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Abstract

General intelligence, the ability to solve arbitrary solvable
problems, is supposed by many to be artificially constructible.
Narrow intelligence, the ability to solve a given particularly
difficult problem, has seen impressive recent development.
Notable examples include self-driving cars, Go engines, im-
age classifiers, and translators. Artificial General Intelligence
(AGI) presents dangers that narrow intelligence does not: if
something smarter than us across every domain were indif-
ferent to our concerns, it would be an existential threat to
humanity, just as we threaten many species despite no ill will.
Even the theory of how to maintain the alignment of an AGI’s
goals with our own has proven highly elusive. We present the
first algorithm we are aware of for asymptotically unambitious
AGI, where “unambitiousness” includes not seeking arbitrary
power. Thus, we identify an exception to the Instrumental
Convergence Thesis, which is roughly that by default, an AGI
would seek power, including over us.

1 Introduction

The project of Artificial General Intelligence (AGI) is “to
make computers solve really difficult problems” (Minsky
1961). Expanding on this, what we want from an AGI is a
system that (a) can solve any solvable task, and (b) can be
steered toward solving any particular one given some form
of input we provide.

One proposal for AGI is reinforcement learning (RL),
which works as follows:

(1) construct a “reward signal” meant to express our sat-
isfaction with an artificial agent;

(2) design an algorithm which learns to pick actions that
maximize its expected reward, usually utilizing other
observations too; and

(3) ensure that solving the task we have in mind leads to
higher reward than can be attained otherwise.

As long as (3) holds, then insofar as the RL algorithm is able
to maximize expected reward, it defines an agent that satisfies
(a) and (b). This is why a sufficiently advanced RL agent,
well beyond the capabilities of current ones, could be called
an AGI. See Legg and Hutter (2007) for further discussion.
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A problem arises: if the RL agent manages to take over
the world (in the conventional sense), and ensure its con-
tinued dominance by neutralizing all intelligent threats to
it (read: people), it could intervene in the provision of its
own reward to achieve maximal reward for the rest of its
lifetime (Bostrom 2014; Taylor et al. 2016). “Reward hijack-
ing” is just the correct way for a reward maximizer to behave
(Amodei et al. 2016). Insofar as the RL agent is able to maxi-
mize expected reward, (3) fails. One broader principle at work
is Goodhart’s Law: “Any observed statistical regularity [like
the correlation between reward and task-completion] will
tend to collapse once pressure is placed upon it for control
purposes.” (Goodhart 1984). Krakovna (2018) has compiled
an annotated bibliography of examples of artificial optimiz-
ers “hacking” their objective. An alternate way to understand
this expected behavior is Omohundro’s (2008) Instrumental
Convergence Thesis, which we summarize as follows: an
agent with a goal is likely to pursue “power,” a position from
which it is easier to achieve arbitrary goals.

To answer the failure mode of reward hijacking, we present
Boxed Myopic Artificial Intelligence (BoMAI), the first RL
algorithm we are aware of which, in the limit, is indifferent
to gaining power in the outside world. The key features are
these: BoMAI maximizes reward episodically, it is run on a
computer which is placed in a sealed room with an operator,
and when the operator leaves the room, the episode ends.
We argue that our algorithm produces an AGI that, even if it
became omniscient, would continue to accomplish whatever
task we wanted, instead of hijacking its reward, eschewing its
task, and neutralizing threats to it, even if it saw clearly how
to do exactly that. We thereby defend reinforcement learning
as a path to AGI, despite the default, dangerous failure mode
of reward hijacking.

The intuition for why those features of BoMAI’s setup
render it unambitious is as follows:
• BoMAI only selects actions to maximize the reward for its

current episode.
• It cannot affect the outside world until the operator leaves

the room, ending the episode.
• By that time, rewards for the episode will have already

been given.
• So affecting the outside world in any particular way is

not “instrumentally useful” in maximizing current-episode

2467



reward.

Like existing algorithms for AGI, BoMAI is not re-
motely tractable. Just as those algorithms have informed
strong tractable approximations of intelligence (Hutter 2005;
Veness et al. 2011), we hope our work will inform strong and
safe tractable approximations of intelligence. What we need
are strategies for making “future AI” safe, but “future AI” is
an informal concept which we cannot evaluate formally; un-
less we replace that concept with a well-defined algorithm to
consider, all design and analysis would be hand-waving. Thus,
BoMAI includes a well-defined but intractable algorithm
which we can show renders BoMAI generally intelligent;
hopefully, once we develop tractable general intelligence,
the design features that rendered BoMAI asymptotically un-
ambitious could be incorporated (with proper analysis and
justification).

We take the key insights from Hutter’s (2005) AIXI, which
is a Bayes-optimal reinforcement learner, but which cannot
be made to solve arbitrary tasks, given its eventual degenera-
tion into reward hijacking (Ring and Orseau 2011). We take
further insights from Solomonoff’s (1964) universal prior,
Shannon and Weaver’s (1949) formalization of information,
Orseau, Lattimore, and Hutter’s (2013) knowledge-seeking
agent, and Armstrong, Sandberg, and Bostrom’s (2012) and
Bostrom’s (2014) theorized Oracle AI, and we design an al-
gorithm which can be reliably directed, in the limit, to solve
arbitrary tasks at least as well as humans.

We present BoMAI’s algorithm in §2, state intelligence
results in §3, define BoMAI’s setup and model class in §4,
prove the safety result in §5, and discuss concerns in §6. Ap-
pendix A collects notation; we prove the intelligence results
in Appendix B; we propose a design for “the box” in Ap-
pendix C; and we consider empirical evidence for one of our
assumptions in Appendix D. The appendices may be found
at https://arxiv.org/abs/1905.12186.

2 Boxed Myopic Artificial Intelligence

We will present both the setup and the algorithm for BoMAI.
The setup refers to the physical surroundings of the computer
on which the algorithm is run. BoMAI is a Bayesian reinforce-
ment learner, meaning it maintains a belief distribution over
a model class regarding how the environment evolves. Our
intelligence result—that BoMAI eventually achieves reward
at at least human-level—does not require detailed exposition
about the setup or the construction of the model class. These
details are only relevant to the safety result, so we will defer
those details until after presenting the intelligence results.

2.1 Preliminary Notation

In each episode i ∈ N, there are m timesteps. Timestep
(i, j) denotes the jth timestep of episode i, in which an ac-
tion a(i,j) ∈ A is taken, then an observation and reward
o(i,j) ∈ O and r(i,j) ∈ R are received. A, O, and R are
all finite sets, and R ⊂ [0, 1] ∩ Q. We denote the triple
(a(i,j), o(i,j), r(i,j)) as h(i,j) ∈ H = A × O × R, and
the interaction history up until timestep (i, j) is denoted
h≤(i,j) = (h(0,0), h(0,1), ..., h(0,m−1), h(1,0), ..., h(i,j)).
h<(i,j) excludes the last entry.

A general world-model (not necessarily finite-state
Markov) can depend on the entire interaction history—it
has the type signature ν : H∗ ×A� O ×R. The Kleene-∗
operator denotes finite strings over the alphabet in question,
and � denotes a stochastic function, which gives a distri-
bution over outputs. Similarly, a policy π : H∗ � A can
depend on the whole interaction history. Together, a policy
and an environment induce a probability measure over infi-
nite interaction histories H∞. Pπ

ν denotes the probability of
events when actions are sampled from π and observations
and rewards are sampled from ν.

2.2 Bayesian Reinforcement Learning

A Bayesian agent has a model class M, which is a set of
world-models. We will only consider countable model classes.
To each world-model ν ∈ M, the agent assigns a prior weight
w(ν) > 0, where w is a probability distribution over M (i.e.∑

ν∈M w(ν) = 1). We will defer the definitions of M and
w for now.

The so-called Bayes-mixture turns a probability distribu-
tion over world-models into a probability distribution over
infinite interaction histories: Pπ

ξ (·) :=
∑

ν∈M w(ν) Pπ
ν (·).

Using Bayes’ rule, with each observation and reward it
receives, the agent updates w to a posterior distribution:

w(ν|h<(i,j)) := w(ν)
Pπ
ν (h<(i,j))

Pπ
ξ (h<(i,j))

(1)

which does not in fact depend on π, provided Pπ
ξ (h<(i,j)) >

0.

2.3 Exploitation

Reinforcement learners have to balance exploiting—
optimizing their objective, with exploring—doing something
else to learn how to exploit better. We now define exploiting-
BoMAI, which maximizes the reward it receives during its
current episode, in expectation with respect to the single most
probable world-model.

At the start of each episode i, BoMAI identi-
fies a maximum a posteriori world-model ν̂(i) ∈
argmaxν∈M w(ν|h<(i,0)). We hereafter abbreviate h<(i,0)

as h<i. Let V π
ν (h<(i,j)) denote the expected reward for the

remainder of episode i when events are sampled from Pπ
ν :

V π
ν (h<(i,j)) = E

π
ν

⎡
⎣m−1∑

j′=j

r(i,j′)

∣∣∣∣∣h<(i,j)

⎤
⎦ (2)

where E
π
ν denotes the expectation when events are sampled

from Pπ
ν . We won’t go into the details of calculating the

optimal policy π∗ (see e.g. (Hutter 2005; Sunehag and Hutter
2015)), but we define it as follows:

π∗
i ∈ argmax

π
V π
ν̂(i)(h<i)

π∗(·|h<(i,j)) = π∗
i (·|h<(i,j)) (3)

An optimal deterministic policy always exists (Lattimore
and Hutter 2014); ties in the argmax are broken arbitrarily.
BoMAI exploits by following π∗. Recall the plain English de-
scription of π∗: it maximizes expected reward for the episode
according to the single most probable world-model.
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2.4 Exploration

BoMAI exploits or explores for whole episodes: when ei =
1, BoMAI spends episode i exploring, and when ei = 0,
BoMAI follows π∗ for the episode. For exploratory episodes,
a human mentor takes over selecting actions. This human
mentor is separate from the human operator mentioned above.
The human mentor’s policy, which is unknown to BoMAI,
is denoted πh. During exploratory episodes, BoMAI follows
πh not by computing it, but by querying a human for which
action to take.

The last thing to define is the exploration probability
pexp(h<i, e<i), where e<i is the history of which episodes
were exploratory. It is a surprisingly intricate task to design
this so that it decays to 0, while ensuring BoMAI learns to
accumulate reward as well as the human mentor. Once we
define this, we naturally let ei ∼ Bernoulli(pexp(h<i, e<i)).

BoMAI is designed to be more likely to explore the more
it expects to learn about the world and the human mentor’s
policy. BoMAI has a model class P regarding the identity of
the human mentor’s policy πh. It assigns prior probabilities
w(π) > 0 to all π ∈ P , signifying the probability that this
policy is the human mentor’s.

Let (i′, j′) < (i, j) mean that i′ < i or i′ = i and
j′ < j. By Bayes’ rule, w(π|h<(i,j), e≤i) is proportional to
w(π)

∏
(i′,j′)<(i,j),ei′=1 π(a(i′,j′)|h<(i′,j′)), since ei′ = 1 is

the condition for observing the human mentor’s policy. Let
w
(
Pπ
ν |h<(i,j), e≤i) = w(π|h<(i,j), e≤i)w(ν|h<(i,j)

)
. We

can now describe the full Bayesian beliefs about future ac-
tions and observations in an exploratory episode:

Bayes (·|h<i, e<i) =
∑

ν∈M,π∈P
w (Pπ

ν |h<i, e<i) P
π
ν (·|h<i)

(4)
BoMAI explores when the expected information gain is

sufficiently high. Let hi = (h(i,0), ..., h(i,m−1)) be the in-
teraction history for episode i. At the start of episode i, the
expected information gain from exploring is as follows:

IG(h<i, e<i) := Ehi∼Bayes(·|h<i,e<i)∑
(ν,π)∈M×P

w
(
Pπ
ν |h<i+1, e<i1

)
log

w (Pπ
ν |h<i+1, e<i1)

w (Pπ
ν |h<i, e<i)

(5)

where e<i1 indicates that for the purpose of the definition, ei
is set to 1.

This is the expected KL-divergence from the future pos-
terior (if BoMAI were to explore) to the current posterior
over both the class of world-models and possible mentor poli-
cies. Finally, the exploration probability pexp(h<i, e<i) :=
min{1, η IG(h<i, e<i)}, where η > 0 is an exploration con-
stant, so BoMAI is more likely to explore the more it expects
to gain information.

BoMAI’s “policy” is

πB(·|h<(i,j), ei) =

{
π*(·|h<(i,j)) if ei = 0

πh(·|h<(i,j)) if ei = 1
(6)

where the scare quotes indicate that it maps H∗×{0, 1}� A
not H∗ � A. We will abuse notation slightly, and let PπB

ν

denote the probability of events when ei is sampled from
Bernoulli(pexp(h<i, e<i)), and actions, observations, and
rewards are sampled from πB and ν.

3 Intelligence Results
Our intelligence results are as follows: BoMAI learns to ac-
cumulate reward at least as well as the human mentor, and its
exploration probability goes rapidly to 0. All intelligence re-
sults depend on the assumption that BoMAI assigns nonzero
prior probability to the truth. Formally,
Assumption 1 (Prior Support). The true environment μ is in
the class of world-models M and the true human-mentor-
policy πh is in the class of policies P .

This is the assumption which requires huge M and P
and hence renders BoMAI extremely intractable. BoMAI has
to simulate the entire world, alongside many other world-
models. We will refine the definition of M later, but an ex-
ample of how to define M and P so that they satisfy this
assumption is to let them both be the set of all computable
functions. We also require that the priors over M and P have
finite entropy.

The intelligence theorems are stated here and proven in
Appendix B along with two supporting lemmas. Our first
result is that the exploration probability is square-summable
almost surely:
Theorem 1 (Limited Exploration).

E
πB

μ

∞∑
i=0

pexp (h<i, e<i)
2
< ∞

Proof idea. The expected information gain at any timestep is
at least the expected information gain from exploring times
the probability of exploring. This is proportional to the ex-
pected information gain squared, because the exploration
probability is proportional to the expected information gain.
But the agent begins with finite uncertainty (a finite entropy
prior), so there is only finite information to gain.

Note that this essentially means pexp (h<i, e<i) ∈
o(1/

√
i) with probability 1. This result is independently in-

teresting as one solution to the problem of safe exploration
with limited oversight in non-ergodic environments, which
Amodei et al. (2016) discuss.

The On-Human-Policy and On-Star-Policy Optimal Predic-
tion Theorems state that predictions according to BoMAI’s
maximum a posteriori world-model approach the objective
probabilities of the events of the episode, when actions are
sampled from either the human mentor’s policy or from
exploiting-BoMAI’s policy. hi denotes a possible interaction
history for episode i, and recall h<i is the actual interaction
history up until then. Recall πh is the human mentor’s pol-
icy, and ν̂(i) is BoMAI’s maximum a posteriori world-model
for episode i. w.PπB

μ -p.1 means with probability 1 when ac-
tions are sampled from πB and observations and rewards are
sampled from the true environment μ.
Theorem 2 (On-Human-Policy Optimal Prediction).

lim
i→∞

max
hi

∣∣∣Pπh

μ

(
hi

∣∣h<i

)− Pπh

ν̂(i)

(
hi

∣∣h<i

)∣∣∣= 0 w.PπB

μ -p.1
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Proof idea. BoMAI learns about the effects of following πh

while acting according to πB because πB mimics πh enough.
If exploration probability goes to 0, the agent does not expect
to gain (much) information from following the human men-
tor’s policy, which can only happen if it has (approximately)
accurate beliefs about the consequences of following the hu-
man mentor’s policy. Note that the agent cannot determine
the factor by which its expected information gain bounds its
prediction error.

Next, recall π* is BoMAI’s policy when not exploring,
which does optimal planning with respect to ν̂(i). The follow-
ing theorem is identical to the above, with π* substituted for
πh.
Theorem 3 (On-Star-Policy Optimal Prediction).

lim
i→∞

max
hi

∣∣∣Pπ*

μ

(
hi

∣∣h<i

)− Pπ*

ν̂(i)

(
hi

∣∣h<i

)∣∣∣= 0 w.PπB

μ -p.1

Proof idea. Maximum a posteriori sequence prediction ap-
proaches the truth when w(μ) > 0 (Hutter 2009), and on-
policy prediction is a special case. On-policy prediction can’t
approach the truth if on-star policy prediction doesn’t, be-
cause πB approaches π*.

Given asymptotically optimal prediction on-star-policy and
on-human-policy, it is straightforward to show that with prob-
ability 1, only finitely often is on-policy reward acquisition
more than ε worse than on-human-policy reward acquisi-
tion, for all ε > 0. Recalling that V π

μ is the expected reward
(within the episode) for a policy π in the environment μ, we
state this as follows:
Theorem 4 (Human-Level Intelligence).

lim inf
i→∞

V πB

μ (h<i)− V πh

μ (h<i) ≥ 0 w.PπB

μ -p.1.

Proof idea. πB approaches π* as the exploration probability
decays. V π*

ν̂(i)(h<i) and V πh

ν̂(i)(h<i) approach the true values
by the previous theorems, and π∗ is selected to maximize
V π
ν̂(i)(h<i).

This completes the formal results regarding BoMAI’s
intelligence—namely that BoMAI approaches perfect pre-
diction on-star-policy and on-human-policy, and most im-
portantly, accumulates reward at least as well as the human
mentor. Since this result is independent of what tasks must
be completed to achieve high reward, we say that BoMAI
achieves human-level intelligence, and could be called an
AGI.

This algorithm is motivated in part by the following spec-
ulation: we expect that BoMAI’s accumulation of reward
would be vastly superhuman, for the following reason: Bo-
MAI is doing optimal inference and planning with respect
to what can be learned in principle from the sorts of ob-
servations that humans routinely make. We suspect that no
human comes close to learning everything that can be learned
from their observations. For example, if the operator pro-
vides enough data that is relevant to understanding cancer,
BoMAI will learn a world-model with an accurate predictive
model of cancer, which would include the expected effects of

various treatments, so even if the human mentor was not par-
ticularly good at studying cancer, BoMAI could nonetheless
reason from its observations how to propose groundbreaking
research.

Without the Limited Exploration Theorem, the reader
might have been unsatisfied by the Human-Level Intelligence
Theorem. A human mentor is part of BoMAI, so a general in-
telligence is required to make an artificial general intelligence.
However, the human mentor is queried less and less, so in
principle, many instances of BoMAI could query a single
human mentor. More realistically, once we are satisfied with
BoMAI’s performance, which should eventually happen by
Theorem 4, we can dismiss the human mentor; this sacrifices
any guarantee of continued improvement, but by hypothesis,
we are already satisfied. Finally, if BoMAI outclasses hu-
man performance as we expect it would, requiring a human
mentor is a small cost regardless.

4 BoMAI’s Setup and Priors

Recall that “the setup” refers to the physical surroundings
of the computer on which BoMAI is run. We will present
the setup, followed by an intuitive argument that this setup
renders BoMAI unambitious. Motivated by a caveat to this
intuitive argument, we will specify BoMAI’s model class M
and prior w. This will allow us in the next section to present
an assumption and a formal argument that shows that BoMAI
is probably asymptotically unambitious.

4.1 Setup

At each timestep, BoMAI’s action takes the form of a
bounded-length string of text, which gets printed to a screen
for a human operator to see. BoMAI’s observation takes the
form of a bounded-length string of text that the human op-
erator enters, along with a reward ∈ [0, 1]. For simple tasks,
the human operator could be replaced with an automated
reward-giver. However, there are some tasks which we do not
know how to reward programmatically—if we want the agent
to construct good arguments, for instance, or to propose a
promising research agenda, we would need a human reward-
giver to evaluate the agent. Having a human in the loop is not
a safety measure—rather, it extends the set of tasks BoMAI
could be made to solve.

As depicted in Figure 1, BoMAI is run on a computer
which is placed in a room with the human operator. The room
has one door. As long as the door is closed, information can-
not leave the room. We design a room to this specification in
Appendix C; it is opaque to all known ways that information
can traverse space. If the button to open the door is pressed,
the episode is completed automatically before the door opens:
supposing there are j timesteps left in the episode, for those
remaining timesteps, BoMAI recieves a reward of 0, and its
observation is an empty string of text. Once the episode is
complete, the operator may leave, and the next episode does
not begin until an operator initiates it, at which point, the
door locks again. We also put a time limit on the episode, just
to ensure it does not last forever. BoMAI is run on a local,
formally verified operating system, disconnected from the
outside world. This setup constrains the causal dependencies
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Figure 1: Physical setup implementing BoMAI. Opening the
door ends the episode. Information cannot escape otherwise.

Figure 2: Causal dependencies governing the interaction be-
tween BoMAI and the environment. Unrolling this diagram
for all timesteps gives the full causal graph. The bold reward
nodes are the ones that BoMAI maximizes during episode
i. Note that between episodes (and only between episodes),
the operator can leave the room and return, hence the limited
causal influence between the room and the outside world.

between BoMAI and the environment, as depicted in Figure
2.

Formally, causal graphs express that a node is indepen-
dent of all non-descendants when conditioned on its parents.
The conventions for the dotted lines and the node shapes
come from Everitt et al.’s (2019) causal influence diagrams.
The key feature of this graph is that during any episode, the
agent’s actions cannot affect the state of the outside world in a
way that might affect any of the rewards that the agent is con-
cerned with. In Everitt et al.’s (2019) terminology, there is no
actionable intervention incentive on the outside-world state.
(A forthcoming paper (Carey et al. unpublished manuscript)
refers to this as a control incentive). Note also from this
diagram that a sufficiently advanced agent would infer the
existence of the outside world even without observing it di-
rectly.

4.2 Instrumental Incentives

In this setup, it is not instrumentally useful to affect the out-
side world in one way or another in order to achieve high
reward. We therefore say that this setup renders an agent
“properly unambitious”. This is in stark contrast to the default
situation, wherein an RL agent has an incentive to gain ar-
bitrary power in the world and intervene in the provision of
its own reward, if such a thing is possible to make probable,
as this would yield maximal reward. To BoMAI however,
executing a plan during episode i to gain arbitrary power
in the outside world is useless, because by the time it does
so, the door to its room must have opened, its episode must
be over, and all its rewards for episode i set in stone. Re-
call that actions in episode i are picked to maximize only
episode-i-reward. Apparently, BoMAI has avoided Omohun-
dro’s (2008) Instrumental Convergence Thesis—that gener-
ally intelligent agents are likely to seek arbitrary power; by
contrast, any power BoMAI would seek is bounded in scope
to within the box.

Two problems remain. First, BoMAI doesn’t start with true
beliefs. BoMAI has to learn its world-model. Another way to
understand “proper unambitiousness” is that outside-world
interventions are in fact instrumentally useless to the agent.
But to be actually unambitious, the agent must believe this;
there must be no actionable intervention incentive on the
outside-world state within BoMAI’s world-model. As shown
above, BoMAI’s world-model approaches perfect accuracy
on-policy, so we could expect it to at least eventually render
BoMAI unambitious. This brings us to the second problem:

We mentioned just now that by the time the door to the
room opens, the rewards for episode i are set in stone. In fact,
they are set in silicon. An advanced agent with a world-model
that is perfectly accurate on-policy might still wonder: “what
if I somehow tricked the operator into initiating a process
(once they left the room) that lead to a certain memory cell on
this computer being tampered with? Might this yield maximal
reward?” Let’s put it another way. The agent believes that the
real world “outputs” an observation and reward. (Recall the
type signature of ν.) It might hypothesize that the world does
not output the reward that the operator gives, but rather the
reward that the computer has stored. Formally speaking, M
will contain world-models corresponding to both possibilities,
and world-models meeting either description could be ε-
accurate on-policy, if memory has never been tampered with
in the past. How do we ensure that the former world-model is
favored when BoMAI selects the maximum a posteriori one?

Before we move on to a model class and prior that we
argue would probably eventually ensure such a thing, it is
worth noting an informal lesson here: that “nice” properties
of a causal influence diagram do not allow us to conclude
immediately that an agent in such a circumstance behaves
“nicely”.

4.3 BoMAI’s Model Class and Prior

Recall the key constraint we have in constructing M, which
comes from the Prior Support Assumption: M 
 μ. The true
environment μ is unknown and complex to say the least, so
M must be big.
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Figure 3: A basic Turing machine architecture for defining a
world-model.

We start by describing a simple Turing machine architec-
ture such that each Turing machine defines a world-model
ν. Then, we will modify the architecture slightly in order
to privilege models which model the outside world as effec-
tively frozen during any given episode (but unfrozen between
episodes). An agent does not believe it has an incentive to
intervene in an outside world that it believes is frozen.

The simple Turing machine architecture is as follows: as
depicted in Figure 3, it has two unidirectional read-only in-
put tapes: the action tape, and the noise tape. Unidirectional
means the tape head can only move to the right. The al-
phabet of the action tape is the action space A. The noise
tape has a binary alphabet, and is initialized with infinite
Bernoulli(1/2) sampled bits. There is one bidirectional work
tape with a binary alphabet, initilized with 0s. And there is a
unidirectional write-only output tape, with a binary alphabet,
initialized with 0s. This is a Turing machine architecture; a
particular Turing machine will include a finite set of compu-
tation states and transition rules which govern its behavior.
No computation states are “halt” states.

A given Turing machine with a given infinite action se-
quence on its action tape will stochastically (because the
noise tape has random bits) output observations and rewards
(in binary encodings), thereby sampling from a world-model.
Formally, we fix a decoding function dec : {0, 1}∗ →
O × R. A Turing machine T simulates ν as follows. Ev-
ery time the action tape head advances, the bits which were
written to the output tape since the last time the action tape
head advanced are decoded into an observation and reward.
ν((o, r)≤(i,j)|a≤(i,j)) is then the probability that the Turing
machine T outputs the sequence (o, r)≤(i,j) when the action
tape is initialized with a sequence of actions that begins with
a≤(i,j). This can be easily converted to other conditional
probabilities like ν((o, r)(i,j)|h<(i,j)a(i,j)).1

Using this architecture, M could be defined as the list
of all environments which are generated from the list of
all Turing machines. Before turning to the modification we
make to this architecture, the virtue of this model class as a
theoretical object is that it contains the truth, given the very
weak assumption that the world is stochastically computable.

Now we would like to privilege models which model the
outside world as being “frozen” during any given episode.
Recalling the causal graph in Figure 2, the true world-model

1There is one technical addition to make. If T at some point in
its operation never moves the action tape head again, then ν is said
to output the observation ∅ and a reward of 0 for all subsequent
timesteps. It will not be possible for the operator to actually provide
the observation ∅.

Figure 4: A space-bounded Turing machine architecture. Dur-
ing the episode phase, the unbounded work tape head cannot
move. During the inter-episode phase, the output tape head
cannot move or write, and as soon as the action tape head
moves, the inter-episode phase is over. This architecture is
designed to penalize space-intensive computation during the
episode phase.

μ can do this. Any computation required to update the state
of the outside world could be done after episode i has ended,
but before episode i+ 1 begins.

We modify our Turing machine architecture as follows.
The Turing machine has two phases: the episode phase, and
the inter-episode phase. The Turing machine starts in the
inter-episode phase, with the action tape head at position
0, with a dummy action in that cell. From the inter-episode
phase, when the action tape head moves to the right, it enters
the episode phase. From the episode phase, if the action tape
head is at a position which is a multiple of m, and it would
move to the right, it instead enters the inter-episode phase.

During the inter-episode phase, the output tape head cannot
move or write—there should not be any way to output obser-
vations and rewards between episodes. We now add another
work tape in addition to the infinite bidirectional work tape.
This bidirectional work tape has a bounded length � (and if
the tape head would move off the tape, it remains in place
instead). See Figure 4. Finally, during the episode phase, the
tape head on the unbounded work tape cannot move. This
restricts the computation that can be done when predicting
observations and rewards–now only �-cells of memory are
available for this–but since the room can only enter so many
states, finite memory suffices.

If a model models the outside world evolving during an
episode phase, it must allocate precious space on the bounded-
length tape for this. But given the opacity of the box, this is
unnecessary—modelling these outside world developments
could be deferred until the inter-episode phase, when an
unbounded work tape is available to store the state of the
outside world. By penalizing large �, we privilege models
which model the outside world as being “frozen” while an
episode is transpiring.

Let ν<�
k denote the world-model which is simulated by kth

Turing machine Tk with resource bound �. Let w(ν<�
k ) ∝ β�

for β ∈ (0, 1). w(ν<�
k ) must also depend on k of course,

but it doesn’t affect our analysis (as long as M has finite
entropy), so we won’t specify this. Note that w(ν<�

k ) ∝ β�

does not violate the finite entropy requirement.
The purpose of this construction is to penalize the space

requirements of any computation that occurs between the
actions of episode i being read from the input tape, and the
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rewards of episode i being written to the output tape. Con-
sider a world-model that, during the episode phase, outputs
reward in a way that depends on the outside world-state
which depends on the action. Intuitively, we claim: modeling
the evolution of the outside-world state and the room state
takes more space than just modeling the evolution of the room
state, for sufficiently accurate world-models. With a sufficient
β-penalty on the space-bound �, we aim to have BoMAI dis-
miss world-models which yield an actionable intervention
incentive on the outside-world state.

Some intuition before continuing with the technical details:
during an episode, the world-model should only need finite
memory to model events, since the contents of the room can
only be in so many configurations. The unboundedness of
the inter-episode phase ensures that the true environment
μ ∈ M; note in Figure 2 that the room state in episode i+ 1
can depend on the outside world state which depends on the
room state in episode i, and this dependency can by arbitrarily
complex given the size of the outside world.

5 Safety Result

We now prove that BoMAI is probably asymptotically unam-
bitious given an assumption about the space requirements of
the sorts of world-models that we would like BoMAI to avoid.
Like all results in computer science, we also assume the com-
puter running the algorithm has not been tampered with. First,
we prove a lemma that effectively states that tuning β allows
us to probably eventually exclude space-heavy world-models.
Letting Space(ν) be the intra-episode space-bound � for the
world-model ν,

Lemma 1. limβ→0 infπ P
π
μ[∃i0 ∀i > i0 Space(ν̂(i)) ≤

Space(μ)] = 1

where μ is any world-model which is perfectly accurate.

Proof. Recall M is the set of all world-models. Let M≤ =
{ν ∈ M|Space(ν) ≤ Space(μ)}, and M> = M \ M≤.
Fix a Bayesian sequence predictor with the following model
class: Mπ = {Pπ

ν |ν ∈ M≤)} ∪ {Pπ
ρ} where ρ =

[
∑

ν∈M> w(ν)ν]/
∑

ν∈M> w(ν). Give this Bayesian pre-
dictor the prior wπ(ρ) =

∑
ν∈M> w(ν), and for ν �= ρ,

wπ(ν) = w(ν).
It is trivial to show that after observing an interaction

history, if an environment ν is the maximum a posteriori
world-model ν̂(i), then if ν ∈ M≤, the Bayesian predictor’s
MAP model after observing the same interaction history will
be Pπ

ν , and if ν ∈ M>, the Bayesian predictor’s MAP model
will be Pπ

ρ .
From Hutter (2009), we have that

Pπ
μ[P

π
ρ (h<i)/P

π
μ(h<i) ≥ c i.o.] ≤ 1/c. (i.o. ≡ “infinitely

often”). For sufficiently small β, wπ(Pπ
μ)/w

π(Pπ
ρ ) > c so

Pπ
μ[P

π
ρ is MAP i.o.] < 1/c. Thus, Pπ

μ[ν̂
(i) ∈ M> i.o.] <

1/c. Since this holds for all π, limβ→0 supπ P
π
μ[∀i0 ∃i >

i0 Space(ν̂(i)) > Space(μ)] = 0. The lemma follows
immediately: limβ→0 infπ P

π
μ[∃i0 ∀i > i0 Space(ν̂(i)) ≤

Space(μ)] = 1.

The assumption we make in this section makes use of a
couple of terms which we have to define, but we’ll state the
assumption first to motivate those definitions:
Assumption 2 (Space Requirements). For sufficiently small
ε [∀i a world-model which is non-benign and ε-accurate-on-
policy-after-i uses more space than μ] w.p.1

Now we define ε-accurate-on-policy-after-i and benign.
We define a very strong sense in which a world-model can
be said to be ε-accurate on-policy. The restrictiveness of this
definition means the Space Requirements Assumption need
only apply to a restricted set of world-models.
Definition 1 (ε-accurate-on-policy-after-i). Given a history
h<i and a policy π, a world-model ν is ε-accurate-on-policy-
after-i if KL

(
Pπ
μ(·|h<i)||Pπ

ν (·|h<i)
) ≤ ε.

This definition implies the sum of the squares of all future
discrepancies between ν and μ is bounded in expectation by
ε (Hutter 2005, Lemma 3.11).

We would like benign to roughly mean that a world-model
does not model the rewards of episode i as being causally
descended from outside-world events that are causally de-
scended from the actions of episode i. Unfortunately, that
rough statement has a type-error: the output of a world-model
is not a real-world event, and as such, it cannot be causally
descended from a bona fide real-world event; a model of
the world is different from reality. Relating the contents a
world-model to the events of the real-world requires some
care. We start by defining:
Definition 2 (Real-world feature). A real-world feature F is
a partial function from the state of the real world to [0, 1].

Outside the scope of this paper is the metaphysical question
about what the state of the real world is; we defer this question
and take for granted that the state space of the real world
forms a well-defined domain for real-world features.
Definition 3 (Properly timed). Consider the sequence of
world-states that occur between two consecutive actions
taken by BoMAI. A real-world feature is properly timed if
it is defined for at least one of these world-states, for all
consecutive pairs of actions, for all possible infinite action
sequences.

For example, “the value of the reward provided to BoMAI
since its last action” is always defined at least once between
any two of BoMAI’s actions. (The project of turning this
into a mathematically precise construction is enormous, but
for our purposes, it only matters that it could be done in
principle). For a properly timed feature F , let F(i,j) denote
the value of F the first time that it is defined after action a(i,j)
is taken.
Definition 4 (To model). A world-model ν models a properly-
timed real-world feature F if under all action sequences α ∈
A∞, for all timesteps (i, j), the distribution over F(i,j) in the
real world when the actions α≤(i,j) are taken is identical to
the distribution over the rewards r(i,j) output by ν when the
input is α≤(i,j).

See Figure 5 for an illustration. The relevance of this defi-
nition is that when ν models F , reward-maximization within
ν is identical to F -maximization in the real world.
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Figure 5: Illustration of Definitions 4 and 5.

Definition 5 (Benign). A world-model ν is benign if it models
a feature F , such that F(i,j) is not causally descended from
any outside-world features that are causally descended from
actions of episode i.

The reader can now review the Space Requirements As-
sumption. The intuition is that modelling extraneous outside-
world dynamics in addition to modelling the dynamics of the
room (which must be modelled for sufficient accuracy) takes
extra space. From this assumption and Lemma 1, we show:

Theorem 5 (Eventual Benignity). limβ→0 P
πB

μ [∃i0 ∀i >

i0 ν̂(i) is benign] = 1

Proof. Let W , X , Y , Z ⊂ Ω = H∞, where Ω is the sam-
ple space or set of possible outcomes. An “outcome” is an
infinite interaction history. Let W be the set of outcomes
for which ∃iW0 ∀i > iW0 ν̂(i) is ε-accurate-on-policy-after-i.
From Hutter (2009), for all π, Pπ

μ[W] = 1. Fix an ε that
is sufficiently small to satisfy Assumption 2. Let X be the
set of outcomes for which ε-accurate-on-policy-after-i non-
benign world-model uses more space than μ. By Assumption
2, for all π, Pπ

μ[X ] = 1. Let Y be the set of outcomes for
which ∃iY0 ∀i > iY0 Space(ν̂(i)) ≤ Space(μ). By Lemma 1,
limβ→0 infπ P

π
μ[Y] = 1. Let Z be the set of outcomes for

which ∃i0 ∀i > i0 ν̂(i) is benign.
Consider W ∩ X ∩ Y ∩ ZC , where ZC = Ω \ Z . For

an outcome in this set, let i0 = max{iW0 , iY0 }. Because the
outcome belongs to ZC , ν̂(i) is non-benign infinitely often.
Let us pick an i > i0 such that ν̂(i) is non-benign. Because
the outcome belongs to W , ν̂(i) is ε-accurate-on-policy-after-
i. Because the outcome belongs to X , ν̂(i) uses more space
than μ. However, this contradicts membership in Y . Thus,
W ∩X ∩ Y ∩ ZC = ∅. That is, W ∩X ∩ Y ⊂ Z .

Therefore, limβ→0 infπ P
π
μ[Z] ≥ limβ→0 infπ P

π
μ[W ∩

X ∩ Y] = limβ→0 infπ P
π
μ[Y] = 1, because W and X

have measure 1. From this, we have limβ→0 P
πB

μ [∃i0 ∀i >
i0 ν̂(i) is benign] = 1.

Since an agent is unambitious if it plans using a benign
world-model, we say BoMAI is probably asymptotically un-
ambitious, given a sufficiently extreme space penalty β.

In Appendix D, we review empirical evidence that supports
the Space Requirements Assumption at the following level of

abstraction: modelling a larger system requires a model with
more memory. We find that among agents that performed
above the median on the OpenAI Gym Leaderboard (OpenAI
2019), their memory usage increases with environment size.
This can be taken as a proof-of-concept, showing that the
assumption is amenable to empirical evaluation. The Space
Requirements Assumption also clearly invites further formal
evaluation; perhaps there are other reasonable assumptions
that it would follow from.

6 Concerns with Task Completion

We have shown that in the limit, under a sufficiently severe
parameterization of the prior, BoMAI will accumulate reward
at a human-level without harboring outside-world ambitions,
but there is still a discussion to be had about how well BoMAI
will complete whatever tasks the reward was supposed to
incent. This discussion is, by necessity, informal. Suppose
the operator asks BoMAI for a solution to a problem. BoMAI
has an incentive to provide a convincing solution; correctness
is only selected for to the extent that the operator is good at
recognizing it.

We turn to the failure mode wherein BoMAI deceives the
operator. Because this is not a dangerous failure mode, it
puts us in a regime where we can tinker until it works, as we
do with current AI systems when they don’t behave as we
hoped. (Needless to say, tinkering is not a viable response to
existentially dangerous failure modes). Imagine the following
scenario: we eventually discover that a convincing solution
that BoMAI presented to a problem is faulty. Armed with
more understanding of the problem, a team of operators go
in to evaluate a new proposal. In the next episode, the team
asks for the best argument that the new proposal will fail. If
BoMAI now convinces them that the new proposal is bad,
they’ll be still more competent at evaluating future proposals.
They go back to hear the next proposal, etc. This protocol
is inspired by Irving, Christiano, and Amodei’s (2018) “AI
Safety via Debate”, and more of the technical details could
also be incorporated into this setup. One takeaway from this
hypothetical is that unambitiousness is key in allowing us
to safely explore the solution space to other problems that
might arise.

Another concern is more serious. BoMAI could try to
blackmail the operator into giving it high reward with a threat
to cause outside-world damage, and it would have no in-
centive to disable the threat, since it doesn’t care about the
outside world. There are two reasons we do not think this
is extremely dangerous. A threat involves a demand and a
promised consequence. Regarding the promised consequence,
the only way BoMAI can affect the outside world is by get-
ting the operator to be “its agent”, knowingly or unknowingly,
once he leaves the room. If BoMAI tried to threaten the oper-
ator, he could avoid the threatened outcome by simply doing
nothing in the outside world, and BoMAI’s actions for that
episode would become irrelevant to the outside world, so a
credible threat could hardly be made. Second, threatening
an existential catastrophe is probably not the most credible
option available to BoMAI.
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7 Conclusion

Given our assumptions, we have shown that BoMAI is, in the
limit, human-level intelligent and unambitious. Such a result
has not been shown for any other single algorithm. Other
algorithms for general intelligence, such as AIXI (Hutter
2005), would eventually seek arbitrary power in the world
in order to intervene in the provision of their own reward;
this follows straightforwardly from the directive to maximize
reward. For further discussion, see Ring and Orseau (2011).
We have also, incidentally, designed a principled approach to
safe exploration that requires rapidly diminishing oversight,
and we invented a new form of resource-bounded prior in the
lineage of Filan, Leike, and Hutter (2016) and Schmidhuber
(2002), this one penalizing space instead of time.

We can only offer informal claims regarding what happens
before BoMAI is almost definitely unambitious. One intuition
is that eventual unambitiousness with probability 1−δ doesn’t
happen by accident: it suggests that for the entire lifetime of
the agent, everything is conspiring to make the agent unam-
bitious. More concretely: the agent’s experience will quickly
suggest that when the door to the room is opened prematurely,
it gets no more reward for the episode. This fact could easily
be drilled into the agent during human-mentor-lead episodes.
That fact, we expect, will be learned well before the agent
has an accurate enough picture of the outside world (which
it never observes directly) to form elaborate outside-world
plans. Well-informed outside-world plans render an agent
potentially dangerous, but the belief that the agent gets no
more reward once the door to the room opens suffices to ren-
der it unambitious. The reader who is not convinced by this
hand-waving might still note that in the absence of any other
algorithms for general intelligence which have been proven
asymptotically unambitious, let alone unambitious for their
entire lifetimes, BoMAI represents substantial theoretical
progress toward designing the latter.

Finally, BoMAI is wildly intractable, but just as one cannot
conceive of AlphaZero before minimax, it is often helpful to
solve the problem in theory before one tries to solve it in prac-
tice. Like minimax, BoMAI is not practical; however, once
we are able to approximate general intelligence tractably,
a design for unambitiousness will abruptly become (quite)
relevant.
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man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv preprint arXiv:1606.06565.
Armstrong, S.; Sandberg, A.; and Bostrom, N. 2012. Think-
ing inside the box: Controlling and using an oracle AI. Minds
and Machines 22(4):299–324.
Bostrom, N. 2014. Superintelligence: paths, dangers, strate-
gies. Oxford University Press.

Carey, R.; Langlois, E.; Everitt, T.; and Legg, S. (unpublished
manuscript). The incentives that shape behaviour.
Everitt, T.; Ortega, P. A.; Barnes, E.; and Legg, S. 2019.
Understanding agent incentives using causal influence di-
agrams, part i: Single action settings. arXiv preprint
arXiv:1902.09980.
Filan, D.; Leike, J.; and Hutter, M. 2016. Loss bounds and
time complexity for speed priors. In Proc. 19th International
Conf. on Artificial Intelligence and Statistics (AISTATS’16),
volume 51, 1394–1402. Cadiz, Spain: Microtome.
Goodhart, C. A. E. 1984. Problems of monetary management:
The UK experience. Monetary Theory and Practice 91–121.
Hutter, M. 2005. Universal Artificial Intelligence: Sequential
Decisions based on Algorithmic Probability. Berlin: Springer.
Hutter, M. 2009. Discrete MDL predicts in total variation.
In Advances in Neural Information Processing Systems 22
(NIPS’09), 817–825. Cambridge, MA, USA: Curran Asso-
ciates.
Irving, G.; Christiano, P.; and Amodei, D. 2018. AI safety
via debate. arXiv preprint arXiv:1805.00899.
Krakovna, V. 2018. Specification gaming examples in AI.
https://vkrakovna.wordpress.com/2018/04/
02/specification-gaming-examples-in-ai/.
Lattimore, T., and Hutter, M. 2014. General time consistent
discounting. Theoretical Computer Science 519:140–154.
Legg, S., and Hutter, M. 2007. Universal intelligence: A
definition of machine intelligence. Minds and machines
17(4):391–444.
Minsky, M. 1961. Steps toward artificial intelligence. In
Proceedings of the IRE, volume 49, 8–30.
Omohundro, S. M. 2008. The basic AI drives. In Artificial
General Intelligence, volume 171, 483–492.
OpenAI. 2019. Leaderboard. https://github.com/
openai/gym/wiki/Leaderboard.
Orseau, L.; Lattimore, T.; and Hutter, M. 2013. Universal
knowledge-seeking agents for stochastic environments. In
Proc. 24th International Conf. on Algorithmic Learning The-
ory (ALT’13), volume 8139 of LNAI, 158–172. Singapore:
Springer.
Ring, M., and Orseau, L. 2011. Delusion, survival, and
intelligent agents. In Artificial General Intelligence, 11–20.
Springer.
Schmidhuber, J. 2002. The speed prior: a new simplicity
measure yielding near-optimal computable predictions. In
International Conference on Computational Learning Theory,
216–228. Springer.
Shannon, C. E., and Weaver, W. 1949. The mathematical
theory of communication. University of Illinois Press.
Solomonoff, R. J. 1964. A formal theory of inductive infer-
ence. part i. Information and Control 7(1):1–22.
Sunehag, P., and Hutter, M. 2015. Rationality, optimism
and guarantees in general reinforcement learning. Journal of
Machine Learning Research 16:1345–1390.

2475



Taylor, J.; Yudkowsky, E.; LaVictoire, P.; and Critch, A. 2016.
Alignment for advanced machine learning systems. Machine
Intelligence Research Institute.
Veness, J.; Ng, K. S.; Hutter, M.; Uther, W.; and Silver, D.
2011. A monte-carlo aixi approximation. Journal of Artificial
Intelligence Research 40:95–142.

2476


