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Abstract

In the vision and language navigation task (Anderson et al.
2018), the agent may encounter ambiguous situations that
are hard to interpret by just relying on visual information
and natural language instructions. We propose an interac-
tive learning framework to endow the agent with the abil-
ity to ask for users’ help in such situations. As part of this
framework, we investigate multiple learning approaches for
the agent with different levels of complexity. The simplest
model-confusion-based method lets the agent ask questions
based on its confusion, relying on the predefined confidence
threshold of a next action prediction model. To build on this
confusion-based method, the agent is expected to demon-
strate more sophisticated reasoning such that it discovers the
timing and locations to interact with a human. We achieve
this goal using reinforcement learning (RL) with a proposed
reward shaping term, which enables the agent to ask ques-
tions only when necessary. The success rate can be boosted
by at least 15% with only one question asked on average dur-
ing the navigation. Furthermore, we show that the RL agent is
capable of adjusting dynamically to noisy human responses.
Finally, we design a continual learning strategy, which can be
viewed as a data augmentation method, for the agent to im-
prove further utilizing its interaction history with a human.
We demonstrate the proposed strategy is substantially more
realistic and data-efficient compared to previously proposed
pre-exploration techniques.

1 Introduction

Consider the situation in which you want a robot assistant to
get your wallet on the bed as in Figure 1 with two doors in
the scene and an instruction that only tells it to walk through
the doorway. In this situation, it is clearly difficult for the
robot to know exactly through which door to enter. If, how-
ever, the robot is able to discuss the situation with the user,
the situational ambiguity can be resolved. For example, the
agent can ask the user “I am confused, please tell me which
door to take?” and displays a snapshot on the user’s smart-
phone of what it sees through its camera. The agent can

∗Work done while the first author was an intern at Alexa AI.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: This is a real example from our trained agent. The
instruction is “...Walk straight, right before you reach the
bed.”. The navigable locations are visualized by blue cylin-
ders. It is impossible to determine which bedroom to enter,
and our proposed agent asks for help in this situation.

then decide its next action by also considering the user’s re-
sponse.

This scenario suggests that interactive robots can get sim-
ple advice from their users to improve completion of tasks,
in contrast to their passive counterparts that have no way
of getting feedback when problems occur. Indeed, we note
that the recent success of virtual assistants can be attributed
to their interactive ability with users, demonstrating sev-
eral human-alike behaviors, such as asking for more infor-
mation, clarification, and confirmation, which is useful for
resolving ambiguities arising naturally in real-world tasks.
Unfortunately, we do not notice such interactive behavior
in physical robots. To the best of our knowledge, existing
works (MacMahon, Stankiewicz, and Kuipers 2006; Chen
and Mooney 2011; Blukis et al. 2018; Anderson et al. 2018;
Chen et al. 2019) required the robot to complete tasks by it-
self after the input of preliminary goals and instructions. It
has no way to resolve confusions or ambiguities while ex-
ecuting its task, motivating this work’s proposed interactive
framework. We use the term robot and agent interchange-
ably hereafter since our robot lives in a simulator, which can
be viewed as a virtual agent.

We propose to extend the Vision and Language Naviga-
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tion task (VLN) (Anderson et al. 2018) that evaluates how
well an agent can learn to navigate in an indoor environ-
ment and reach a target location by following natural lan-
guage instructions provided by a human user. To achieve
this goal, the agent has to simultaneously understand visual
surroundings and natural language. The inherently ambigu-
ous natural language instructions and the complexity of the
environment may jointly cause confusion and impede the
robot’s progress. In addition to the previous two doors ex-
ample (shown as Figure 1), we observe many vague instruc-
tions in the VLN dataset, such as “walk a bit”, where the
distance to walk is not clear. In both cases, an agent cannot
determine the correct action to execute by only relying on
the visual cues and natural language instructions.

Recent approaches to address these difficulties can be
mainly characterized into two directions: the first is to ex-
plore a better learning framework such that the agent rolls
back to previous states when it is confused (Wang et al.
2019; Ma et al. 2019b; Ke et al. 2019), and the second is
to rely on semi-supervised data augmentation (Fried et al.
2018; Tan, Yu, and Bansal 2019). In the first line of re-
search, the length of traversed trajectories tend to be much
longer than necessary since the agent has to explore the un-
known by itself. On the other hand, the data augmentation
approach suffers from several problems including: 1) Pre-
vious methods sample a lot of trajectories in the test envi-
ronment, which would be time and resource inefficient if it
were pursued by a robot in real life and 2) these approaches
generate augmented data in a user-agnostic way, such that
the agent cannot bootstrap off of user-specific patterns. With
these drawbacks in mind, we ask what a real human would
do in such scenarios with insufficient information. The an-
swer is simple – just ask for help.

To investigate the interactive behavior in a principled way,
we propose three critical aspects for a learning framework:

• Temporal Resolution - What is the ideal timing of interac-
tions in the agent action sequence?

• Question Category - What type of question should be
asked? (i.e. request, disambiguation, confirmation, etc.)

• Interaction Form - How to properly formulate agent ques-
tions and human responses for the communication to be
efficient?

In this work, for Temporal Resolution, the timing is learned
either naturally during the navigation or by leveraging hu-
man expert knowledge. For Question Category, we focus
on the request question, namely “Which action should the
robot take next, amongst the possible next actions?”. For In-
teraction Form, we always use the previous request ques-
tion, and the human response is the correct next action in the
agent’s action space. Other types of questions, such as “Shall
I turn left?” (confirmation), “Shall I turn left or right?” (dis-
ambiguation), and how to effectively generate responses in
natural language are left as future work.

Two agent models are proposed in this work. The simpler
model, called Model Confusion or MC, mimics human user
behavior under confusion. The more complicated model,
called Action Space Augmentation or ASA, is an RL agent

with the action space designed specifically to include ques-
tions. It automatically learns to ask only necessary questions
at the right timing during the navigation thanks to a pro-
posed reward shaping mechanism. To better simulate real-
world noise, we design a realistic way to distort answers
given by users, while only the high-level RL agent adapts
dynamically to different levels of noise.

While the second agent achieves a high success rate, it
still struggles with the problem of asking questions in similar
situations. To address this concern, we gather the human-
agent interaction data, which is used to fine-tune the agent
further such that it gets familiar with the environment.

Overall, the main contributions of our work are four-fold:

• We are among the first to introduce human-agent inter-
action in the instruction-based navigation task, focusing
on successful task completion with minimum questions
to users.

• We propose two interaction methodologies, MC and ASA,
that allow the agent to benefit from human-in-the-loop
learning.

• We design a simulated user for responding to agent ques-
tions and propose alternative ways of creating realistic re-
sponse data.

• We use the proposed approach as a data augmentation
method, which is useful in a continual learning scenario,
such that the agent can improve its performance continu-
ally in customers’ home.

2 Related Work

Instruction-Based Navigation The instruction-based
navigation tasks that use natural language and vision to per-
form robot navigation have been investigated extensively, in-
cluding works done in synthetic environments (MacMahon,
Stankiewicz, and Kuipers 2006; Chen and Mooney 2011;
Blukis et al. 2018), or agents trained in photo-realistic
environments (Anderson et al. 2018; Savva et al. 2019;
Chen et al. 2019). The VLN task (Anderson et al.
2018) has received significant attention recently. Sev-
eral works in this line designed more powerful agents
by using panoramic views (Fried et al. 2018), a better
exploration strategy (Ma et al. 2019b; Ke et al. 2019;
Ma et al. 2019a), or generating more diverse environments
as training data (Tan, Yu, and Bansal 2019). (Wang et al.
2019) proposed the cross-modal intrinsic reward for better
training. However, due to the lack of interaction ability,
the best strategy used by these works for the situation in
Figure 1 would only be a random guess.

Human Robot Interaction Human robot interaction
has long been investigated in the artificial intelligence
field (Goodrich, Schultz, and others 2008), specifically us-
ing dialogue as the interaction format to complete physical
tasks (Lopes and Teixeira ; Spiliotopoulos, Androutsopou-
los, and Spyropoulos ; Fong, Thorpe, and Baur 2003). Re-
cently, an end-to-end pipeline was presented (Thomason et
al. 2019b) for translating natural language commands to dis-
crete robot actions. Clarification dialogues are used to im-
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prove language parsing and concept grounding. However,
the dialogues only take place before the navigation process,
ignoring the possibility that confusions may arise through-
out the navigation. Another work (Thomason et al. 2019a)
proposed to integrate human-agent interaction by introduc-
ing dialogue behavior into the VLN task. The main contri-
bution is a human-to-human dialogue dataset for the naviga-
tion task, where two crowd workers are asked to complete
the navigation task by interacting with each other. We fore-
see that the interaction dynamic between two human might
be different from that between a human and an agent, that
is, agent questions do not necessarily have to be based on
human-human confusions, and instead should be based on
the modeling approach used and the confusions of the mod-
els. Furthermore, the ultimate task in our opinion is success-
ful task completion during navigation. Hence our proposed
framework mainly focuses on when and what to ask for opti-
mizing task success, with a minimum additional load on the
user (i.e. the agent is expected to learn to ask the minimum
or strictly necessary number of questions).

Active Learning The first line of prior works utilize hu-
man feedback in an off-policy (i.e no “ask” action in the
action space) manner. For example, (Christiano et al. 2017)
tries to fit the reward function using human comparison on
collected trajectories. However, due to its offline training
nature, it’s hard to tell how human comparisons can bene-
fit the agent directly during test time. In contrast, our agent
learns the “ask” behavior in an on-policy manner (i.e our
“ask” action is in the action space), which means that the
agent can still actively ask for help from a human to com-
plete the navigation. The second line of works rely on some
pre-defined metrics and recovery heuristics to ask for human
help. For example, (Subramanian, Isbell Jr, and Thomaz
2016) encourages the agent to ask for demonstrations when
the discrepancy of a state is high. (Knepper et al. 2015;
Tellex et al. 2014) compare the expected state of the world
to the actual state, and if the robot asks for help, a human
will repair the failure condition. However, recovery heuris-
tics require human effort for every added argument and do
not generalize well. Moreover, these models do not learn the
timing for help, which may suffer from the drawback as in
our MC agent.

Data Augmentation Data augmentation has been shown
to be an effective way to further boost the performance of the
agent as pointed out in (Fried et al. 2018; Ma et al. 2019a;
Tan, Yu, and Bansal 2019). The common approach, borrow-
ing inspiration from unsupervised machine translation (Sen-
nrich, Haddow, and Birch 2015; Lample et al. 2017), is to
sample some trajectories in the environment and use the
speaker model (Fried et al. 2018) to generate fake nat-
ural language instructions. They benefit from their unsu-
pervised nature since there is no need for human effort.
However, the amount of the augmented data is very large,
which is only feasible during the training phase assum-
ing that we have a simulator. Others (Wang et al. 2019;
Tan, Yu, and Bansal 2019) extended this strategy to the

unseen/test environment, but the agent still has to explore
the environment for a large number of turns, which is too
energy-inefficient and slow for the real world. Moreover,
the agent cannot learn user-specific characteristics using
the generated and fake instructions. In contrast, the human-
agent interaction we propose can be used to generate aug-
mented data naturally and efficiently, which only needs hu-
man to answer a few questions. Since the instructions are
generated by human, they are user-specific by nature. This
is particularly useful when the goal is to let a human teach
the agent with minimum effort.

3 Problem Formulation

Our task is the room-to-room navigation problem (Ander-
son et al. 2018). The agent is given a natural language in-
struction with l words, I = {w1, w2 · · ·wi}li=1, where each
wi is a word token. This instruction describes the navigation
route R, which is represented by a sequence of n viewpoints,
R = {v1, v2 · · · vj}nj=1. We use the terms location and view-
points interchangeably hereafter, because the simulator used
in this work does not support continuous movement between
different viewpoints, so the location of the agent must be on
a viewpoint. The agent starts from the start location v1, go-
ing to the target location vn. Since determining when to stop
is critical, we denote the final location that the agent decides
to stop at as vf .

We formulate this navigation problem as a Markov Deci-
sion Process (MDP). At time step t, the state of the agent
is st and the possible action space is {atk}mk=1. Formally,
the state st can be represented by the agent’s 36-discretized
panoramic view pti, and its corresponding horizontal heading
θti and vertical elevation φt

i:

f t
i = {Res(pti), sin(θ

t
i), cos(θ

t
i), sin(φ

t
i), cos(φ

t
i)}, (1)

where i is between 1 to 36 and Res(pti) is a feature vector
derived from a ResNet (He et al. 2016) pretrained on ima-
genet (Deng et al. 2009).

For each of the 36 viewing angles, the environment pro-
vides the corresponding next navigable locations. The col-
lection of these locations and a stop action to end the navi-
gation constitute the action space {atk}mk=1, where each lo-
cation is also represented by Eq. (1). Note that m may not
be the same for different time step t. This number is deter-
mined by the simulator, since the agent may be blocked by
obstacles at some of the 36 viewing angles. Once the agent
picks an action at ∈ {atk}mk=1, the agent moves to a new lo-
cation with state st+1. To solve the MDP, our baseline model
follows the previous idea (Tan, Yu, and Bansal 2019), which
leverages imitation learning and RL techniques.

3.1 Interaction Ability

The agent may encounter ambiguities or get lost during the
navigation. Therefore, it is desirable to endow the agent with
the ability to interact with a human. Whenever the agent is
confused, it sends out a signal “I am lost, please help me!”
to the simulated user and asks for help. We assume the sim-
ulated user is an oracle O, which means it knows where the

2461



agent is and returns the next shortest path action to vn. How-
ever, this is only feasible in the simulated environment be-
cause real users make mistakes when giving step-wise in-
structions due to various reasons, including the complex 3D
environment. To simulate this test time error, we assume that
users make mistakes with probability C. In this case, we
calculate the angular differences between the shortest path
action θsh and the remaining m − 1 ones, which are then
normalized by a softmax function. We do not sample ran-
domly because even when users make mistakes, we assume
that they are more likely to provide actions close to the short-
est path action. Formally, softmaxi �=sh(−|θtsh − θti |). The
distorted answer is sampled from this distribution.

4 Model

4.1 Architecture

Our base model architecture is inspired by previous work in
VLN (Fried et al. 2018; Tan, Yu, and Bansal 2019). Each
word of the instruction is represented by its word vector:

w̃i = Embedding(wi) (2)

A bidirectional LSTM model is used to encode the instruc-
tion:

{ui}li=1 = LSTM({w̃i}li=1) (3)
where ui is the concatenation of forward and backward out-
put. The attentive panoramic view serves as the visual input:

f̃ t
i =

36∑

i=1

αt
if

t
i (4)

with the weight calculated as:

αt
i = softmaxi(f

t
iWf h̃

t−1) (5)

where h̃t−1 is the previous instruction-aware hidden state,
and Wf is a learnable matrix.

The decoder is an auto-regressive LSTM, where the input
of every time step is the concatenation of the previous action
and the attentive visual feature:

ht = LSTM([f̃ t; at−1], h̃t−1) (6)

It is desirable that the agent focus on the right part of the in-
struction throughout the navigation process. Hence we cal-
culate the attentive instruction:

ũt =

l∑

i

βt
iui (7)

The weight is calculated over all words of instruction:

βt
i = softmaxi(uiWuh

t) (8)

Wu is a learnable matrix. The hidden state is calculated as:

h̃t = tanh(Wh(ũ
t;ht)) (9)

This instruction-aware hidden state is passed to next time
step t + 1 and used for computing the action distribution at
current time step t.

P t({atk}mk=1) = softmaxk(g
t
kWah̃

t) (10)
gtk is calculated as the same as Eq. (1) but on the next navi-
gable locations.

4.2 Optimization

Whenever the agent goes to a viewpoint vt at time step t, the
environment computes R̃t = {vt, vt+1 · · · vn}, which is the
shortest path from vt to the target location vn. The action
going from vt to vt+1 is returned as the teacher action for
supervision signal. For the supervised learning loss, we cal-
culate the cross entropy between the teacher action and P t.
For RL, the agent samples its actual action from the action
distribution P t computed in Eq. (10). As in previous work,
a +2 reward is given if the final location is within 3 meters
distance to vn. Otherwise, the reward given is -2. We use the
advantage actor critic (A2C) (Konda and Tsitsiklis 2000) as
our RL algorithm.

5 Methodologies

We introduce two agents as in Figure 2 of different levels for
the human-agent interaction along with the data augmenta-
tion strategy that makes use of the interaction data.

5.1 Training

Model Confusion (MC) In our MC model, the idea is that
if the agent is confident of itself, then the predicted action
distribution should be sharp. To quantify the confusion intu-
ition, we first sort action probabilities in a decreasing order,
and say an agent is confused if the difference of the top two
actions is less than a threshold ε:

ptsorted[0]− ptsorted[1] < ε, (11)

we provide the agent with the shortest path action. The
threshold is used to control the degree of confusion.

In this simple mode, since the timing of whether to ask
questions is not trained, we use the original action space
without ask. Note that this method can be applied directly
on pre-trained models described in sec. 4 during test time.

Action Space Augmentation (ASA) We introduce as
many actions as the types of questions the agent asks in ad-
dition to the original action space. In this work, the action
space is enlarged by 1 to represent the ”What should I do
next?” question, which is used to indicate whether to ask
for help. Formally, the new action space is {atk}mk=1 ∪ ask,
where ask is the question indicator. If the agent chooses the
ask action, it will remain in the same state st and O will
give it the action on the shortest path route to vn. Each se-
lected ask is associated with a negative reward rask, such
that rask < 0 to ensure only necessary questions are asked.
The action probability becomes:

pt({atk}m+1
k=1 ) = softmaxk∪ask(g

t
kWah̃

t∪askWah̃
t) (12)

We represent the action feature of ask by a vector of dimen-
sion same as gtk consisting of all ones.

Enlarging the action space alone does not provide the de-
sired question-asking behavior without the help from reward
shaping (Ng, Harada, and Russell 1999), which is a useful
technique in training RL algorithms. The difference of dis-
tance to the goal location between two consecutive steps can
be used as the shaping reward (Wang et al. 2019). However,
this will encourage the agent to bias toward the shortest path,
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Figure 2: A natural language instruction is given in the beginning. As navigation proceeds, the agent decodes the action prob-
ability based on actions taken and the current visual clue. The upper one is the MC agent. If the difference of the top2 action
probability is less than a threshold, it asks a question and the oracle answers it. The lower one is the ASA agent. There is an
additional red bin indicating the ask action. If the agent picks the ask, it sends a signal to the oracle for help. After the agent is
trained, we can run it in the unseen environment, collecting trajectories as augmented data.

but not follow the path indicated by the instruction. We pro-
pose to use an additional reward shaping term, the deviation
shaping, to encourage the agent to follow the instruction.
We call the original shaping reward as the distance shaping:

DISt = d(vt, vn)− d(vt+1, vn) (13)

where d(vt, vn) is the distance between the current location
and the target location. The proposed deviation shaping is:

DEVt = −d(vt+1, vgt) (14)

vgt is the viewpoint with the shortest distance to vt among
the whole ground truth trajectory. It is straightforward to see
that if the agent follows the ground truth trajectory better,
the reward should be higher. Moreover, this shaping reward
helps reduce the number of questions asked while preserving
the same success rate. The reason is better alignment with
ground truth trajectories leads to less ambiguities during the
navigation. Without DEV, the agent will ask questions at
every timestep. These two shaping rewards are summed to-
gether during the RL training. Concretely, the critic CR in
the A2C algorithm is optimized at every timestep t as:

(CRt − (DEVt +DISt + rask +Gt))
2, (15)

where Gt is the discounted cumulative reward estimated by
the monte carlo method (Sutton 1998). We note that the in-
trinsic reward in (Wang et al. 2019) shares a similar idea
with our work. However, they train a sequence-to-sequence
critic where the input is traversed trajectories and output
is instruction decoding probabilities. This critic is used to
calculate the cycle reconstruction reward at every timestep,
which is much slower than our simple but effective deviation
shaping.

Figure 3: This is the data augmentation process. The green
dashed boxes indicate the training procedure in (Tan, Yu,
and Bansal 2019). Agents are not allowed to ask questions
at step 3. Finally, generalizability is tested with different tra-
jectories and instructions (Tb) from the input (Ta) of step 3.
Ta,b are described in sec. 6.4.

5.2 Data Augmentation

Our proposed interaction methods can be used to generate
augmented data. Concretely, we execute the trained agent in
test environment such that the agent may ask questions and
receive answers from O. The advantage of doing so is that
by answering a few simple questions, the originally wrong
trajectories might be corrected. These corrected trajectories
serve as augmented data to prevent the agent from making
same mistakes. The complete procedure is outlined in Fig-
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Agent Types success rate number of questions move steps ask percentage
val seen val unseen val seen val unseen val seen val unseen val seen val unseen

Base Model w/o Interaction 0.551 0.471 - - 5.09 4.95 - -

MC

ε = 0.1 0.614 0.562 0.58 0.56 5.01 4.88 0.103 0.103
0.2 0.693 0.633 1.00 0.96 5.01 4.88 0.167 0.164
0.3 0.759 0.695 1.34 1.33 5.03 4.88 0.210 0.214
0.4 0.822 0.756 1.67 1.68 5.05 4.90 0.248 0.255
0.5 0.854 0.807 1.95 1.99 5.05 4.92 0.278 0.287

ASA

rask = 0.1 0.790 0.732 1.25 1.92 5.39 5.49 0.188 0.259
0.2 0.690 0.710 0.84 1.59 5.58 5.72 0.131 0.218
0.3 0.704 0.676 0.74 1.41 5.36 5.42 0.120 0.206
0.4 0.632 0.598 0.38 0.85 5.29 5.25 0.067 0.139
0.5 0.590 0.494 0.06 0.15 5.04 4.85 0.012 0.030

Human-Guided
Exploration

disjoint† 0.555 0.554 - - 5.19 4.91 - -
random 0.565 0.649 - - 5.18 4.93 - -

Pre-Exploration† 0.560 0.504 - - 5.21 5.11 - -

Table 1: Interactive agents, MC and ASA, both outperform the baseline without interaction. When ε is larger, MC tends to ask
more questions while ASA asks fewer questions when rask is lower. The move steps of MC remain the same with different
ε, but it increases when rask of ASA decreases. This is probably because ASA learns the ask behavior during training, so it
tries to explore more to maximize the reward. Finally, the proposed human-guided exploration outperforms the pre-exploration
techinque (Tan, Yu, and Bansal 2019) by 5%. †We use the augmented data with size 1500 for a fair comparison.

ure 3. As long as users keep using the agent, we can col-
lect more interaction data to fine-tune the agent in a contin-
ual learning scenario. The differences between our human-
guided exploration, and the pre-exploration approach (Wang
et al. 2019; Tan, Yu, and Bansal 2019) are highlighted in Ta-
ble 2.

human-guided exploration pre-exploration
instructions real, user-specific fake, user-agnostic
trajectories not shortest, traversed shortest, sampled

Table 2: The differences between the human-guided explo-
ration versus pre-exploration.

6 Experiments and Discussions

We describe the R2R dataset used and the performance of
our model. We propose an additional evaluation metric to
measure the effectiveness of the interactive behavior in the
VLN task. The impact of the imperfect oracle is also inves-
tigated. Finally, we compare our data augmentation method
with previous work in terms of data efficiency.

6.1 R2R Data Statistics

In the R2R dataset (Anderson et al. 2018), annotators are
given image sequences of sampled shortest path trajectories,
then they write down natural language instructions that best
describe the paths. The dataset contains 21,567 navigation
instructions with an average length of 29 words. The in-
struction vocabulary consists of around 3100 words due to
the nature of the navigation task. The train set includes 61
scenes, with instructions split 14,025 train / 1,020 val seen.
11 scenes and 2,349 instructions are reserved for validating
in unseen environments (unseen validation).

C success rate number of questions
ASA-0.1 MC-0.5 ASA-0.1 MC-0.5

0.0 0.732 0.807 1.92 1.99
0.1 0.731 0.743 2.25 1.99
0.2 0.731 0.688 2.69 1.99
0.3 0.732 0.619 3.55 1.99
0.4 0.722 0.562 4.44 1.94

Table 3: The impact of different noise levels. The 0.1 after
ASA indicates the rask = 0.1 in Eq. (15), and the 0.5 after
MC indicates the ε = 0.5 in Eq. (11).

6.2 Evaluation Metric

We evaluate our agent on the success rate and the number of
steps taken which are the standard reported metrics (Ander-
son et al. 2018) of the VLN task. An episode is a success if
the navigation error is less than 3 meters. In addition to the
standard metrics, we think it is necessary to propose a new
evaluation metric to justify the effectiveness of the human-
agent interaction, which is the percentage of total actions
taken that are ask actions: #ask

#ask+#move where #move is
the number of moving actions other than #ask.

6.3 Interaction Results

In this setting, the agent is allowed to ask questions dur-
ing test time with an oracle providing shortest path actions.
For the ASA agent, we vary the penalty associated, rask, to
each ask action. For the MC agent, we adjust the confusion
threshold in Eq. (11). Then we test the agent on the unseen
validation split. The results are in Table 1.

For the MC agent, the success rate and ask percentage be-
come higher when we increase the threshold ε. The same
observation applies to the ASA agent. Note that with a lower
penalty rask, the agent is encouraged to ask more questions.
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Figure 4: The performance of different agents. We can only
control the threshold or penalty during training, so the points
of the two curves would not be plotted on the same x values.

At the same time, the success rate and the ask percentage
both increase. If we compare the two agents, the perfor-
mance is roughly the same regarding the success rate at the
same ratio of the ask actions as shown in Figure 4. It is inter-
esting to note that the move steps of the ASA agent increases
while the MC agent remains the same. We hypothesize this
is because ASA learns the ask behavior during training, so
it tries to explore more to maximize the reward. As for MC,
the threshold is applied only at test time, it does not learn
the exploration behavior. While MC seems to be simpler and
more effective than ASA, the ASA agent can adapt to errors
in human-agent interactions more easily as we will see.

Imperfect Oracle We adjust the distortion probability C
in sec. 3.1 to see how our agents adapt to different levels of
noise. The results are in Table 3. The ASA agent asks more
questions with the same success rate while the MC agent
asks the same number of questions but the success rate drops
linearly. The behavior of ASA is more ideal, since it can ad-
just dynamically to different levels of noise with the same
success rate, which is particularly useful if the agent is a
real product.

6.4 Human-Guided Exploration

It is desirable that the agent can further improve its naviga-
tion ability after several rounds of interactions. We split the
unseen validation data to Ta and Tb. This is testing the real
use case when a user brings the agent to a new environment
(Ta) and teaches it through interaction for a while. After that,
the agent is evaluated in the same environment with different
instructions and paths (Tb) to see the effectiveness.

Disjoint Split In this setting, Ta and Tb do not share the
same trajectories and instructions but the house plans are
shared. The reason for this splitting strategy is to compare
fairly with the pre-exploration technique since (Tan, Yu, and
Bansal 2019; Wang et al. 2019) ensured the augmented paths
are different from those in the test environment. We run the
same experiment with ASA and MC agents on Ta and ob-
tain the interaction history data, which is used to fine-tune
the agent. Finally, we test the re-trained agent on Tb with-
out human-agent interaction. There are 2349 instructions in
the unseen environment. We use the first 1500 as Ta and the
remaining 849 as Tb.

Figure 5: The curves of different data augmentation meth-
ods. Human-Guided Exploration consistently outperforms
Pre-Exploration by a large margin.

Random Split In this setting, Ta and Tb may share the
same trajectories but with different instructions. The moti-
vation is to mimic the real-world scenario where customers
buy the robot and put it in their houses. It is natural for a
human to use different sentences to express the same goal.
We randomly permute the unseen validation split and use the
first 1500 as Ta and the remaining 849 as Tb.

The results of two settings are in Table 1. We use the
best ASA (rask = 0.1) agent to generate augmented data.
Better performance is observed on the random split setting
because the agent has already seen some trajectories in Ta.
As for the disjoint setting, we can compare the results of ASA
agent fairly with (Tan, Yu, and Bansal 2019). With the same
amount of augmented data (1500 on Ta), our method out-
performs theirs by 5% (0.554 vs. 0.504).

Finally, we limit the fine-tune stage (stage 3 in Figure 3) to
only supervised training instead of the mixture of supervised
and RL training. This is to further reduce the time and energy
consumption in test environment which in real-life would be
a new customer’s home. The result is 0.514 vs. 0.483. While
the performance of both methods drops due to the lack of
exploration, ours still outperforms the baseline by 3%.

Data Efficiency We vary the augmented data size of the
pre-exploration approach to see its data efficiency. The re-
sults are in Figure 5. It is easy to see that human-guided
exploration can reach the same performance by using much
less data, demonstrating that our agent is more data-efficient.
Moreover, this experiment highlights the importance of real
instructions and trajectories.

7 Conclusion

In this paper, we propose an interactive learning framework
to make the agent capable of resolving ambiguous situations
by interacting with a human during learning or execution
time. Two approaches are proposed, model confusion-based
(MC) and RL with reward shaping (ASA). Experiment re-
sults demonstrate our agents can strike a balance between
the task success rate and number of questions asked. More-
over, the RL agent can adapt dynamically to noise. Finally,
we propose a strategy to fine-tune the agent using augmented
data collected from human-agent interactions, which is more
data-efficient and realistic than the previous method.
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