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Abstract

Reward learning as a method for inferring human intent and
preferences has been studied extensively. Prior approaches
make an implicit assumption that the human maintains a cor-
rect belief about the robot’s domain dynamics. However, this
may not always hold since the human’s belief may be biased,
which can ultimately lead to a misguided estimation of the
human’s intent and preferences, which is often derived from
human feedback on the robot’s behaviors. In this paper, we
remove this restrictive assumption by considering that the hu-
man may have an inaccurate understanding of the robot. We
propose a method called Generalized Reward Learning with
biased beliefs about domain dynamics (GeReL) to infer both
the reward function and human’s belief about the robot in a
Bayesian setting based on human ratings. Due to the com-
plex forms of the posteriors, we formulate it as a variational
inference problem to infer the posteriors of the parameters
that govern the reward function and human’s belief about the
robot simultaneously. We evaluate our method in a simulated
domain and with a user study where the user has a bias based
on the robot’s appearances. The results show that our method
can recover the true human preferences while subject to such
biased beliefs, in contrast to prior approaches that could have
misinterpreted them completely.

Introduction

With the rapid advancement in AI and robotics, intelli-
gent agents begin to play an important role in our lives in
many different areas. Robots will soon be expected to not
only achieve tasks alone, but also engage in tasks that re-
quire close collaboration with their human teammates. In
such situations, the ability of the robot to understand the
human’s intent and preferences becomes a determinant for
achieving effective human-robot teaming. The problem of
inferring human’s intent and preferences has been stud-
ied extensively before. Some researchers (Ng and Russell
2000) formulated this problem as an Inverse Reinforcement
Learning (IRL) problem (Russell 1998). The reward func-
tion is recovered from optimal policies or behaviors demon-
strated by human experts. Such expert demonstrations, how-
ever, are often difficult to obtain in real-world tasks. To ad-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dress this problem, learning methods based on non-expert
user ratings of the robot’s behaviors (Daniel et al. 2014;
Dorsa Sadigh, Sastry, and Seshia 2017; Cui and Niekum
2018) are developed. A common assumption made implic-
itly in all these prior works is that the human always main-
tains a correct understanding of the robot’s domain dynam-
ics. This, however, may not be the case in many scenarios es-
pecially with non-expert users. Having a biased belief about
the robot could lead to biased (not just noisy) ratings for the
robot’s behaviors, resulting in an inaccurate estimation of
the human’s reward function.

Consider a robot vacuum cleaner that is tasked to clean
the floors in a house. Suppose that the robot vacuum is de-
signed to clean most floor types except for hardwood since it
is too slippery for the robot to grasp onto (so it may be stuck
in a room with a hardwood floor once entered). Consider a
user who is asked to rate the robot’s behaviors. Given a set
of trajectories of the robot cleaner (with most of the areas
covered except for the living room with a hardwood floor),
the robot may get low ratings even though it should have
received high ratings had the user known about the robot’s
capabilities (which are expressed in terms of domain dynam-
ics). On the other hand, the robot may receive high ratings
(even though it should not have) when it stays (stuck) in the
living room but somehow manages to clean it (albeit much
less efficiently), if the user had the belief that the robot was
designed to clean only one room at a time.

In this paper, we remove the restrictive assumption that
humans have a correct belief about the robot’s domain dy-
namics. Our goal is to recover the true reward function under
biased beliefs. We refer to this problem as Generalized Re-
ward Learning (GRL) and propose a method called Gener-
alized Reward Learning with biased beliefs about domain
dynamics (GeReL) that infers the latent variables govern-
ing both the reward function and human’s belief together
in a Bayesian setting based on human ratings of the robot’s
behaviors. Due to the complex forms of the posteriors, the
problem is formulated in a variational inference framework
(Jordan et al. 1999; Bishop 2006). The variational poste-
rior distribution of the latent variables for estimating the
true posterior is optimized using a black-box optimization
method (Ranganath, Gerrish, and Blei 2014). To reduce the
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variance of Monte Carlo estimates of the variational gradi-
ents, we factorize the updating rules according to the inde-
pendence of the latent variables and apply control variate to
make the optimization converge faster. By inferring the re-
ward function and the human’s belief about the robot simul-
taneously in this way, our learning method is able to recover
the true human preferences while at the same time main-
tain an estimate of the human’s biased belief. As such, our
method addresses a key limitation of the existing methods
and hence has broad impacts on improving the applicability
and safety of robotic systems that work closely with humans.

To evaluate our method, we perform experiments in a sim-
ulated navigation domain and with a user study in the Coffee
Robot domain (Boutilier, Dearden, and Goldszmidt 2000;
Sigaud and Buffet 2013) where biases are introduced by
varying the robot’s appearances. We compare GeReL with
a variant of Simultaneous Estimation of Rewards and Dy-
namics (SERD) (Herman et al. 2016), Maximum Entropy
IRL (MaxEnt-IRL) (Ziebart et al. 2008), and another base-
line approach that uses our inference method but maintains
the same assumption as in MaxEnt-IRL (that the human’s
understanding of the robot is correct). In the latter two meth-
ods, the true domain dynamics is used and held fixed during
learning. Results show that GeReL can better recover the
true reward function under such biased beliefs when com-
pared to these other methods. Furthermore, when biases are
present, the learned preferences could be completely oppo-
site to the ground truth, suggesting that such a method is in-
deed valuable for addressing biases in robotic applications.

Related Work
Researchers have formulated the problem of inferring the
human’s intent and preferences as an IRL problem (Rus-
sell 1998) where the goal is to recover the human’s pref-
erences as a reward function. IRL is often solved using
various optimization techniques with expert demonstrations
as the input (Ng and Russell 2000). IRL has also been
applied to apprenticeship learning (Abbeel and Ng 2004)
to directly approximate the expert’s policy. In order to
deal with noise in the demonstrations, (Ziebart et al. 2008;
Boularias, Kober, and Peters 2011) proposed a probabilistic
approach based on the principle of maximum entropy. Fur-
thermore, Bayesian IRL (Ramachandran and Amir 2007) is
introduced that incorporates prior knowledge.

However, expert demonstrations (with or without noise)
are often difficult to obtain in real-world tasks. More re-
cently, researchers start focusing on learning with non-
expert feedback on the queries of the robot’s behaviors, of-
ten in the forms of ratings (Daniel et al. 2014), comparisons
(Dorsa Sadigh, Sastry, and Seshia 2017), or critiques (Cui
and Niekum 2018; Zhang and Dragan 2019). All these prior
works rely on an implicit assumption that the non-expert
user maintains a correct understanding of the robot’s domain
dynamics. However, when the user is biased, which is likely
under such a non-expert setting, it may lead to learning a
wrong reward function.

There exists prior work that considers differences be-
tween the human and robot in the forms of differences in do-
main dynamics (Zhang et al. 2016; 2017; Chakraborti et al.

Figure 1: Workflow of GeReL. Using the robot’s true transi-
tion model TR, the robot randomly generates a set of demon-
strations Z which are evaluated by the human. The human
is assumed to provide his rating γH ∈ ΓH for each instance
ζ ∈ Z according to the reward function RH and his be-
lief Th

R about the robot’s domain dynamics. The ratings will
be used to update the estimated reward function R̃H (gov-
erned by the parameters w) and human’s understanding of
the robot T̃h

R (governed by the parameters Θ). Gray circles
denote the latent variables while the observed are in white.

2017) as well as reward functions (Arnold, Kasenberg, and
Scheutz 2017; Russell, Dewey, and Tegmark 2015), where
the first direction is particularly relevant to our work. (Zhang
et al. 2016; 2017; Zakershahrak et al. 2018) approximate
the human’s understanding of the robot’s behaviors using
a learning approach and integrate it into task planning to
generate explicable plans to bridge the differences in do-
main dynamics. Researchers have also investigated directly
learning the human’s understanding of the domain dynam-
ics using model learning. (Unhelkar and Shah 2019) lever-
age a factored model of behaviors and partial specifications
to recover the agent’s true generative model of behaviors.
(Reddy, Dragan, and Levine 2018) learn the human’s belief
about the domain dynamics via inverse soft Q-learning given
the human’s reward function. In this paper, we consider the
human’s biased belief about the robot in reward learning.
We use the human’s ratings of the robot’s behaviors to infer
both the reward function and human’s belief without assum-
ing either is available. Although simultaneously learning the
rewards and domain dynamics has been studied before (Her-
man et al. 2016), it is not applicable to our problem setting
where non-expert human ratings are used. Compared to op-
timizing the likelihood of expert demonstrations by comput-
ing the derivatives directly, the posteriors for our method as-
sume more complex forms. Furthermore, our method does
not require the value functions to take certain forms (e.g.,
using soft Bellman equation) to perform well and hence it is
more general and effective. Thereby, the smoothing effect of
entropy regularized reward function caused by soft Bellman
equation is avoided, as we will show.

GeReL

The workflow of GeReL is presented in Figure 1. The robot
will first randomly generate a set of demonstrations for
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querying the human for ratings. Then, the ratings of the
demonstrations will be used to infer both the human’s re-
ward function and his belief. The system terminates when it
meets the convergence criterion. Similar to prior work on re-
ward learning, we assume that the human is to always max-
imize the rewards (Ng and Russell 2000; Abbeel and Ng
2004), so that his ratings can be estimated given the reward
function and his belief of the domain dynamics.

Problem Formulation

More specifically, given a robot’s demonstration ζ, we as-
sume that the human would rate it according to two factors,
the reward function RH and his belief about the robot’s do-
main dynamics Th

R. When the human’s belief is different
from the true robot’s domain dynamics, the rating may be
biased and could then lead to a wrong interpretation of the
human’s preference. This setting introduces the Generalized
Reward Learning (GRL) problem as follows:

Given:

• Robot’s demonstrations Z;
• Human’s ratings ΓH for each instance in Z.

To determine:

• Human’s true reward function RH ;
• Human’s belief Th

R about robot’s domain dynamics.

To solve this problem, we formulate the environment as a
Markov Decision Processes (MDP). An MDP is defined by
a tuple (S,A,R, T, λ) where S is a finite set of states, A is
a finite set of actions, and R : S �→ R is the reward function
that maps each state to a utility value. T : S × A × S �→
[0, 1] is the transition function that specifies the probability
of transitioning to the next state when you take an action in
the current state. λ is the discount factor that determines how
the agent favors current rewards over future rewards.

Similar to prior work on reward learning (Ng and Rus-
sell 2000; Abbeel and Ng 2004), we formulate the reward
function RH for a state s as follows:

RH(s) = w · Φ(s)
where Φ = [φ0, φ1, . . . , φk]

T denotes a set of predefined
features for states and w = [w0, w1, . . . , wk]

T denotes a
set of weights for the features. The robot’s domain dynam-
ics (i.e., the true domain dynamics) is captured by a transi-
tion function and assumed to be given. Likewise, the hu-
man’s belief about the robot’s domain dynamics is mod-
eled also as a transition function Th

R, which is hidden. Th
R

is assumed to follow a set of probability distributions Θ =
[θ1,θ2, . . . ,θ|S|×|A|] where θi = p(s′|s, a) is a distribution
for a fixed s and a. These distributions capture the human’s
prior belief about the robot.

To rate a robot’s behavior ζ, we assume that the human
will first generate his expectation of the robot’s behavior as
an optimal policy generated using his reward function RH

and belief about the robot Th
R. Then the behavior of the robot

is compared with the optimal policy to generate a rating γH .
Hence, our learning task in this paper becomes to learn the
weights w and transition probability distributions Θ.

Methodology

The inference problem above is often solved by optimiz-
ing the posterior probability with respect to the latent vari-
ables. However, due to the complex forms of the posteriors,
we formulate the problem in a variational inference frame-
work (Jordan et al. 1999; Bishop 2006). Our goal is to ap-
proximate the posterior distribution p(w,Θ|ΓH ,Z), where
ΓH ,Z are the observations and w, Θ the latent variables.

We assume that w follows a multivariate Gaussian distri-
bution N (μ,Σ). For simplicity, we assume that Σ is given
a priori. For Θ, we need to select a prior for each θi as a
probability distribution. We assume that each θi follows a
Dirichlet distribution DIR(αi), which encodes a distribu-
tion over distributions. Let A = [α1,α2, . . . ,α|S|×|A|],
and thereby, μ and A are the parameters we need to learn.
As a result, our variational posterior distribution becomes
q(w,Θ|μ,A), which is the posterior of the latent variables
that correspond to the reward function and human’s belief
about the robot’s domain dynamics governed by μ and A.
It thus transforms the problem of inferring RH and Th

R into
a problem of finding μ and A to make q(w,Θ|μ,A) to be
close to p(w,Θ|ΓH ,Z).

As a variational inference problem, we optimize the Evi-
dence Lower BOund (ELBO):

L(q) = Eq(w,Θ) [log p(ΓH ,Z,w,Θ)− log q(w,Θ)]

where p(ΓH ,Z,w,Θ) is the joint probability of the obser-
vations ΓH ,Z and latent variables w,Θ. In order to make
it computable in our task, we apply black-box variational
inference (Ranganath, Gerrish, and Blei 2014) to maximize
ELBO via stochastic optimization:

〈μ,A〉 = 〈μ,A〉+ ρ · ∇〈μ,A〉L(q)
where the learning rate ρ follows the Robbins-Monro rules
(Robbins and Monro 1951). We compute the gradient of
ELBO with respect to the free parameters μ and A and
∇〈μ,A〉L(q) is derived as follows:

∇〈μ,A〉L(q) = Eq(w,Θ)[∇〈μ,A〉 log q(w,Θ|μ,A)

· (log p(ΓH ,Z,w,Θ)− log q(w,Θ|μ,A))] (1)

From Equation (1), we can see that the gradient of ELBO is
the expectation of the multiplication of the score function
(Hinkley and Cox 1979) (i.e., ∇〈μ,A〉 log q(w,Θ|μ,A))
and instantaneous ELBO (i.e., log p(ΓH ,Z,w,Θ) −
log q(w,Θ|μ,A)) with respect to our variational posterior
distribution. The detailed derivation of ∇〈μ,A〉L(q) is pre-
sented in (Ranganath, Gerrish, and Blei 2014).

The form of ∇〈μ,A〉L(q) is not directly computable.
Given that μ and A are independent parameters in our set-
ting, we compute∇μL(q) and∇AL(q) respectively and up-
date them separately:

μ = μ+ ρμ · ∇μL(q)
A = A+ ρA · ∇AL(q)

This also allows us to apply the mean-field assumption that
gives the following factorization:

q(w,Θ|μ,A) = q(w|μ) · q(Θ|A)
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Then we can rewrite the gradient of ELBO as follows:

∇〈μ,A〉L(q) =
Eq(w)Eq(Θ)

[∇〈μ,A〉(log q(w|μ) + log q(Θ|A))

· (log p(ΓH ,Z,w,Θ)− log q(w|μ)− log q(Θ|A))]

Take q(w|μ) as an example, following the derivations in
(Ranganath, Gerrish, and Blei 2014), the gradient of ELBO
with respect to μ becomes:

∇μL(q) = Eq(w) [∇μ(log q(w|μ))

· Eq(Θ) [log p(ΓH ,Z,w,Θ) − log q(w|μ)− log q(Θ|A)]]

Note that the first term Eq(w) [∇μ (log q(w|μ)] = 0 (Ran-
ganath, Gerrish, and Blei 2014). Hence the last term in the
instantaneous ELBO can be considered as a constant with
respect to q(w) and canceled out. ∇μL(q) then becomes:

∇μL(q) = Eq(w) [∇μ(log q(w|μ))
· (Eq(Θ) [log p(ΓH ,Z,w,Θ)] − log q(w|μ))] (2)

Different from (Ranganath, Gerrish, and Blei 2014), in
our problem, the expectation of the log joint probability
log p(ΓH ,Z,w,Θ) cannot be canceled out since w and Θ
happen to be in the Markov blanket of each other. Based on
the relationship among these variables as shown in Figure 1,
the log probability can be factorized as follows:

log p(ΓH ,Z,w,Θ)

= log p(ΓH |Z,w,Θ)+log p(w)+log p(Θ)+log p(Z)
(3)

Putting Equation (3) back into Equation (2), we obtain:

∇μL(q) = Eq(w) [∇μ(log q(w|μ))

· (Eq(Θ) [log p(ΓH |Z,w,Θ)] + log p(w)− log q(w|μ))] (4)

where the expectation of the terms log p(Θ) and log p(Z)
with respect to q(Θ) are constants and can be canceled out
since Eq(w)[∇μ(log q(w|μ)] = 0. Now we have obtained
the gradient of ELBO with respect to the latent variable μ as
presented in Equation (4). Similarly, the gradient of ELBO
with respect to each αi ∈ A is as follows:

∇αiL(q) = Eq(θi)
[∇αi (log q(θi|αi))

· (Eq(w) [log p(ΓH |Z,w,Θ)] + log p(θi)− log q(θi|αi))]

Both p(w) and p(θi) are priors, which are assumed to follow
a multivariate Gaussian distribution and a Dirichlet distribu-
tion respectively.

In the equations above, log p(ΓH |Z,w,Θ) =∑
log p(γH |ζ,w,Θ) since the demonstrations and

ratings are conditionally independent from each other.
p(γH |ζ,w,Θ) indicates how likely the human would give
a rating γH for the demonstration ζ given the parameters
for the reward function and human’s belief about the robot.
We assume a Gaussian distribution N (γH |γ̃H ,ΣγH

) where
γ̃H is the estimated mean of the human’s ratings given
w and Θ, and ΣγH

is assumed to be given to simplify
the discussion. As discussed earlier, the estimated mean

rating of a demonstration is assumed to depend on two
factors, the reward function and the human’s belief about
the robot’s domain dynamics. They together determine
the human’s expectation of the robot’s behavior, which
corresponds to the optimal policy for the robot in the
human’s mind. In this paper, we assume that the rating is
proportional to the geometric mean of the human’s softmax
policy applied to the demonstration. Moreover, we define
γmax to be a constant that represents the highest rating
that may be given. Following our discussion, the estimated
human’s rating can be computed for a demonstration
ζ = {(s1, a1), (s2, a2) . . . (sn, an)} as:

γ̃H = γmax ·
(

n∏
i=1

π̃(ai|si)
) 1

n

where n is the length of the demonstration, and π̃ is the es-
timated human’s softmax policy computed using w and Θ.

Variance Reduction: The computation of ∇μL(q) and
∇αi
L(q) above cannot be performed directly due to the in-

tractability of computing the expectations. Hence, we ap-
proximate the gradients using sampling methods (Hastings
1970). With Monte Carlo samples, the gradients are esti-
mated as follows:

∇̂μL(q) � 1

S

S∑
s=1

[∇μ (log q(ws|μ))

· (log p(ΓH |Z,ws,Θs) + log p(ws)− log q(ws|μ))]
where S is the number of samples, and ws ∼ q(w), Θs ∼
q(Θ).

These estimated gradients, however, may have a large
variance which could hinder the convergence of our ap-
proach. Therefore, it is necessary to reduce the variance.
(Ross 2002) introduced control variate that represents a fam-
ily of functions with equivalent expectations. With control
variate, we can instead compute the expectation of an alter-
native function which has a smaller variance. Let f be the
function to be approximated, function f̂ is defined as:

f̂ = f − a · (g − E[g])

where g serves as an auxiliary function that has a finite first
moment. f̂ can be proven to have smaller variances with
an equivalent expectation, where the factor a is computed
to minimize the variance (Ranganath, Gerrish, and Blei
2014) as a = cov(f,g)

var(g) . In this paper, we select the expec-
tation of the score function (i.e., Eq(w) [∇μ (log q(w|μ))]
and Eq(Θ) [∇αi

(log q(Θ|αi))]) to be g.
We present GeReL in Algorithm 1. Given the robot’s

demonstrations and the corresponding ratings, we leverage
the human’s ratings to update the parameters μ and A of
our variational posteriors q(w) and q(Θ) via stochastic op-
timization. The gradients of the ELBO with respect to μ
and A are approximated using Monte Carlo sampling. Fur-
thermore, we take advantage of control variate to reduce the
variance of the gradient estimates. Lastly, the parameters, μ
and A, are updated in each iteration with an adapted learn-
ing rate based on AdaGrad (Duchi, Hazan, and Singer 2011).
GeReL terminates when the convergence criterion is met.
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Algorithm 1 Generalized Reward Learning with Biased Be-
lief about Domain Dynamics (GeReL)
Input: the robot’s demonstrations Z, human’s ratings ΓH ,
variational posteriors q(w) and q(Θ), MaxIter
Output: μ and A

1: Initialize: free parameters μ and A for q(w) and q(Θ)
2: Let t = 1.
3: while t < MaxIter or convergence not met do
4: Draw S samples from q(w) and q(Θ)
5: for s = 1 to n do
6: π̃ ← the human’s expected policy for the robot
7: Γ̃H ← estimated human’s ratings for Z given π̃
8: Compute fμ, gμ, fαi , and gαi

9: end for
10: Compute aμ and aαi

11: Approximate ∇̂μL � 1
S

∑S
s=1[fμ − aμgμ] and

∇̂αi
L � 1

S

∑S
s=1[fαi

− aαi
gαi

]

12: Compute learning rates ρμ and ραi with ∇̂μL, ∇̂αiL

13: Update μ = μ+ ρμ∇̂μL and αi = αi + ραi
∇̂αi

L
14: end while
15: return μ and A

Evaluation

To evaluate our approach, we conduct two sets of experi-
ments in a simulated grid-world navigation domain and a
Coffee Robot domain (Boutilier, Dearden, and Goldszmidt
2000; Sigaud and Buffet 2013) with a user study. The sim-
ulation will be focusing on validating our learning method
under biased beliefs. The user study will serve two purposes,
showing that 1) human users are easily biased in our prob-
lem setting; 2) our algorithm learns the correct human pref-
erences under such biases, while prior methods that ignore
such biases would fail.

Simulated Navigation Domain

In the first experiment, we test the performance of GeReL
in a grid-world navigation domain which contains 7 × 7 =
49 states. We set one reward state (i.e., location) that has a
large positive weight (i.e. 5) and one penalty location with
a large negative weight (i.e., -5). They are randomly located
at corners of the grid-world. The robot starts at a random
state and its goal is to maximize the rewards. There are four
actions, {1 (Up), 2 (Down), 3 (Left), 4 (Right)}, which can
transfer the agent from the current state to another state.

To test our algorithm, we simulate two types of biased hu-
man beliefs about the robot’s domain dynamics. 1) Reversed
Up & Down : the human believes that action 1 would take
the robot down and action 2 would move it up instead. 2) Ro-
tated Belief : human believes that the action 1 would move
the robot left, the action 2 would move it right, the action
3 would move it up and the action 4 would move it down.
The human’s reward function for each state is defined as a
weighted summation of an inverse distance metric to the re-
ward and penalty states (i.e., the closer it is to the state, the
more influence that state has on its reward). The demonstra-
tions are randomly generated via the robot’s true dynamic

Figure 2: Rewards learned by different approaches.

model. The human’s ratings are simulated using the true hu-
man reward function and biased belief about the robot’s do-
main dynamics following a Gaussian distribution.

We compare GeReL with two baseline methods that as-
sume that the human maintains the correct belief about the
robot’s domain dynamics, namely MaxEnt-IRL (Ziebart et
al. 2008) and GeReL−, with the latter basically uses GeReL
without updating the domain dynamics. In both baseline
methods, the true robot’s domain dynamics is used during
learning. In addition, a variant of the Simultaneous Estima-
tion of Rewards and Dynamics (SERD) algorithm (Herman
et al. 2016) implemented that learns both the reward func-
tion and dynamics based on ratings (the original method
does not apply to our problem setting) is used in the com-
parison, which relies on soft value iteration that requires the
value functions to assume certain shapes to perform well. To
obtain demonstrations for MaxEnt-IRL, we generate them
based on the softmax policy of the human. All of the four
methods are provided with the same amount of demonstra-
tions. All the results are averaged over multiple runs.

Figure 3 shows the result for the Reversed Up & Down
setting. The result shows that GeReL can successfully re-
cover the human’s reward function and belief about the
robot’s domain dynamics while GeReL− and MaxEnt-IRL
converge in the completely opposite direction since they do
not consider that the human’s belief could be biased. On the
other hand, SERD converges in the right direction, but the
learned values are farther from the ground truth than GeReL
in all cases. This is due to the smoothing effect of soft value
iteration. In addition, we compute the KL divergence of the
softmax policy generated by the estimated reward function
and human’s belief with that of the ground truth to exam-
ine how well we can estimate the human’s expectation of
the robot’s behaviors. Similar trends are observed among
all the methods. The comparison of the rewards learned by
these four methods with the ground truth is presented in Fig-
ure 2. Both GeReL and SERD converge to the correct pat-
tern of rewards in terms of their relative magnitudes. SERD
shows less sensitivity to the magnitudes since soft Bellman
equation would lead to an entropy augmented reward func-
tion (Haarnoja et al. 2017). The adverse effect of learning
from biased ratings is clear from the figure for GeReL− and
MaxEnt-IRL, which both fail to recover the true preferences.
The results for both settings are presented in Table 1, which
show similar performances in between the two settings. It
confirms that GeReL can effectively estimate the human’s
reward function under biased beliefs.
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Figure 3: Comparison of the performance among GeReL, SERD, GeReL−, MaxEnt-IRL with the prior also shown. Left:
The L2 distance between the learned rewards (which is computed using w) and the ground truth. Middle: The L2 distance
between the estimated human’s belief (i.e., Θ) and the ground truth. Right: The KL divergence between the estimated human’s
expectation of robot’s (softmax) policy (which is computed using w and Θ) and that under the ground truth.

d(R) d(Θ) d(π) d(R) d(Θ) d(π)

Reversed Up & Down Rotated Belief
GeReL 12.17 0.06 0.11 12.61 0.08 0.23
SERD 16.43 0.38 0.47 17.62 0.57 0.63

GeReL− 26.72 0.56 1.46 23.96 0.91 1.43
MaxEnt-IRL 23.32 0.56 1.68 28.02 0.91 1.55

Table 1: Comparison of GeReL, SERD, GeReL−, and
MaxEnt-IRL for the two settings in our simulation with re-
spect to the L2 distance between the estimated values and
the ground truth (i.e., d(R), d(Θ)). The third column (i.e.,
d(π)) shows the KL divergence between the estimated hu-
man’s expectation of the robot’s softmax policy and that un-
der the ground truth.

User Study with the Coffee Robot Domain

Besides the experiments in a simulated domain, we also con-
duct a user study. Through the study, we hope to demonstrate
that humans can be easily biased in our problem setting,
which may lead to biased ratings that could have led to a
wrong interpretation of the human preference. In such cases,
we will show that GeReL can accurately identify the situa-
tion. We apply the Coffee Robot domain (Boutilier, Dear-
den, and Goldszmidt 2000; Sigaud and Buffet 2013) in this
user study, which is illustrated in Figure 4. This is a typical
factored MDP domain described by 6 binary features which
represent whether it is raining, whether the robot has a cof-
fee, etc. The task of the robot is to buy a cup of coffee from
a cafe and deliver it to a person in his office. When it is rain-
ing, the robot could choose to either operate in the rain or use
an umbrella to stay dry. However, using an umbrella while
holding the coffee cup may cause the coffee to spill.

To create a situation where biases may be present, we de-
sign two experimental settings with two different types of
robots: a mobile robot and a humanoid, as seen in Figure 4.
We anticipate that the appearance would introduce human
biases (Haring et al. 2018) in terms of their capabilities of
handling the task. To reduce the effects that the human sub-
ject would improve their understanding over time, we gen-
erate only 7 demonstrations for each robot that include var-
ious scenarios that may occur, such as for a sunny or rainy

Figure 4: The Coffee Robot domain. The weather could be
rainy or sunny, and the robot may choose to use an umbrella
or operate in the rain. We use two types of robots (humanoid
vs. mobile) to perform the same set of demonstrations that
cover the various situations that may occur.

day, for whether or not the robot takes the umbrella, and for
whether or not the robot spills the coffee. The ground truth
for the domain dynamics is set such that the humanoid is
less likely to spill the coffee while using the umbrella than
the mobile robot.

We publish the experiments on Amazon Mechanical Turk
(MTurk). To remove invalid responses, we insert a sanity
check demonstration with random actions, which should
have received the lowest rating. We recruited 20 participants
for each setting. After removing those that failed the sanity
check or with very short response time (< 3 min), we ob-
tained 12 valid responses for each setting with ages ranging
from 23 to 61 (the ratio of males to females is 2 : 1). Each
participant is provided with instructions about the domain
at the beginning. To avoid the influence from viewing the
demonstrations, immediately after the instructions, we ask
the participants two questions as follows:
• Q1: How much more likely do you feel that the robot may

spill the coffee while using an umbrella?
• Q2: How much do you care about the robot being wet?
The first question is designed to illicit the participant’s belief
about the robot’s domain dynamics while the second ques-
tion is for the participant’s preference. Their feedback for
each setting is presented in Table 2. The participants of the
mobile robot setting believed that the robot would be less
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Question p-value Mobile Humanoid
(Q1) Domain Dynamics 0.047 2.92 3.58
(Q2) Weight Preference 0.027 2.83 3.67

Table 2: Averaged participants’ responses to the two ques-
tions for each setting before viewing the demonstrations.
They are asked in a 5-point Likert scale where 1 is the lowest
and 5 the highest.

likely to spill the coffee while holding the umbrella than
the participants of the humanoid setting. Notice that this is
in contrast to the ground truth. Meanwhile, the participants
expressed more concern about the robot getting wet in the
humanoid setting than the mobile robot setting.

After the questions, we asked the participants to rate the
demonstrations. Accordingly, we find that the ratings for the
demonstrations where the robot operates in the rain without
an umbrella, or takes an umbrella in a sunny day to be rated
low in the humanoid setting. In contrast, in the mobile set-
ting, fewer demonstrations received low ratings. These re-
sults supported our assumption that the human are easily bi-
ased when working with robots.

Next, we run our method under each setting to see
whether our method can recover from such biased beliefs.
For comparison, we also run GeReL−, which performed
similarly to MaxEnt-IRL in our simulation task. We run each
method for each participant in both settings. The ratings are
normalized to remove inconsistencies across different par-
ticipants. The results are presented in Figure 5. We observed
that the learned probability of spilling coffee while holding
an umbrella by GeReL for the humanoid robot setting is gen-
erally larger than the mobile robot setting. This represents
the estimated human understanding of the domain dynamics,
which is consistent with the participant’s feedback shown in
Table 2. Furthermore, GeReL learned that the participants
cared more about the robot getting wet in the humanoid set-
ting than the mobile robot setting, which is also consistent
with the participant’s true preference. In contrast, GeReL−
discovered just the opposite!

Discussions

Once the biased domain dynamics is obtained, the next ques-
tion is how to use it. The simplest method of course is to
inform the human about his biases and hope that it would
work. An alternative method that is often considered in the
area of human-aware planning is that the robot could, in-
stead of always pursue optimal behaviors, behave to match
with the human’s expectation whenever feasible, so as to
behave in an explicable manner. In contrast to the multi-
objective MDP problem (Roijers et al. 2013; Chatterjee, Ma-
jumdar, and Henzinger 2006) which has more than one re-
ward function to optimize, in this problem, the robot main-
tains two transition functions, one for its own dynamics
and the other for the human’s belief of it. There already
exists work that looks at this problem (Zhang et al. 2017;
Chakraborti et al. 2017).

Like all reward learning problems, the solution is not
unique. This is commonly known as the non-identifiability

Figure 5: Feature weights learned by GeReL and GeReL−.

issue. In general reward learning (GRL), an additional com-
plexity is the learning of the transition function, which un-
fortunately only aggravates the issue. So far, we are not
aware of any solutions to this problem except for the ones
that introduce inductive biases on the priors or the error
functions, such as Bayesian IRL (Ramachandran and Amir
2007) and apprenticeship learning methods (Abbeel and Ng
2004). In this regard, our work also introduces an inductive
bias by assuming a form of the posterior as a multivariate
Gaussian distribution.

In terms of simultaneously learning different factors, there
exist prior results (Armstrong and Mindermann 2018) that
argue against it and prove that it is impossible to determine
one without assuming some form of the other. However,
we note that the negative results apply only to the situa-
tion where one of the factors is the computational process.
Consider the function C(R,M) = Γ. When C is given, the
choices of r ∈ R and m ∈ M are connected to the cor-
responding value of γ ∈ Γ. However, if only m is given,
we may choose any r and then simply remap (choosing a
c ∈ C) (r,m)’s to their corresponding γ’s. This flexibility of
the computational process is the core reason of the negative
results. However, the non-identifiability issue is still there.

Conclusion

In this paper, we looked the Generalized Reward Learning
(GRL) problem and proposed a method called GeReL to
address it. GeReL removes the assumption that the human
always maintains the true belief about the robot’s domain
dynamics. To develop the method, we formulated the GRL
problem in a variational inference framework to infer the
parameters governing the reward function and the human’s
belief about the robot simultaneously. To reduce the effort
for obtaining training samples, we used the human’s rat-
ings of robot demonstrations. We evaluated our approach
experimentally using a simulated domain and with a user
study. The results showed that GeReL outperformed prior
approaches that could have misinterpreted the human prefer-
ences when such biases are not considered. We showed that
GeReL could recover the true human preferences effectively
even under such a challenging setting.
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