving optimization of four
benchmark functions and two real applications. We compare
our approach against six baselines: (1) Standard GP-UCB
(Srinivas et al. 2012), (2) DropoutUCB (Li et al. 2017), (3)
LineBO (Kirschner et al. 2019) which restricts the search
space to a one-dimensional subspace, (4) SRE (Qian, Hu,
and Yu 2016) which uses sequential random embeddings
several times sequentially, (5) REMBO (Wang et al. 2013),
and (6) HeSBO (Nayebi, Munteanu, and Poloczek 2019)
which use hashing-enhanced embedded subspaces. Among
these baselines, the first three baselines do not make assump-
tions on the structure of the objective function, SRE assumes
a tiny effect for some of the dimensions i.e. ε-bounded while
REMBO and HeSBO assume a low effective dimensional
structure of the function.

For all experiments, we scale the search space of objective
functions to convert into [−1, 1]D. We implemented our pro-
posed MS-UCB, LineBO, DropoutUCB and SRE in Python
3 using GPy. For all other algorithms we used the authors’
reference implementations. For Gaussian process, we used
Matern kernel and estimated the kernel hyper-parameters
automatically from data. Each algorithm was randomly ini-
tialized with 20 points. To maximise the acquisition func-
tion, we used LBFGS-B algorithm with 10 × D random
starts.

Optimization of Benchmark Functions

In this section, we test the algorithms on several optimiza-
tion benchmark functions: Ackley, Levy, Hyper-Elippsoid
and Camelback functions. For the first three functions we
assume full dimensionality while for the two-dimensional
Camelback function, we simulate a scenario so that the func-
tion has a low dimensional effective subspace. For this, we
augment the Camelback function with auxiliary dimensions.
The Ackley function is widely used for testing optimization
algorithms. it is characterized by a nearly flat outer region
while the Hyper-Elippsoid function is used to demonstrate
that our algorithms can effectively work for functions with
interacting variables. We evaluate the progress of each al-
gorithm using the log distance to the true optimum, that
is, log10(f(x

∗) − f(xt)) where f(xt) is the function value
sampled at iteration t. For each test function, we repeat the
experiments 30 times. We plot the mean and a confidence
bound of one standard deviation across all the runs.
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Figure 1: Comparison of baselines and the proposed MS-UCB method on four standard functions for 20, 50 and 100 input
dimensions. For all cases, we set d = 5 except LineBO and GP-UCB. The y-axis presents log distance to the true optimum
(Smaller value is better).

On Scalability: We perform experiments to empirically
assess the scalability of our proposed MS-USB method and
the baselines and report the results in Figure 1. We choose
d = 5 for all methods except LineBO for which d = 1
is a requirement and the GP-UCB which works directly in
original D-dimensional space. We use N0 = 1, α = 0 as
parameters for our method. Recall that even with α = 0,
our method only has a sublinear cumulative regret growth.
We study the cases with different input dimensions: (D =
20, 50, 100). We can see that GP-UCB performs poorly in
most cases on all test functions. The poor performance of
GP-UCB is partly due to inaccurate solution of acquisition
function optimisation in high dimensions. On the other hand,
our method does better than all the baselines scaling well
with the dimensions. Our method overcomes the difficulty
by optimizing the acquisition function only on a set of d-
dimensional subspaces, and thus with a limited computation
budget, the acquisition function optimisation is performed
more accurately. Dropout and SRE that do not provide a
vanishing regret scale poorly with high dimensions. LineBO
performs poorly except for the Hyper-Ellipsoid function. For
the Camelback function with just two effective dimensions,
our method is still competitive to other methods that are
designed to exploit such structure. Our method achieves a
slightly better accuracy than SRE when D = 50 and the
best one when D = 100. Thus our proposed MS-UCB out-

(a) Hyper-Ellipsoid function (b) Ackley function

Figure 2: Log Regret vs iterations for varying number of
subspaces (N0 and α).

performs baselines and scales well in high dimensions.

On the number of subspaces: The number of subspaces
per iteration is a control parameter in our method. It is
set via N0 and in particular α. In Theorem 1, we show
that N0 does not affect much the regret. We study the ef-
fect of these parameters creating four MS-UCB variants:
(N0 = 1, α = 0), (N0 = 10, α = 0), (N0 = 1, α = 1)
and finally (N0 = 1, α = 2). We fix D = 100 and d = 5.
Figure 2 shows a comparison of these variants for Ackley
function and Hyper-Ellipsoid function. It indicates if we in-
crease N0 or α (extending the search space), the regret de-
creases. For the case where α = 2, we need to generate more
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(a) Hyper-Ellipsoid function (b) Ackley function

Figure 3: Log Regret vs iterations for varying dimension d.

subspaces at each iteration (at a quadratic rate: t2). This de-
mands more computational budget to maximise the acqui-
sition function. It may be the reason why compared to case
(N0 = 1, α = 0), the regret of case (N0 = 1, α = 2) im-
proved only slightly.

On subspace dimension d: Dimension d represents the
dimension of the subspace. It directly affects the compu-
tational requirement of acquisition function maximization,
and thus the BO optimization performance. As this compu-
tational requirement grows exponentially with increasing d,
it is often computationally hard to find the global maximum
in more than 10 dimensions. Thus we only study the value of
d up to 10, i.e. we study cases: d = 1, 2, 5, 10 for problems
in D = 100. We set N0 = 1, α = 0 in our method. Figure 3
shows the performance of our method for different cases of
d for 100 dimensional Ackley function and Hyper-Ellipsoid
function. It clearly indicates there is a faster convergence
rate for a larger d, though at a higher computational cost.

Learning Parameters of Machine Learning Models

Neural Network Parameter Search: We evaluate our al-
gorithm for learning the parameters of a neural network
model as proposed by (Nayebi, Munteanu, and Poloczek
2019). Here we are given a neural network with one hidden
layer having h nodes. The goal is to learn the weights be-
tween the hidden layer and the outputs in order to minimize
the loss on the MNIST data set ((LeCun and Cortes 2010)).
We denote these weights by W2. For all experiments, W2 is
optimized by Bayesian optimization while the other weights
and biases (we denote by W1) are optimized by the Adam
algorithm. We refer to (Oh, Gavves, and Welling 2018) for
more details. We try two cases: h = 10 and h = 50. Since
the network has 10 outputs (for 10 digits of MNIST), the two
cases lead to optimisation in dimensions 10× 10 = 100 and
50 × 10 = 500 respectively. Figure 5 shows the validation
loss for REMBO, LineBO, SRE, HeSBO and our proposed
MS-UCB. As seen from the figure, MS-UCB clearly outper-
forms the baselines for both cases.

Learning Classification Model with Ramp Loss: We
also test our algorithm to optimize the parameters of a
classification model with a nonconvex Ramp loss, follow-
ing (Qian, Hu, and Yu 2016). The task is to find a vec-
tor w and a scalar b to minimize f(w, b) = 1

2 ||w||22 +

C
∑L

l=1 Rs(yl(wT vl + b)), where vl are the training in-
stances and yl ∈ {−1,+1} are the corresponding labels.

Figure 4: The neural network benchmark with target di-
mension d = 10, N0 = 1, α = 1 for two case where
W2 = 10× 10 and W2 = 50× 10. For all experiments, W2

is optimized by Bayesian optimization while other weights
and biases are optimized by Adam algorithm.

Figure 5: Left panel shows the progress of function values
vs time for s = 0 and C = 1. Right panel shows the com-
parison of achieved loss function values against the hyper-
parameter C of the Ramp loss.

Rs(u) = H1(u) − Hs(u) with s < 1 where Hs(u) =
max(0, s − u). We use the Gisette dataset from the UCI
repository (Newman and Merz 1998) with dimension D =
5000. We study the effectiveness of all algorithms fixing the
hyper-parameters to s = 0 and C ∈ {1, 2, 5, 10}. We set
d = 10 for REMBO, SRE, HeSBO and our method. For
SRE, we set the number of sequential random embeddings
m = 5 as suggested in (Qian, Hu, and Yu 2016). For our
method, we consider the variant MS-UCB-1,1). As shown in
Figure 5, our method has consistently the best performance
across different settings of C, followed by SRE. REMBO,
LineBO, HESBO perform poorly for this application. This
shows the effectiveness of our method.

Conclusion

We propose a scalable Bayesian optimisation to optimise
expensive blackbox functions in high dimensions. Unlike
many previous existing methods, our algorithm does not
make any additional assumption about the structure of the
function (e.g. low effective dimension and additivity). In our
method the acquisition function only requires maximisation
on a discrete set of low dimensional subspaces embedded
in the original high-dimensional search space and thus does
not have high computational requirements for maximising
acquisition functions. By varying the number of low dimen-
sional subspaces, our algorithm has a flexibility to trade the
optimisation convergence rate with the computational bud-
get. This feature is important for many practical applica-
tions. We analyse our algorithm theoretically and show that
irrespective of the number of subspaces, our algorithm al-
ways has a sublinear growth rate for cumulative regret. Fur-
ther, we provide a regime for the number of subspaces where
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our algorithm has both tighter regret bound as well as lower
computational requirement compared to the GP-UCB algo-
rithm of (Srinivas et al. 2012). We perform experiments for
many optimisation problems in high dimensions and show
that the sample efficiency of our algorithm is better than the
existing methods given the same computational budget for
optimising acquisition function.
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