
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Enumerating Maximal k-Plexes with Worst-Case Time Guarantee

Yi Zhou,1 Jingwei Xu,1 Zhenyu Guo,1 Mingyu Xiao,1 Yan Jin2∗
1University of Electronic Science and Technology of China,

2Huazhong University of Science and Technology
zhou.yi@uestc.edu.cn, {Jingw.Xu, Harry.Guo}@outlook.com, myxiao@gmail.com, jinyan@mail.hust.edu.cn.

Abstract

The problem of enumerating all maximal cliques in a graph
is a key primitive in a variety of real-world applications such
as community detection and so on. However, in practice,
communities are rarely formed as cliques due to data noise.
Hence, k-plex, a subgraph in which any vertex is adjacent
to all but at most k vertices, is introduced as a relaxation of
clique. In this paper, we investigate the problem of enumerat-
ing all maximal k-plexes and present FaPlexen, an enumera-
tion algorithm which integrates the “pivot” heuristic and new
branching schemes. To our best knowledge, for the first time,
FaPlexen lists all maximal k-plexes with provably worst-case
running time O(n2γn) in a graph with n vertices, where
γ < 2. Then, we propose another algorithm CommuPlex
which non-trivially extends FaPlexen to find all maximal k-
plexes of prescribed size for community detection in massive
real-life networks. We finally carry out experiments on both
real and synthetic graphs and demonstrate that our algorithms
run much faster than the state-of-the-art algorithms.

Introduction

The analysis of cohesive groups also known as communities
(or clusters) has received a lot of attention from researchers
of different areas like social and computer science, biology,
economics, physics and discrete mathematics. Clique, a sub-
graph where vertices are pairwise connected, is perhaps the
earliest and most studied community model. A large body
of literature has emerged in mining cliques with respect
to different goals, e.g., finding cliques from general graphs
(Xiao and Nagamochi 2017), sparse graphs (Chang, Yu, and
Qin 2013; Eppstein and Strash 2011) and uncertain graphs
(Mukherjee, Xu, and Tirthapura 2016), fitting the algorithm
in main memory (Cheng et al. 2012) and optimizing the run-
ning time as a function of the output (Conte et al. 2016).

In real-life applications, due to the existence of data noice,
large and closely linked cohesive groups can rarely appear as
cliques (Conte et al. 2017; 2018; Balasundaram, Butenko,
and Hicks 2011). So other forms of relaxed clique are re-
sorted to. For example, the k-core (Cheng et al. 2011), k-
club (Pajouh, Balasundaram, and Hicks 2016) and quasi-
clique (Veremyev et al. 2016) are such clique-like graphs

∗Corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which relax the vertex degree, pairwise distance of vertices
and edge density in induced subgraph, respectively. In this
paper, we mainly study the k-plex, a relax clique model
which has been receiving increasing popularity in recent
years (Gao et al. 2018; Conte et al. 2018; Xiao et al. 2017;
Conte et al. 2017).

A k-plex (k is a positive integer), first appeared in (Seid-
man and Foster 1978), is a subgraph such that the degree of
each vertex is at least n − k, n being the vertex number of
the subgraph. Intuitively, the k-plex mimics the clique but
each vertex can miss at most k − 1 links to the other ver-
tices. A k-plex is said to be maximal if it is not a subgraph
of any larger k-plex. To effectively use k-plexes in detect-
ing communities, a fundamental problem is to enumerate all
maximal k-plexes.

Most existing maximal k-plex enumeration algorithms
originate from the celebrated Bron-Kerbosch algorithm by
(Bron and Kerbosch 1973), which was initially designed
for enumerating all maximal cliques. Wu and Pei (2007)
were the first ones of adapting the Bron-Kerbosch algorithm
to maximal k-plex (k ≥ 1) enumeration. Then, Wang et
al. (2017) improved the performance by integrating more
heuristic pruning rules and using multi-thread parallelization
technique. It is also worth mention that Conte et al. (2018)
modified the Bron-Kerbosch algorithm for finding commu-
nities, i.e., maximal k-plexes with specified connectivity and
cardinality constraints and Bentert et al. (2018) extended the
algorithm from static graphs to temporal graphs where edges
can appear and disappear in different time intervals.

Aside from Bron-Kerbosch families, Berlowitz, Cohen,
and Kimelfeld (2015) designed another type of k-plex enu-
meration algorithm, which optimizes the runtime between
the output of two consecutive solutions. Conte et al. (2017)
then integrated this algorithm into their framework which
reduces larger graphs via efficient k-core and clique compu-
tation.

Though we have observed a considerable number of al-
gorithms for enumerating maximal k-plexes, this problem
is still intrinsically hard since the numbers of maximal k-
plexes can be exponential to the size of a given graph. In-
deed, even finding a k-plex of specified size is NP-hard (Bal-
asundaram, Butenko, and Hicks 2011). As demonstrated in
this paper, existing Bron-Kerbosch-based algorithms enu-
merate all the maximal k-plexes in running time O(n22n)

2442

for an n-vertex graph in the worst-case. To some extent, this
result is frustrating as it suggests that the algorithms can po-
tentially degrade to the brute-force enumeration of all sub-
sets of vertices. However, in a specific condition where k =
1, Bron-Kerbosch algorithm can list all 1-plexes (cliques)
with worst-case running time O(1.414n) by a simple pivot
heuristic (Tomita, Tanaka, and Takahashi 2006). So, we may
naturally raise the following questions. Is it possible to im-
prove the worst-case running time of Bron-Kerbosch-based
algorithm for k > 1? Does there exist the “pivot” techniques
which Bron-Kerbosch-based algorithm breaks the trivial ex-
ponential bound of 2n for k > 1? We will answer the ques-
tions positively in this paper by proposing a new algorithm
with specified “pivot” heuristic.

From a practical point of view, it is also of great impor-
tance to apply the enumeration algorithms to mining com-
munities in large real-life networks. In the paper, we study
the community detection problem defined in (Conte et al.
2018) in which a community is mapped to a maximal k-plex
of specified constraints. Since the real-life graphs are often
massive, e.g., the DBLP co-authorship networks have up to
317,080 nodes and more than 1 million edges (Leskovec
and Krevl 2014), we present our techniques for enumerat-
ing large communities from networks with millions even bil-
lions of vertices in the reminder.

In summary, in this paper, we make the following main
contributions.

1. We propose an efficient algorithm called FaPlexen for
enumerating maximal k-plexes with novel pivot heuris-
tic and branching scheme. Theoretically, in a graph with
n vertices, FaPlexen enumerates all maximal k-plexes
within provably worst-case running timeO(n2γn

k) where
γk < 2 is a value related to k, e.g., γ2 = 1.839. We
conduct empirical tests and confirm that for randomly
generated graphs and hard DIMACS benchmark graphs,
FaPlexen runs much faster than other recent best-known
algorithms.

2. For community detection purpose, we extend FaPlexen
to find maximal k-plexes with prescribed size and ob-
tain a refined algorithm, CommuPlex. CommuPlex en-
joys good scalability as it breaks the input graph into
small parts and each part is independently enumerated
via our proposed algorithm. In massive real-life graphs,
CommuPlex competes favourably with the D2K (Conte
et al. 2018), the best-known algorithm dedicated to this
problem.

3. All the codes and data are publicly available at https://
github.com/aaai20-id9699/faplex.

Notations and problem statements

Let G = (V,E) be a simple and undirected graph, where V
and E are the vertex and edge set, respectively. For a vertex
set S ⊆ V , G[S] is the subgraph induced by S. For any
vertex v, let NG(v) be the set of neighbors of v, i.e., the set
of vertices adjacent to v, N2

G(v) be the 2-hop neighbors of
v, i.e., the set of neighbors of neighbors of v, except vertex v
and vertices of NG(v) themselves. |NG(v)| is the degree of

v in G. Besides, we use NG(v) to denote the non-neighbors
of v, that is, the set V \NG(v). Note that v ∈ NG(v).

The distance between two connected vertices u and v in
G, which is the shortest length of path between u and v
in G, is denoted by distG(u, v). The diameter of graph G,
diam(G[S]), is defined as the maximum distance among all
the pairs of vertices in G.

A graph G is a clique if G is complete. A graph G =
(V,E) is a k-plex where k is a positive number, if, for any
vertex v ∈ V , |NG(v)| ≥ |V |−k. k-plex is a generalization
of clique as a 1-plex is a clique.

Given a k-plex (clique) G[S] from G, G[S] is a maximal
k-plex (clique) in G if there is no any other set S′ such that
S ⊂ S′ and G[S′] is a k-plex (clique). Intuitively, a maximal
k-plex is not contained in a larger one. For all the maximal
k-plexes in a graph, the ones with largest number of vertices
are maximum k-plexes.

In this paper, we mainly investigate the maximal k-plex
enumeration problem which is formulated as follows.
Problem 1. Given an undirected graph G = (V,E), a pos-
itive integer k, list all the maximal k-plexes induced from
G.

It is known that maximal k-plexes can represent commu-
nities in complex networks (Xiao et al. 2017; Balasundaram,
Butenko, and Hicks 2011; Pattillo, Youssef, and Butenko
2013). In real-life, a community is a set of cohesively con-
nected members and the size of a community is not trivial,
e.g. a community with one of two members is insignificant
in applications. In contrast, a maximal k-plex can be a small,
disconnected graph, e.g., an independent set of k vertices.
To bridge the gap between maximal k-plexes and real com-
munities, Conte et al. (2018) recently recast the community
detection problem as the following constrained k-plex enu-
meration problem.
Problem 2 (Community detection). Given an undirected
graph (network) G = (V,E), detecting all the communi-
ties (subset) S ⊆ V such that (1)G[S] is a maximal k-plex
and the |S| is not smaller than the threshold q (q > 0 is an
integer), (2)G[S] is connected and (3) the diameter of G[S]
is not larger than 2, i.e., diam(G[S]) ≤ 2.

By conclusions of (Xiao et al. 2017), if G[S] is a k-plex
and |S| ≥ 2k− 2, then G[S] must be a connected graph and
diam(G[S]) ≤ 2. Therefore, assume q ≥ 2k − 2, Problem
2 can be reformulated in a more compact way.
Problem 3. Given an undirected graph (network) G =
(V,E), listing all the maximal k-plexes with at least q ver-
tices where q ≥ 2k − 2 .

Enumerating all maximal k-plexes

Conventional Algorithms

Existing algorithms for maximal k-plex enumeration such
as these in (Conte et al. 2018; Wang et al. 2017; Wu and
Pei 2007) stem from the Bron-Kerbosch algorithm which
was originally designed from maximal cliques enumeration
(Bron and Kerbosch 1973). We first sketch this algorith-
mic framework before further discussion. Let us name it as
Plexen as shown in Alg. 1

2443

In general, Plexen starts from calling recursive procedure
Plexen-Rec. Plexen-Rec provides three disjoint sets of ver-
tices, P , Cand and Excl as arguments, where P induces a
k-plex and Cand∪Excl are the vertices, each of which can
form a k-plex with P . However, Cand are candidate ver-
tices that will be considered to be added to P , while Excl
are exclusive vertices that must be excluded from the k-plex.
With these three sets, Plexen-Rec lists all maximal k-plexes
in the subgraph induced by P ∪ Cand such that for each of
these maximal k-plexes P ′,
• P ⊆ P ′ and,
• ∀v ∈ Excl,G[{v} ∪ P ′] is not a k-plex in G.

Given a graph G = (V,E) and an integer k > 0, Plexen-
Rec is initialized with P = Excl = ∅ and Cand = V . In
lines 6-9, if both Cand and Excl become empty, then G[P]
is a solution not being enumerated yet. If Excl is not empty,
then for each v ∈ Excl, P∪{v} induces a k-plex and thus P
is not maximal. In each iteration in lines 10-14, Plexen-Rec
chooses a vertex u from Cand, and calls itself with u moved
from Cand to P . The iteration stops when Cand becomes
empty. The update procedure prunes vertices which cannot
form a k-plex with P from Cand and Excl.

Algorithm 1: The recursion scheme of conventional k-
plex enumeration

1 Plexen(G, k)
2 begin
3 Plexen-Rec(G, k, ∅, V, ∅)
4 Plexen-Rec(G, k, P,Cand,Excl)
5 begin
6 if Cand = ∅ then
7 if Excl = ∅ then
8 emit P

9 else
10 for u ∈ Cand do
11 Cand← Cand \ {u}
12 Cand′, Excl′ ←

update(G, k, P ∪ {u}, Cand,Excl)
13 Plexen-Rec(G, k, P ∪ {u}, Cand′, Excl′)
14 Excl← Excl ∪ {u}

15 update(G, k, P,Cand,Excl)
16 begin
17 Cand′ ← {v ∈ Cand : P ∪ {v} is a k-plex}
18 Excl′ ← {v ∈ Excl : P ∪ {v} is a k-plex}
19 return Cand’,Excl’

Complexity analysis For complexity analysis in this pa-
per, the following lemma is important.
Lemma 1. The function update(G, k, P, Cand,Excl) runs
in time O(|P |2 + |P |(|Cand|+ |Excl|)).
Proof. We justify the correctness of this lemma by showing
that update can be implemented by two steps. First, find all

vertices u from P such that |NG(v) ∩ P | = |P | − k. This
step can be finished within running time O(|P |2). Second,
for each vertex in v ∈ Cand∪Excl, determine if v can form
a k-plex with P . When G[P] is a k-plex, P ∪{v} is a k-plex
if and only if v satisfies both the two following conditions.
(1) v is adjacent to all the vertices u which satisfies u ∈ P
and |NP (u)| = |P | − k. (2) |NG(v) ∩ P | ≥ |P | + 1 − k.
Thus, one can decide if v ∈ Cand∪Excl should be pruned
in time O(|P |). Finally, the whole running time of update is
O(|P |2 + |P |(|Cand|+ |Excl|)).

Now, consider the case where the input graph of Plexen,
G = (V,E), is a k-plex itself. Due to the hereditary prop-
erty of k-plex (Pattillo, Youssef, and Butenko 2013), any in-
duced subgraph of G is a k-plex. Thus, for each P ⊆ V ,
update will not remove any vertex from Cand. With this
in mind, one can notice that Plexen-Rec will be called for
each P equals to a different subset of V , i.e., for a total
number of 2|V | times. Combining with Lemma 1, the run-
ning time of update can be assumed as O(|V |2). Hence, the
whole running time of Plexen in this case is O(|V |22|V |). It
is the worst-case running time complexity of Plexen.

In the above case, there is only one maximal k-plex in G,
i.e., G itself. It is natural to raise the question that if one can
improve the worst-case time complexity of Plexen by avoid-
ing the above case. That is to say, when G[P ∪Cand] is a k-
plex, stops Plexen-Rec and emit P∪Cand if G[P∪Cand] is
maximal. This is implemented in (Wang et al. 2017). How-
ever, so far, there is still no evidence that this algorithm is
better than O(2|V |) in the worst-case.

A new approach, FaPlexen
Suppose G, k, P,Cand and Excl are the input arguments of
Plexen-Rec in Alg. 1. As we just mentioned, if G[P ∪Cand]
is a k-plex, then there is no need to do further recursive
search. But what if this is not the case? We have the fol-
lowing observation.

Lemma 2. If G[P ∪ Cand] is not a k-plex, then there
exists up ∈ P ∪ Cand such that |NG[P∪Cand](up)| <
|P |+ |Cand| − k, meanwhile, for any maximal k-plex con-
taining P , either up is not in the maximal k-plex, or at most
k − (|NG(up) ∩ P |) vertices from Cand \NG(up) is in the
maximal k-plex.

The statement can be justified by the definition of k-plex.
It inspires us a pivot heuristic to improve Plexen. Let us call
the improved algorithm FaPlexen. FaPlexen also starts with
calling a recursive procedure, namely FaPlexen-Rec, which
receives the same input parameters P,Cand and Excl as
Plexen-Rec. However, the search procedure of FaPlexen-Rec
is quite different. First, FaPlexen-Rec finds a pivot vertex
up ∈ P ∪ Cand which has the minimum degree in G[P ∪
Cand], then it continues the search with the following steps.
For brevity, let us denote G′ = G[P ∪ Cand].

• If |NG′(up)| ≥ |P |+ |Cand|−k, then G′ is a k-plex, we
emit G′ if it is maximal.

• Otherwise, the search continues with respect to the two
disjoint cases: up ∈ P and up /∈ P .

2444

(a) If up ∈ P , then we can move at most k− (|NG(up)∩
P |) vertices from Cand \ NG(up) to P without missing
any k-plex by Lemma 2. Let us denote Doing = Cand \
NG(up) = {v1, ..., vd} where d is the size of Doing, p =

k − (|NG(up) ∩ P |). Note that p < k by the definition of
p and p ≤ d − 1 since p = d implies that G′ is a k-plex.
FaPlexen-Rec generates p + 1 branches, each of which
computes P ′, Cand′ and Excl′ as follows.
1. In the first branch, P ′ ← P , Excl′ ← Excl ∪ {v1}

and Cand′ ← Cand \ {v1}.
2. For i ∈ {2, ..., p}, in the ith branch, P ′ ← P ∪
{v1, ..., vi−1}, Excl′ ← Excl ∪ {vi} and Cand′ ←
Cand \ {v1, ..., vi}.

3. In the last, i.e.(p+1)th, branch, P ′ ← P ∪{v1, ..., vp},
Excl′ ← Excl and Cand′ ← Cand \ {v1, ..., vd}.

Then, in each branch, FaPlexen-Rec is recursively called
with input argument P ′,Cand′ and Excl′. Fig. 1 shows
an example of generating branches.

Figure 1: An example of generating branches.

Now, let us justify that the above branches neither miss
a maximal k-plex with up nor output the same maximal
k-plex multiple times.
Suppose S′ is a maximal k-plex with up ∈ S′ and S′
is not visited before. Let us denote C ′ = S′ ∩ Doing.
We first consider the case C ′ = Doing. In this case, S′
is emitted in the (p + 1)th branch without doubt. Mean-
while, in any other branches, at least one vertex of Doing
is moved to Excl′, ensuring that S′ cannot be emitted in
these branches, thus there is no duplication. Then, con-
sider C ′ ⊂ Doing. Let j be the smallest index such that
vj ∈ C ′ while vj+1 /∈ C ′. Then, we notice that in the
ith branch where i ≤ j, Plexen-Rec puts one vertex of
v1, ..., vj in Excl′, while in the lth branch where l > j+1,
Plexen-Rec puts vj+1 in P ′, both prohibiting the repro-
duction of S′. Therefore, except the (j + 1)th branches,
all the other branches do not produce the S∗. Hence, we
can make sure that the above branching strategy correct.

(b) If up ∈ Cand, we bipartition the search by an invo-
cation of FaPlexen-Rec with pivot vertex up moved from
Cand to P and another invocation of FaPlexen-Rec with
up moved from Cand to Excl.
We show the whole algorithm FaPlexen-Rec in Alg. 2.

In lines 3-5, we check the maximality P like Plexen-Rec.
After up is found in lines 7, FaPlexen-Rec checks if G[P ∪
Cand] is already a k-plex in line 8-11. If not, as we have
explained, FaPlexen-Rec generates p+1 branches if up ∈ P
or 2 branches otherwise.

Algorithm 2: The new recursion scheme of FaPlexen
1 FaPlexen-Rec(G, k, P, Cand,Excl)
2 begin
3 if Cand = ∅ then
4 if Excl = ∅ then
5 emit P

6 else
7 up ← a vertex of minimum degree in

G′ = G[P ∪ Cand]
8 if |NG′(up)| ≥ |P |+ |Cand| − k then
9 Cand′, Excl′ ←

update(G, k, P ∪ Cand, ∅, Excl)
10 if Excl′ = ∅ then
11 emit P ∪ Cand

12 else if up ∈ P then
13 Doing ← Cand \NG(up). Suppose

Doing = {v1, ..., vd} where d is the size
of Doing.

14 p← k − |NG(up) ∩ P |
15 for i← 1, ..., p+ 1 do
16 Build the ith P ′, Cand′ and Excl′
17 if G[P ′] is a k-plex then
18 Cand′, Excl′ ←

update(G, k, P ′, Cand′, Excl′)
19 FaPlexen-

Rec(G, k, P ′, Cand′, Excl′)

20 else
21 FaPlexen-

Rec(G, k, P, Cand \ {up}, Excl ∪ {up})
22 Cand′, Excl′ ← update(G, k, P ∪

{up}, Cand \ {up}, Excl)
23 FaPlexen-

Rec(G, k, P ∪ {up}, Cand′, Excl′)

Complexity analysis Given a graph G = (V,E) and an
integer k ≥ 1, we evaluate the worst-case running time of
FaPlexen(G, k) which is equivalent to the worst-case run-
ning time of FaPlexen-Rec(G, k, ∅, V, ∅). We begin with the
following definitions.
• Let T (m,n) be the worst-case running time of FaPlexen-

Rec(G, k, P,Cand,Excl) where m = |Cand|, n = |P ∪
Cand|. (|P | ≤ m− n, |Excl| ≤ |V | − n).

2445

• Consider a nonrecursive procedure FaPlexen-
Rec0(G, k, P,Cand,Excl) that is obtained by replacing
recursive calls at lines 19, 21 and 23 by FaPlexen-
Rec(G, k, P, ∅, Excl). It is appropriate to assume that the
running time of FaPlexen-Rec0(G, k, P,Cand,Excl)
is dominated by the update operations at lines 9, 18
and 22. Hence we can set the running time of update as
c1|V |2 where c1 > 0 is a constant by Lemma 1. Let us
assume that update procedure reduces no vertex in the
worst-case.
We now analyze T (m,n) via a case-by-case manner.

1. If Cand = ∅ (lines 3-5), then

T (m,n) = T (0, n) ≤ c2 (1)

where c2 is a constant.
2. If G′ is a k-plex, then there is no further branches as

shown in lines 8-11. So T (m,n) is dominated by update
operation, i.e.

T (m,n) ≤ c1|V |2. (2)

3. If up ∈ P (lines 12-19), we call p + 1 times FaPlexen-
Rec, each given a smaller Cand set. Specifically, we have

T (m,n) ≤
p∑

i=1

T (m− i, n− 1)

+ T (m− d, n− d+ p) + c1|V |2.
(3)

4. If up /∈ P , we have T (m,n) ≤ c1|V |2 + T (m − 1, n −
1) + T (m − 1, n) due to bipartition search in lines 21-
23. However, since no vertex is reduced from Cand \
{up} by update in line 22 in the worst-case, we can image
that in the next recursive call to FaPlexen-Rec in line 22,
up is still the vertex of minimum degree in G′. So, the
recurrence relation can be expanded as

T (m,n) ≤ c1|V |2 + T (m− 1, n− 1) + T (m− 1, n)

≤ c1|V |2 + T (m− 1, n− 1)

+ max{c2, c1|V |2,
p∑

i=1

T (m− 1− i, n− 1)

+ T (m− d− 1, n− d+ p) + c1|V |2}
(4)

We sketch how to compute the closed-form upper-bound of
T (m,n) which satisfies (in)equalities (1)-(4). First, one can
notice that the second item of T (m,n), n, can be dropped
from (1)-(4) without loss of generality. Then, we observe
that the largest T (m) is upper-bounded by (1) and (4), i.e.

T (m) ≤

⎧⎪⎪⎨
⎪⎪⎩

c2 if m = 0,

2c1|V |2 +
p∑

i=0

T (m− 1− i)

+T (m− d− 1) otherwise.
(5)

Combining with the fact that p ≤ d − 1 and p < k, it is
not hard to verify that when p = k − 1 and d = k, we can

reach the maximum of T (m) via Inequality (5). We leave
the detailed procedure of solving T (m) in complementary
materials by directly showing that T (m) ∈ O(αkγ

m
k − βk)

where γk is the largest real root of xk+2 − 2xk+1 + 1 =

0, βk = 2c2|V |2
k and αk = maxk+1

i=1 { (2
i−1k+1)βk+2i−1c1

γi
k

}.
As FaPlexen calls FaPlexen-Rec with m = |V | and k is a
constant, we finally have the following result.

Theorem 1. Given an undirected graph G = (V,E), a pos-
itive integer k ≥ 1, FaPlexen enumerates all maximal k-
plexes in time O(|V |2γ|V |

k) where γk is the largest real root
of xk+2 − 2xk+1 + 1 = 0. For example, when k = 1, 2, 3, 4
and 5, γk = 1.618, 1.839, 1.928, 1.966 and 1.984, respec-
tively.

To the best of our knowledge, it is the first algorithm with
worst-running time guaranteed to be better than the trivial
2|V | bound for enumerating maximal k-plexes when k > 2.

Enumeration all maximal k-plexes of

prescribed size

We now extend FaPlexen to solve Problem 3, i.e., listing all
maximal k-plexes with size larger than q, which is equiva-
lent to find communities as defined by Problem 2. A natural
idea is to call FaPlexen and screen out maximal k-plexes of
size smaller than q. However, this approach scales poorly to
real-life massive graphs by Theorem 1. Hence, we mitigate
this issue via CommuPlex as shown in Alg. 3

Algorithm 3: Community detection via k-plex enumer-
ation

1 CommuPlex(G, k, q)
2 begin
3 Sort V by degeneracy order as {v1, ..., vn}
4 for i← 1, ..., n and c(vi) ≥ q − k do

5 Cand← {vi+1, ..., vn} ∩ (NG(vi) ∪N2
G(vi))

6 Excl← {v1, ..., vi−1} ∩ (NG(vi) ∪N2
G(vi))

7 Prune vertices from Cand and Excl which
satisfies Rule 1.
/* Notice that FaPlexen-Rec

below does not report k-plex
smaller than q. */

8 FaPlexen-Rec(G, k, {vi}, Cand,Excl)

For a graph G = (V,E), the degeneracy order is a permu-
tation of vertices {v1, ..., vn} such that every vertices vi has
the minimum degree in subgraph induced by {vi, ..., vn}.
The degree of vi in G[{vi, ..., vn}] is called core number of
vi, i.e., c(vi) and the largest core number among all vertices
is degeneracy of G.

Generally, CommuPlex sorts the vertices by degener-
acy order, then for each vi in degeneracy order, Commu-
Plex searches k-plexes with vi in the subgraph induced by
{vi, vi+1, ..., vn}.

Specifically, in line 4, we omit vertices which have core
number smaller than q − k. Clearly, this does not affect

2446

the correctness of our algorithm by the definition of k-plex.
In lines 5 and 6, we restrict Cand and Excl in NG(vi) ∪
N2

G(vi) since the k-plex we are searching is bounded by di-
ameter 2. In line 7, we further prune vertices from Cand and
Excl which satisfies the following rule.

Prune Rule 1. Given a graph G = (V,E), if vi ∈ P , G[P]
is a k-plex and |P | ≥ q (q ≥ 2k − 2), then any other vertex
u which satisfies either of the following conditions is not in
the P .

• u ∈ NG(v) and |NG(u) ∩NG(vi)| < q − 2k + 2,
• u ∈ N2

G(v) and |NG(u) ∩NG(vi)| < q − 2k.

The correctness of the above rules can be verified without
too much efforts thus we omit the proof.

Given massive sparse real-life graphs G = (V,E), we
now analyze the worst-case time complexity of CommuPlex.
First, the degeneracy order can be efficiently computed in
time O(|E|) (Batagelj and Zaversnik 2003). So the crux is
to estimate the worst-case running time of FaPlexen-Rec in
line 8. Let D denotes the maximum degree of G, Δ denotes
the degeneracy of G. By the property of degeneracy order,
it is clear |Cand| ≤ DΔ and |Excl| ≤ Δ2 in lines 5 and
6. A further study of Prune Rule 1 discloses that the sizes of
Cand and Excl after line 7 are bounded byO(DΔ

q−2k+2) and

O(Δ2

q−2k+2), respectively. Now, we can assume that update

procedure of FaPlexen-Rec runs in time O(Δ3D
(q−2k+2)2) by

Lemma 1. Following the procedure of analyzing FaPlexen-
Rec, we end up by the conclusion that the worst-case time
complexity of CommuPlex is O(|V | Δ3D

(q−2k+2)2 γ
ΔD
k). Let k

and q be two constant value, the following statement holds.

Theorem 2. Given a graph G = (V,E) with maximum de-
gree D and degeneracy Δ, CommuPlex finds all maximal
k-plexes of size at least q (q ≥ 2k − 2) (Problem 2 and 3)
in timeO(|V |Δ3DγΔD

k) where γk is the largest real root of
xk+2 − 2xk+1 + 1 = 0.

Experiments

In this section, we carry out experiments to evaluate the pro-
posed algorithms.

Experiments setup The codes are written in C++ and
compiled by g++ with optimization option ‘-O3’. All the
experiments are conducted on a computer with a CentOS
operating system an Intel 3106 CPU (1.7GHz, 8 cores) with
8G memory.

We appreciate the authors of LP (Berlowitz, Cohen, and
Kimelfeld 2015), GP (Wang et al. 2017) and D2K (Conte
et al. 2018) for publishing their codes. As far as we know,
the three solvers are among the most recent and competi-
tive algorithms for enumerating maximal k-plexes. We also
revised the codes of GP since it misses maximal k-plexes
in certain cases. These algorithms are compiled with their
makefiles and executed in single-thread mode. Since GP
and LP are algorithms of enumerating maximal k-plexes,
we compare FaPlexen with LP and GP. D2K is dedicated to
find constrained maximal k-plexes defined in Problem 2 in

large graphs, therefore, we compare CommuPlex with D2K
in massive real-life graphs. We set the cut off time for each
algorithm as 1 day (86400 seconds) for each tested instance.

Table 1: The running time of enumerating maximal k-plexes
in random graphs.

Graph k #k-plexes The running time (s)
FaPlexen GP LP

G(100, 0.1)

2 4449 0.03 0.22 53
3 216556 0.93 8.12 15042.94
4 4061449 15.95 229.73 inf
5 77342779 367.69 2388.74 inf

G(100, 0.2)

2 13381 0.06 1.447 186.08
3 452145 2.25 14.91 41927.63
4 9241090 51.07 153.6 486.61
5 167704159 999.73 2140.98 inf

G(100, 0.3)

2 43422 0.17 5.478 1442.25
3 1223082 6.81 45.75 inf
4 30010268 148.43 669.15 inf
5 608724252 3621.65 18366.47 inf

G(100, 0.4)

2 128151 0.69 14.8 9799.18
3 5054590 34.25 194.27 inf
4 151668073 1173.20 7605.75 inf
5 3681305426 30328.02 inf inf

G(100, 0.5)

2 698211 4.46 38.47 28426.02
3 35550150 312.94 3248.46 inf
4 1439934196 1173.20 7605.75 inf

G(100, 0.6)
2 3537594 30.57 381.42 inf
3 271465956 3636.09 36520.96 inf

G(100, 0.7) 2 35557201 456.17 5799.15 inf
G(100, 0.8) 2 1130355448 32397.67 inf inf
G(500, 0.1) 2 687111 8.08 31.41 82893.97

3 91709174 1138.54 1940.73 inf
G(500, 0.2) 2 7587578 73.15 381.54 inf

3 867004746 9536.80 49376.75 inf
G(500, 0.3) 2 69246850 830.10 6561.74 inf
G(500, 0.4) 2 1168708597 21105.59 inf inf

CA-GrQc
(5242, 28980) 2 13718439 2788.55 inf inf

celegans
(453, 2025)

2 104518 2.09 726.03 5310.93
3 16053622 254.94 inf inf
4 1734552825 26447.71 inf inf

ia-infect-hyper
(113, 2196)

2 175887 1.47 1754.12 inf
3 6523528 61.68 inf inf
4 180196030 1881.7 inf inf
5 3845997332 45522.32 inf inf

web-edu
(3031, 6474) 2 4585512 408.94 inf inf

Enumerating maximal k-plexes We compare GP, LP
with FaPlexen for random and real graphs. In a random
graph G(n, prob), there are n vertices and an edge ex-
ists between any two vertices with an unified probability
prob ∈ [0, 1]. We show the results of random graphs with
n ranging in {100, 500} and prob varying in {0.1, ..., 0.9}
in Table 1. In this table, we also demonstrate the results of
5 real graphs which are used in (Wang et al. 2017). We set
k = 2, 3, 4 and 5. In order to save space, we exclude the
very easy instances that are solved by all algorithms in less
than 1 seconds and the difficult ones that both algorithms
fail to solve within 1 day. Column “#k-plexes” demonstrates
the total number of maximal k-plexes in the graph, the la-
bel “inf” indicates that the algorithm does not finish in 1
day or the program runs out-of-memory. Clearly, FaPlexen
is substantially better than other algorithms for almost all

2447

Figure 2: The number of 2nd DIMACS graphs solved by FaPlexen, GP and LP

Table 2: The running time for community detection.
Graph
(|V |, |E|) k q #k-plexes The running time (s) Graph

(|V |, |E|) k q #k-plexes The running time (s)
CommuPlex D2K CommuPlex D2K

Amazon0505
(410236, 3356824)

2
12 376 3.43 1.43

Wiki-Vote
(8298, 100761)

2
12 2919931 121.09 262.06

20 0 0.31 1.27 20 52 4.60 24.71
30 0 0.34 1.32 30 0 1.52 0.07

3
12 6347 17.06 1.60

3
12 458153396 17187.20 44178.64

20 0 0.30 1.36 20 156727 331.76 4365.72
30 0 0.35 1.30 30 0 1.45 341.17

4
12 105649 44.38 8.40

4
12 9773156 inf 11682.45

20 0 0.56 1.22 20 46729532 84180.32 inf
30 0 0.32 1.41 30 0 5.97 0.20

Email-EuAll
(265214, 420045)

2
12 412779 9.12 24.87

soc-pokec
-relationships
(1632803, 30622564)

2
12 7679906 5949.84 437.61

20 0 2.08 1.25 20 94184 1629.28 46.50
30 0 1.05 0.28 30 3 543.99 9.92

3
12 32639016 858.41 1981.38

3
12 520888893 17759.73 33085.17

20 2637 10.05 98.62 20 5911456 1909.81 1360.47
30 0 1.12 0.263 30 5 851.52 14.50

4 20 1707177 833.36 6008.21 4 20 318035938 37716.04 inf
30 0 1.26 0.224 30 4515 1125.52 225.57

Slashdot090221
(82144, 500480)

2
12 27208777 683.57 743.43

soc-Epinions1
(75879, 508837)

2
12 49823056 1412.64 2018.643

20 11411028 351.91 459.81 20 3322167 165.00 476.024
30 453 14.06 41.65 30 0 11.38 28.131

3 12 2807943240 79641.40 76759.21
3

20 548634119 28538.47 75171.243
20 1303148522 46292.76 42227.49 30 16066 222.50 5071.633
30 1679468 429.96 5117.93 4 30 13172906 53793.02 inf

4 30 502699966 77217.32 inf jazz
(198, 2742)

3 12 93969 1.23 1.88
caida
(26475, 53381)

3 12 281251 7.45 29.54 4 12 2745953 49.63 77.33

4 12 15939883 448.64 1788.25 CA-GrQc
(5241, 14484) 4 12 128932 1.00 1.13

the instances. A speed-up of 2-10 orders of magnitude is of-
ten observed. In random graphs, for each k, the speed-up
of FaPlexen even grows with density when the number of
vertices is fixed.

The 2nd DIMACS graphs are well-known difficult bench-
marks for clique problems. We then compare the running
times of FaPlexen with GP and LP on all 80 2nd DIMACS
graphs with k=2, 3, 4 and 5. In Fig. 2, we show the number
of solved graphs against the elapsed time. Clearly, FaPlexen
solves more instances than GP and LP for all ks. LP can
only solves 1 to 2 graphs when k = 3 and 4, possibly caused
by the fact that it does not optimize the worst-case run-
ning time. As k grows, the problem becomes harder since
all the algorithms can solves fewer instances in the same
time frame. We publish the detailed computational results of
these graphs along with the codes.

Enumerating size-constrained k-plexes (Community de-
tection) We compare CommuPlex with D2K for networks
in Stanford Large Network Dateset Collection (SNAP)
(Leskovec and Krevl 2014) and Laboratory for Web Al-

gorithmics (LAW) 1. In Table 2, we show the benchmarks
which have been used in (Conte et al. 2018) with k = 2, 3, 4
and q = 12, 20, 30. In order to save space, we exclude the
very easy instances that are solved by both algorithms in less
than 1 seconds and the difficult ones that both algorithms fail
to solve within 1 day.

The results are shown in Table 2 by the same format
as Table 1. For the computation of 4-plexes with q = 30
for graphs Slashdot090221 and soc-Epinions1, CommuPlex
was as able to found the all communities while D2K not.
For graphs like soc-Epinions1, jazz and CA-GrQc, our algo-
rithm outperforms D2K for all ks and qs, while for the other
graphs, CommuPlex competes with D2K for different set-
tings of k and q. Generally, the results shows the superiority
of CommuPlex over D2K for more than half of the instances.

Conclusion

We proposed FaPlexen, a fast algorithm for enumerating
maximal k-plexes. By taking advantages of the framework

1http://law.di.unimi.it/

2448

of Bron-Kerbosch algorithm, we developed a new pivot se-
lection and a branching strategy for FaPlexen. Based on
FaPlexen and degeneracy ordering, we further obtained a
scalable algorithm which enumerates all maximal k-plexes
of a size larger than a given bound, namely, CommuPlex. Ex-
tensive theoretical and empirical evaluations show that the
proposed algorithms can compete with the state-of-the-art
algorithms in terms of worst-case time complexity and com-
putation experiments.

Our work not only provides new insights to the fundamen-
tal problem of enumerating all maximal k-plexes but also
paves the road of the utilization k-plex enumeration algo-
rithm in future graph mining tasks.

Acknowledgements

The work is supported by Natural Science Foundation
of China (61802049, 61602196, 61972070) and UESTC
(ZYGX2018KYQD210).

References

Balasundaram, B.; Butenko, S.; and Hicks, I. V. 2011.
Clique relaxations in social network analysis: The maximum
k-plex problem. Operations Research 59(1):133–142.
Batagelj, V., and Zaversnik, M. 2003. An o(m) algo-
rithm for cores decomposition of networks. arXiv preprint
cs/0310049.
Bentert, M.; Himmel, A.-S.; Molter, H.; Marik, M.; Nieder-
meier, R.; and Saitenmacher, R. 2018. Listing all maximal
k-plexes in temporal graphs. In 2018 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis
and Mining (ASONAM), 41–46. IEEE.
Berlowitz, D.; Cohen, S.; and Kimelfeld, B. 2015. Effi-
cient enumeration of maximal k-plexes. In Proceedings of
the 2015 ACM SIGMOD International Conference on Man-
agement of Data, 431–444. ACM.
Bron, C., and Kerbosch, J. 1973. Algorithm 457: Finding all
cliques of an undirected graph. Commun. ACM 16(9):575–
577.
Chang, L.; Yu, J. X.; and Qin, L. 2013. Fast maximal cliques
enumeration in sparse graphs. Algorithmica 66(1):173–186.
Cheng, J.; Ke, Y.; Chu, S.; and Özsu, M. T. 2011. Ef-
ficient core decomposition in massive networks. In 2011
IEEE 27th International Conference on Data Engineering,
51–62. IEEE.
Cheng, J.; Zhu, L.; Ke, Y.; and Chu, S. 2012. Fast algo-
rithms for maximal clique enumeration with limited mem-
ory. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, 1240–
1248. ACM.
Conte, A.; Grossi, R.; Marino, A.; and Versari, L. 2016.
Sublinear-space bounded-delay enumeration for massive
network analytics: Maximal cliques. In 43rd International
Colloquium on Automata, Languages, and Programming,
ICALP 2016, 148:1–148:15.
Conte, A.; Firmani, D.; Mordente, C.; Patrignani, M.; and
Torlone, R. 2017. Fast enumeration of large k-plexes. In

Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 115–
124. ACM.
Conte, A.; De Matteis, T.; De Sensi, D.; Grossi, R.; Marino,
A.; and Versari, L. 2018. D2k: Scalable community de-
tection in massive networks via small-diameter k-plexes. In
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 1272–
1281. ACM.
Eppstein, D., and Strash, D. 2011. Listing all maxi-
mal cliques in large sparse real-world graphs. In Interna-
tional Symposium on Experimental Algorithms, 364–375.
Springer.
Gao, J.; Chen, J.; Yin, M.; Chen, R.; and Wang, Y. 2018. An
exact algorithm for maximum k-plexes in massive graphs.
In IJCAI, 1449–1455.
Leskovec, J., and Krevl, A. 2014. SNAP Datasets: Stanford
large network dataset collection. http://snap.stanford.edu/
data.
Mukherjee, A. P.; Xu, P.; and Tirthapura, S. 2016. Enu-
meration of maximal cliques from an uncertain graph.
IEEE Transactions on Knowledge and Data Engineering
29(3):543–555.
Pajouh, F. M.; Balasundaram, B.; and Hicks, I. V. 2016.
On the 2-club polytope of graphs. Operations Research
64(6):1466–1481.
Pattillo, J.; Youssef, N.; and Butenko, S. 2013. On clique
relaxation models in network analysis. European Journal of
Operational Research 226(1):9–18.
Seidman, S. B., and Foster, B. L. 1978. A graph-theoretic
generalization of the clique concept. Journal of Mathemati-
cal sociology 6(1):139–154.
Tomita, E.; Tanaka, A.; and Takahashi, H. 2006. The worst-
case time complexity for generating all maximal cliques and
computational experiments. Theoretical Computer Science
363(1):28–42.
Veremyev, A.; Prokopyev, O. A.; Butenko, S.; and Pasiliao,
E. L. 2016. Exact mip-based approaches for finding max-
imum quasi-cliques and dense subgraphs. Computational
Optimization and Applications 64(1):177–214.
Wang, Z.; Chen, Q.; Hou, B.; Suo, B.; Li, Z.; Pan, W.; and
Ives, Z. G. 2017. Parallelizing maximal clique and k-plex
enumeration over graph data. Journal of Parallel and Dis-
tributed Computing 106:79–91.
Wu, B., and Pei, X. 2007. A parallel algorithm for enumerat-
ing all the maximal k-plexes. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 476–483. Springer.
Xiao, M., and Nagamochi, H. 2017. Exact algorithms for
maximum independent set. Information and Computation
255:126–146.
Xiao, M.; Lin, W.; Dai, Y.; and Zeng, Y. 2017. A fast al-
gorithm to compute maximum k-plexes in social network
analysis. In Thirty-First AAAI Conference on Artificial In-
telligence, 919–925.

2449

