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Abstract

In this work, we present a new planning formalism called
Expectation-Aware planning for decision making with hu-
mans in the loop where the human’s expectations about an
agent may differ from the agent’s own model. We show how
this formulation allows agents to not only leverage existing
strategies for handling model differences like explanations
(Chakraborti et al. 2017) and explicability (Kulkarni et al.
2019), but can also exhibit novel behaviors that are gener-
ated through the combination of these different strategies.
Our formulation also reveals a deep connection to existing
approaches in epistemic planning. Specifically, we show how
we can leverage classical planning compilations for epistemic
planning to solve Expectation-Aware planning problems. To
the best of our knowledge, the proposed formulation is the
first complete solution to planning with diverging user ex-
pectations that is amenable to a classical planning compila-
tion while successfully combining previous works on expla-
nation and explicability. We empirically show how our ap-
proach provides a computational advantage over our earlier
approaches that rely on search in the space of models.

Introduction

One of the greatest challenges in designing agents that can
work with humans is in making sure that the agents are ca-
pable of acting in a manner that is interpretable to the hu-
mans. A major barrier towards achieving fluent collabora-
tion occurs when the human’s expectations regarding the
agent’s capabilities and preferences differ from reality. Such
knowledge asymmetry implies that even in cases where the
agent is coming up with the best decisions it can, the human
would not be able to agree to the quality of that plan. Pre-
vious works have proposed two strategies to handle this: (1)
provide information that reconciles the model differences,
either through explicit communication (Chakraborti et al.
2017) or by performing actions that convey robots capa-
bilities (Kwon, Huang, and Dragan 2018) (2) or by acting
in a manner that aligns with human expectations (Zhang et
al. 2017). While each of these are reasonable strategies on
their own, for the agent to be truly effective we would want
it to be capable of combining the strengths of each. While
there exists some initial works in this direction (for example
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(Chakraborti, Sreedharan, and Kambhampati 2019)), we are
unaware of any existing works that are able to capitalize on
the agent’s ability to effect and leverage human expectations
through behavior, or explicit communication, for these two
purposes.

Our formulation, on the other hand, leads to what may be
best described as self-explaining plans with the plan now
containing actions that are responsible for explaining the
rest of the plan. Such explanations may be delivered by
purely communicative actions (thereby allowing for expla-
nations as studied in (Chakraborti et al. 2017)) that are meant
to update the human’s mental model or task level actions
that could also have epistemic side effects (thereby allow-
ing for actions of the type studied in (Kwon, Huang, and
Dragan 2018)). Additionally, the framework allows for se-
lecting plans that aligns with human expectations whenever
possible. Our contributions are thus two-fold:

- We present the first unification of various threads of plan-
ning with differing human expectation: including acting
in-accordance with the human expectation (explicability),
bridging model asymmetry through implicit (epistemic
effects of plan execution on the mental model) and ex-
plicit communication (explanations).

- We show how our formulation is complete (as com-
pared to our previous attempt at a balanced approach in
(Chakraborti, Sreedharan, and Kambhampati 2019)) and
also lends itself to compilation to classical planning. The
latter provides significant computational advantage with
respect to existing algorithms that search directly in the
space of models.

Background

We will assume that the planning models used by both
the human and the robot are represented as classical plan-
ning problems described by the tuple M = 〈F,A, I,G,C〉
(Geffner and Bonet 2013), where F is the set of proposi-
tional fluents used to describe the planning task states, A
the set of actions, I the initial state, G the goal. Each action
a ∈ A is further defined as a tuple a = 〈preca, addsa, delsa〉,
where preca is its preconditions, and addsa and delsa are its
add and delete effects. The precondition is a propositional
formula defined over state fluents such that an action a can
only be executed in a state S if S |= preca. The effects are
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generally of the form c → e, where the antecedent repre-
sents the condition under which the effect e should be ap-
plied (where the fluent corresponding to e is set to true in
the state if c → e is part of the add effects, and if it is part of
the delete it is set to false).

Each action is associated with a cost C(a). A plan or a
sequence of actions π = 〈a1, ..., an〉 is a valid solution of
a planning problem M if π(I) |=M G and G ⊆ π(I).
The cost of a plan is the sum of individual action costs, i.e.
C(π) =

∑n
i=1 C(ai). A plan π is said to be optimal if there

exist no valid plan π′ such that C(π′) < C(π). We will use
Π∗

M to represent the set of all optimal plans for M.
Our setting involves an agent that makes decisions us-

ing its own model MR = 〈F,AR, IR, GR, C〉 while a hu-
man evaluates the plan using their mental model MH =
〈F,AH , IH , GH , C〉. For ease of discussion, we concentrate
on the specific case where conditions for actions only con-
sist of conjunction of positive literals and the actions have
the same cost in both models. While the human is under the
assumption that MH is an accurate representation of the task
at hand, the model could be different from MR in terms of
action definitions, the initial state, and the goal. This dif-
ference means that plans generated for the model MR may
have different properties in the mental model MH . For ex-
ample, a plan π∗ that is optimal in MR may be considered
suboptimal or even un-executable by the human.

When model asymmetry becomes a source of confusion
for the observer, explaining the plan must involve bridging
this gap. One of the ideas proposed by earlier works in ex-
planations as model reconciliation (c.f (Chakraborti et al.
2017)) is that given a specific plan, the agent does not need
to achieve complete reconciliation. Rather they can focus
on providing enough information that the current plan has
required properties (such as executability, optimality, etc.).
When the agent is aware of MH , it can use this knowledge
to figure out the minimal (where minimality of explanations
is defined with respect to an explanation cost CE) informa-
tion it needs to provide to achieve the required properties.
For example, the problem of identifying explanations for es-
tablishing optimality of a given plan π thus becomes:

argminE(CE(E))
such that π ∈ Π∗

MH+E
where E is a set of model information about the agent to

be provided to the user as explanation (this could include
truth value of fluents in initial state, presence or absence of
literals in preconditions/effects, etc.) and MH +E is the up-
dated user model after the explanation. Note that our use of
‘+’ operator does not imply that all model reconciliation ex-
planations are additive as E could include information aimed
at correcting user’s misconceptions about additional effects
or even additional actions that the robot is capable of. We
will follow the conventions set in (Chakraborti et al. 2017)
and focus on three main types of model updates:
(1) Turn a fluent p true or false in initial state (represented
by the operator {add/remove}-p-from-I)
(2) Add or remove a fluent p from the precondition (also
add or delete effect) list of an action a (represented by the
operator {add/remove}-p-from-{prec/adds/dels}-of-a)

(3) Add or remove a fluent p from the goal list (represented
by the operator {add/remove}-p-from-G)

This focuses on cases where the agent is explaining its
plan to the human after generating it. The flip side would be
to try generating plans that are tailored for the human model.
This is referred to as explicable planning and the most basic
version of this problem can be formulated as:

argminπ(C(π))

such that π(IR) |= GR and π(IH) |= GH

This computes a plan that is executable in the agent model
and the human mental model with the lowest cost. Our ap-
proach is capable of both explaining its plans as well as
choosing plans that align with the user expectations. Before
delving into details, we briefly introduce the search and res-
cue domain from (Chakraborti, Sreedharan, and Kambham-
pati 2019) which we will use as an illustrative example for
the rest of the paper.

Our Running Example: Search & Rescue

A typical Urban Search and Rescue (USAR) scenario con-
sists of an autonomous robot deployed to a disaster scene
with an external commander who is monitoring its activi-
ties. Both agents start with the same model of the world (i.e
the map of the building before the disaster) but the models
diverge over time since the robot, being internal to the scene,
has access to updated information about the building. This
model divergence could lead to the commander incorrectly
evaluating valid plans from the robot as sub-optimal or even
unsafe. One way to satisfy the commander would be to com-
municate or explain changes to the model that led the robot
to come up with those plans in the first place.

Figure 1 illustrates a scenario where the robot needs to
travel from P1 to its goal at P17. The optimal plan expected
by the commander is highlighted in grey in their map and
involves the robot moving through waypoint P7 and follow
that corridor to go to P15 and then finally to P16. The robot
knows that it should in fact be moving to P2 – its optimal
plan is highlighted in blue. This disagreement rises from the
fact that the human incorrectly believes that the path from
P16 to P17 is clear while that from P2 to P3 is blocked.

If the robot were to follow the explanation scheme estab-
lished in (Chakraborti et al. 2017), it would stick to its own
plan and provide the following explanation:

> remove- ( c l e a r p16 p17 ) -from- I
( i . e . Pa th from P16 t o P17 i s b l o c k e d )

> add- ( c l e a r p2 p3 ) - t o - I
( i . e . Pa th from P2 t o P3 i s c l e a r )

If the robot were to stick to a purely explicable plan
(Zhang et al. 2017) then it can choose to use the passage
through P5 and P6 after performing a costly clear passage
action (this plan is not optimal in either of the models).

Expectation-Aware Planning

We call the task of computing plans with the expectations of
an external agent: “Expectation-Aware planning”.
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Figure 1: Illustration of the robot model and the corresponding mental model of the human. The robot starts at P1 and needs
to go to P17. The human incorrectly believes that the path from P16 to P17 is clear and the one from P2 to P3 is blocked due
to fire. Both agents know that there is movable rubble between P5 and P6 which can be cleared with a costly clear passage
action. Finally, in the mental model, the door at P8 is locked while it is unlocked in the model for the robot which cannot open
unlocked doors.

Definition 1. An Expectation-Aware planning problem (EA)
is defined by the tuple Ψ = 〈MR,MH〉, where MR is the
robot model and MH is the model ascribed to the robot by
an observer. A solution to the problem Ψ is then given by
the tuple 〈EΨ, πΨ〉, where EΨ is a set of model updates for
MH consistent with MR and πΨ a plan. The given solution
is considered valid iff πΨ(IMR

) |=MR
GMR

(it is valid
in the agent model) as well as πΨ(IMH+EΨ)) |=MH+EΨ

GMH+EΨ (valid in the updated mental model).
This means that a solution to an expectation aware prob-

lem may consist of model information to be provided to the
observer along with the plan that will be followed by the
agent. In the USAR example, the optimal robot plan along
with the two initial state updates, and the explicable plan
with no model updates, would both be valid solutions.

At first glance, the need to keep track of both models and
identifying the model changes may make the problem of
solving EA planning problems considerably harder than the
original decision making problem. However, we show that,
in fact, finding a valid solution in this setting is no harder
than identifying valid plans for classical planning problems:
Theorem 1. For a given EA problem Ψ = 〈MR,MH〉,
where both MR and MH are represented as classical plan-
ning problems, the problem of identifying a valid solution
for Ψ is PSPACE-complete.

Proof Sketch. The PSPACE-hardness of an EA is easy to es-
tablish since the problem of planning with just agent model
can be mapped to a specific EA planning scenario where
both agent and user have the same model. We can establish
membership in PSPACE class by showing that there exist
a sound and complete compilation from EA to a planning
problem with conditional effects and disjunctive/negative
preconditions that is linear in size of the original planning

problems. We can then follow the same proof specified in
(Bylander 1994) to show that the problem of plan existence
is still in PSPACE for this class of planning problems. The
exact details of the compilation along with the soundness
and completeness proofs be discussed in Theorem 2.

Self-Explaining Plans as Solutions to EA

One of the main challenges of compiling an EA problem to a
traditional planning problems is to allow for a way to handle
the identification of model updates and to account for the
effect of these model updates on the user’s expectation. A
good way to go about this would be by acknowledging that
that if the observer is actually watching the agent executing
a plan, these explanations can delivered through and hence
modeled as communicative or explanatory actions. These
actions can, in fact, be seen as actions with epistemic effects
in as much as they are aimed towards modifying the human
mental model (knowledge state). This means that a solution
to an EA planning problem can be seen as self-explaining
plans, in the sense that some of the actions in the plan are
aimed at helping people better understand the rest of it.

This puts EA planning squarely in the purview of epis-
temic planning, but the additional constraints enforced by
the setting allow us to leverage relatively efficient methods
to solve the problem at hand. These constraints include facts
such as: all epistemic actions are public, modal depth is re-
stricted to one, modal operators only applied to literals, for
any literal the observer believes it to be true or false and the
robot is fully aware of all of the observer beliefs.

Model updates in the form of epistemic effects of commu-
nication actions also open up the possibility of other actions
having epistemic side effects. The definition of EA makes no
claims as to how the model update information is delivered.
It is quite possible that actions that the agent is performing to
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achieve the goal (henceforth referred to as task-level actions
to differentiate it from primary epistemic communication ac-
tions) itself could have epistemic side-effects. This is some-
thing people leverage to simplify communication – e.g. one
might avoid providing prior description of some skill they
are about to use when they can simply demonstrate it. So
one of our goals with the compilation is to allow for such
epistemic side effects; a factor that has previously been not
considered in any of the earlier works. This consideration
also enables us to also capture task level constraints that may
be imposed on the communication actions.

Compilation to classical planning. To support such self-
explaining plans, we adopt a formulation that is similar to
the one introduced in (Muise et al. 2015) to compile reason-
ing about epistemic states into a classical planning problem.
In our setting, each explanatory action can be viewed as an
action with epistemic effects. One interesting distinction to
make here is that the mental model now not only includes the
human’s belief about the task state but also their belief about
the robot’s model. This means that the planning model will
need to separately keep track of (1) the current robot state,
(2) the human’s belief regarding the current state, (3) how
actions would effect each of these (as humans may have dif-
fering expectations about the effects of each action) and (4)
how those expectations change with explanations.

Given the model reconciliation planning problem Ψ =
〈MR,MH〉, we will generate a new planning model MΨ =
〈FΨ, AΨ, IΨ, GΨ, CΨ〉 as follows FΨ = F ∪ FB ∪ Fμ ∪
{G, I}, where FB is a set of new fluents that will be used to
capture the human’s belief about the task state and Fμ is a
set of meta fluents that we will use to capture the effects of
explanatory actions and G and I are special goal and initial
state propositions. We will use the notation B(p) to capture
the human’s belief about the fluent p. We are able to use
a single fluent to capture the human belief for each (as op-
posed to introducing two new fluents B(p) and B(¬p)) as we
are specifically dealing with a scenario where the human’s
belief about the robot model is fully known and human ei-
ther believes each of the fluent to be true or false. In this
case, we also do not require any of the additional rules that
were employed in (Muise et al. 2015) to ensure that the state
captures the deductive closure of the agent beliefs.

Fμ will contain an element for every part of the human
model that can be changed by the robot through explana-
tions. A meta fluent corresponding to a literal φ from the
precondition of an action a takes the form of μ+(φpreca),
where the superscript + refers to the fact that the clause φ is
part the precondition of the action a in the robot model (for
cases where the fluent represents an incorrect human belief
we will be using the superscript −).

For every action a = 〈preca, addsa, delsa〉 ∈ AR and its
human counterpart ah = 〈precah , addsah , delsah〉 ∈ AH ,
we define a new action aΨ = 〈precaΨ , addsaΨ , delsaΨ〉 ∈

MΨ whose precondition is given as:

precaΨ = precaR ∪ {μ+(φpreca) → B(φ)
|φ ∈ precaR \ precaH}

∪ {μ−(φpreca) → B(φ)|φ ∈ precaH \ precaR}
∪ {B(φ)|φ ∈ precaH ∩ precaR}

The important point to note here is that at any given state,
an action in the augmented model is only applicable if the
action is executable in robot model and the human believes
the action to be executable. Unlike the executability of the
action in the robot model (captured through unconditional
preconditions) the human’s beliefs about the action exe-
cutability can be manipulated by turning the meta fluents
on and off. The effects of these actions can also be defined
similarly by conditioning them on the relevant meta fluent.
In addition to these task level actions (represented by the set
Aτ ), we can also define explanatory actions (Aμ) that either
add μ+(∗) fluents or delete μ−(∗).

Special actions a0 and a∞ that are responsible for setting
all the initial state conditions true and checking the goal con-
ditions are also added into the domain model. a0 has a single
precondition that checks for I and has the following add and
delete effects:

addsa0 = {
 → p | p ∈ IR} ∪ {
 → B(p) | p ∈ IH}
∪ {
 → p | p ∈ Fμ−}

delsa0 = {I}
where Fμ− is the subset of Fμ that consists of all the fluents
of the form μ−(∗). Similarly, the precondition of action a∞
is set using the original goal and adds the proposition G.

preca∞ = GR ∪ {μ+(pG) → B(p) | p ∈ GR \GH}∪
{μ−(pG) → B(p) | p ∈ GH \GR}∪ {B(p) | GH ∩GR}

Finally the new initial state and the goal specification be-
comes IE = {I} and GE = {G} respectively. To see how
such a compilation would look in practice, consider an ac-
tion (move from p1 p2) that allows the robot to move from
point p1 to p2 only if the path is clear. The action is defined
as follows in the robot model:

( : a c t i o n move from p1 p2
: p r e c o n d i t i o n ( and ( a t p 1 )

( c l e a r p 1 p 2 ) )
: e f f e c t ( and ( n o t ( a t p 1 ) ) ( a t p 2 ) ) )

Let us assume the human is aware of this action but does
not care about the status of the path (as they assume the robot
can move through any debris filled path). In this case, the
corresponding action in the augmented model and the rele-
vant explanatory action will be:

( : a c t i o n move from p1 p2
: p r e c o n d i t i o n
( and

( a t p 1 )
(B ( ( a t p 1 ) ) ) ( c l e a r p 1 p 2 )
( i m p l i e s
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(μ+
prec ( move from p1 p2 , ( c l e a r p 1 p 2 ) ) )

(B ( ( c l e a r p 1 p 2 ) ) ) ) )
: e f f e c t ( and ( n o t ( a t p 1 ) ) ( a t p 2 )

( n o t B ( a t p 1 ) ) B ( a t p 2 ) ) ) )

( : a c t i o n e x p l a i n μ+
prec m o v e f r o m c l e a r

: p r e c o n d i t i o n ( and )
: e f f e c t ( and μ+

prec ( move from p1 p2 ,
( c l e a r p 1 p 2 ) ) ) )

Finally CΨ captures the cost of all explanatory and task
level actions. For now we will assume that the cost of task-
level actions are set to the original action cost in either robot
or human model and the explanatory action costs are set ac-
cording to CE . Later, we will discuss how we can adjust the
explanatory action costs to generate desired behavior.

We will refer to an augmented model that contains an ex-
planatory action for each possible model updates and has no
actions with effects on both the human’s mental model and
the task level states as the canonical augmented model.

Given an augmented model, let πE be a plan that is valid
for this model (πE(IΨ) ⊆ GΨ). From πE , we extract two
types of information – the model updates induced by the ac-
tions in the plan (represented as E(πE)) and the sequence of
actions that have some effect of the task state represented as
D(πE) (we refer to the output of D as the task level frag-
ment of the original plan πE)). E(πE) may contain effects
from action in D(πE). This brings us to our next theorem.

Theorem 2. For a given EA problem Ψ = 〈MR,MH〉 the
corresponding augmented model MΨ is a sound and com-
plete formulation: (1) for every valid π for MΨ the tuple
〈E(π),D(π)〉 is a valid solution for Ψ and (2) for every valid
solution 〈EΨ, π〉, there exists a corresponding valid plan for
π′ for MΨ such that D(π′) = π and E(π′) = EΨ.

Proof Sketch. The soundness of plans generated from MΨ

are guaranteed by the construction of the model as all the
preconditions of the actions in the updated user model have
to be met in the current plan. To see why the formulation
is complete, consider a solution < EΨ, π > for Ψ. From the
procedure for constructing MΨ we know that there must ex-
ist an explanatory action for each possible model difference.
This means that there should exist a sequence of explana-
tory actions 〈a1, .., ak〉 that results in the same model up-
dates captured by EΨ. It is easy to see that 〈a1, .., ak〉+ π is
a valid plan for MΨ hence proving the assertion.

The planner can automatically find positions of the ex-
planatory actions, but to avoid any confusion that may arise
from belief revisions on the users’ end, we can enforce some
common sense ordering like making any explanation related
to an action to appear before the first instance of that ac-
tion. This ordering will make sure that users are not confused
about earlier action effects and also helps reduce branching,
making planning more efficient.

Stage of Interaction and Epistemic Side Effects: One of
the important parameters of the problem setting that we have
yet to discuss is whether the explanation is meant for a plan

that is proposed by the system (i.e the system presents a se-
quence of actions to the user) or are we explaining some plan
that is being executed either in the real world or some sim-
ulation the user (observer) has access to. Even though the
above formulation can be directly used for both scenarios,
we can use the fact that the human is observing the exe-
cution of the plans to simplify the explanatory behavior by
leveraging the fact that many of these actions may have epis-
temic side effects. This allows us to not explain any of the
effects of the actions that the human can observe (for those
effects we can directly update the believed value of the cor-
responding state fluent and the meta-fluent).1 This is beyond
the capability of any of the existing algorithms in this space
of the explicability-explanation dichotomy.

This consideration also allows for the incorporation of
more complicated epistemic side-effects wherein the user
may infer facts about the task that may not be directly tied
to the effects of actions. Such effects may be specified by
domain experts or generated using heuristics. Once identi-
fied, adding them to the model is relatively straightforward
as we can directly add the corresponding meta fluent into
the effects of the relevant action. An example for a sim-
ple heuristic would be to assume that the firing of a con-
ditional effect results in the human believing the condition
to be true. For example, if we assume that the robot had an
action (open door d1 p3) that had a conditional effect:

( when ( and ( u n l o c k e d d 1 ) ) ( open d1 ) )

Then in the compiled model, we can add a new effect:

( when ( and ( u n l o c k e d d 1 ) )
( and B ( open d1 ) B ( u n l o c k e d d 1 ) ) )

Even in this simple case, it may be useful to restrict the
rule to cases where the effect is conditioned on previously
unused fluents so the robot does not expect the observer to
be capable of regressing over the entire plan.

Optimality of the Agent
The compilation explored so far only takes into considera-
tion the expectations the agent has about the safety of the
plans (i.e the user would expect any plans generated to be
valid and executable) and does not account for the user’s ex-
pectation on whether the agent should act optimally. In the
earlier example, if the agent just followed the plan that takes
the robot through P5 and P6 with a clear passage P5 P6
action with no additional explanatory actions then the user
may still be confused why the agent does not just follow the
plan that involves going through P16 to P17 that it believes
to be cheaper (marked in grey in the human’s map).

Even in cases where the action costs are the same for
the agent and the human, we cannot account for such ex-
pectations by merely generating optimal plans in the aug-
mented model. For example, the optimal plan in the aug-
mented model would be the one through P2 and P3 (the full

1This means that when the plan is being executed, the prob-
lem definition should include the observation model of the human
(which we assume to be deterministic). To keep the formulation
simple, we ignore this for now. Including this additional consider-
ation is straightforward for deterministic sensor models.
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plan is marked in blue in the robot map) with one extra ex-
planatory action explain μ+

I clear P2 P3. While the above
plan provides an explanation to ensure validity, ensuring the
optimality of the resultant plan would require the agent to
also explain that the passage from P16 to P17 is blocked,
which would clearly be more expensive than choosing the
valid plan for any non-zero cost for explanatory actions.

One approach to address this would be to prune all so-
lutions where the task level fragment of the plan (D(π)) is
suboptimal in the updated human model. A simple way to
enforce this would be to extend the planner to perform an
optimality test for the current plan during the goal test. It
may be possible to use more intelligent pruning to reduce
the number of goal tests (e.g. one could leverage the fact
that the optimality test never needs to be repeated for the
same set of model updates) and we could design heuristics
that take into account optimality aspects. In this paper, we
adopt this simple approach as a first step towards modeling
these novel behaviors.

Balanced Plans vs. Agent Optimal Plans

Even when generating plans that preserve the user’s expec-
tations about agent optimality, the agent could generate two
types of plans: agent optimal plans (Chakraborti et al. 2017)
or balanced plans (Chakraborti, Sreedharan, and Kambham-
pati 2019). In the first scheme, the agent chooses to select
self-explanatory plans whose task level fragment is going to
be optimal in the original agent model and then choose the
minimal explanations that justifies the optimality plan (i.e
the plan is optimal in the user’s updated model). Such expla-
nations are referred to as Minimally Complete Explanation
or MCE (the agent could also choose among the optimal
plans the one that requires the cheapest MCE). An exam-
ple would be choosing the plan highlighted in blue in robot
model and then explaining that the path from P2 to P3 is
clear and P16 to P17 is blocked. In the latter scheme, the
agent could choose plans that are easiest to explain (here
again we need to ensure that after the explanation the plan
is optimal in the updated model). For example, in the USAR
scenario if communication is expensive, it may be easier to
choose the plan to move through P5 and P6 with a clear pas-
sage action since we only need to explain that the passage
P16 to P17 is blocked.

In the first case, the agent is effectively prioritizing any
loss of optimality over any overhead accrued by communi-
cating the explanation, while in the second case the agent
accounts for the cost of both the plan it is performing and
the explanation cost (the cost of communication and possi-
bly the computational overhead experienced by the user on
receiving the explanation). By assigning explanatory costs to
explanatory actions we are essentially generating balanced
plans but there may be scenarios where the agent needs to
stick to its optimal plan. We can generate such agent opti-
mal plans by setting lower explanatory action costs. Before
we formally state the bounds for explanatory costs, let us de-
fine the concept of optimality delta (denoted as ΔπM) for a
planning model, which captures the cost difference between
the optimal plan and the second most optimal plan. More

formally ΔπM can be specified as:

ΔπM = max{v | v ∈ R ∧
� ∃π1, π2((0 < (C(π1)− C(π2)) < v)

∧ π1(IM) |=M GM ∧ π2(IM) ∈ Π∗
M}

Theorem 3. In a canonical augmented model MΨ for an
EA planning problem Ψ, if the sum of costs of all explana-
tory actions is ≤ ΔπMR

and if π is the cheapest valid plan
for MΨ such that D(π) ∈ Π∗

MΨ+E(π), then:

(1) D(π) is optimal for MR

(2) E(π) is the MCE for D(π)

(3) There exists no plan π̂ ∈ Π∗
R such that MCE for D(π̂) is

cheaper than E(π), i.e. the search will find an the plan
with the smallest MCE.

Proof Sketch. We observe that there exists no valid plan π′
for the augmented model (MΨ) with a cost lower than that
of π and where the task level fragment (D(π′)) is optimal
for the human model. Let’s assume D(π) �∈ Π∗

R (i.e current
plan’s task-level fragment is not optimal in robot model) and
let π̂ ∈ Π∗

R. Now let’s consider a plan π̂E for augmented
model that corresponds to the plan π̂, i.e, E(π̂E) is the MCE
for the plan π̂ and D(π̂E) = π̂. Then the given augmented
plan π̂E is a valid solution for our augmented planning prob-
lem MΨ (since the π̂E consists of the MCE for π̂, the plan
must be valid and optimal in the human model), moreover
the cost of π̂E must be lower than π. This contradicts our
earlier assumption hence we can show that D(π) is in fact
optimal for the robot model.

Using a similar approach we can also show that no
cheaper explanation exists for πE and there exists no other
plan with a cheaper explanation.

Note that while it is hard to find the exact value of the
optimality ΔπM, it is guaranteed to be ≥ 1 for domains
with only unit cost actions or ≥ (C2 −C1), where C1 is the
cost of the cheapest action and C2 is the cost of the second
cheapest action, i.e. ∀a(CM(a) < C2 → CM(a) = C1).
Thus allowing us to easily scale the cost of the explanatory
actions to meet this criteria.

Disallowing explicable plans that are too costly

There could be scenarios where forcing the agent to always
choose plans that are optimal in the human model may not be
the best strategy. For example, there may be cases where we
would prefer the agent to deviate from the optimal expected
plan if it results in significant gains. The penalty for deviat-
ing from the expected optimal plan should thus be another
optimization criteria. To avoid complexities arising due to
multi-criteria optimization, we will assume the agent is op-
timizing a single objective function of the form

C(π) + α ∗ (CMH+E(π)(π)− C∗
MH+E(π))

where the second term basically captures the difference be-
tween the cost of the current plan in the resultant model and
the cost of the expected plan and α is some scaling factor
to allow linear combination of the two terms. Now with this
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new objective function we can define an Optimally Balanced
Plan as a plan that is executable in both robot and the resul-
tant human model and minimizes the above objective.

Definition 2. For a problem Ψ, the tuple 〈EΨ, πΨ〉 is said
to be the optimally balanced solution if,

1. πΨ(IR) |= GR.
2. πΨ(IH) |=MH

GH .

3. �〈Ê , π̂〉, such that the tuple satisfies (1.) and (2.), and
C(Ê) + CMR

(π̂) + α ∗ (CMh+Ê(π̂) − C∗
MH+Ê) <

C(EΨ) + CMR
(πΨ) + α ∗ (CMh+EΨ(π)− C∗

MH+EΨ).

To generate such optimal balanced plans, we need to re-
lax the goal requirement that the final plan is optimal in the
human model. Instead we can incorporate the inexplicability
penalty into the reasoning about the plan, by assigning the
cost of a∞ (the goal action) to be α times the cost differ-
ence between the optimal plan in the human model and the
current plan. When α is set to zero the problem would just
identify the cheapest plan in the original robot model that is
executable in the human model. We can also use this formu-
lation to generate plans that are still guaranteed to be optimal
in the human model by setting α higher than a threshold κ,
where κ is some upper bound on plan length for the robot
(that includes explanatory actions).

Evaluation

Since the nature of our solution has already been validated
in literature through human factors evaluation – model rec-
onciliation explanation has been studied in (Chakraborti et
al. 2019), balanced plans in (Chakraborti, Sreedharan, and
Kambhampati 2019), explicable plans in (Zhang et al. 2017;
Kulkarni et al. 2019), and the use of physical actions to
communicate robot model information in (Kwon, Huang,
and Dragan 2018) – we will focus on demonstrating the
generality of our framework and studying empirically the
performance of the compilation. The code can be found at
http://bit.ly/2Xb7OCp.

Illustrative Example of Cost-Tradeoff

We start by demonstrating how our approach can lead to
different solution by altering various costs associated with
agent actions. Consider again the USAR domain described
earlier: the models for the robot and the user is provided
in the supplementary (the action for opening a door has an
epistemic side effect that the observer would know that the
door is unlocked). We start by assigning a cost of 10 to every
robot action other than clear-rubble action (which is 50) and
the move-through-door action (set to 20). We set the cost of
communication action to 1 to start with. The solution pro-
duced corresponds to the blue plan in Figure 1.

e x p l a i n s μ+
init c l e a r p 2 p 3 −>

e x p l a i n s μ−
init c l e a r p 1 6 p 1 7 −>

move p1 p2−> move p2 p3−> move p3 p4−>
move p4 p11−>move p11 p13−> move p13 p14
−> move p14 p18−> move p18 p17

This plan includes the optimal robot plan and corre-
sponding MCE. Now if we were to set the cost of commu-
nication actions to 100, we see the agent deviating to plans
which on their own may not be optimal – e.g. a plan that
involves opening the door at P8:

e x p l a i n s μ−
init c l e a r p 1 6 p 1 7 −>

move p1 p7−> move p7 p8−> opendoor p8 d1−>
move th roughdoor p8 p9 d1−> move p9 p10−>
move p10 p13−> move p13 p14−> move p14 p18−>
move p18 p17

Here the robot does not have to explicitly provide a sep-
arate explanation for the status of the door, but still needs
to explain that the path from P15 to P16 is blocked. Note
that this plan is an example of a balanced plan that lever-
ages epistemic side effects. Now we go one step further and
relax the need to assure optimality of the plan in the human
model by changing it from a hard constraint to just a penalty.
This gets us the exact same plan as above but without the ex-
planation about the blocked corridor from P15 to P16, thus
allowing a notion of soft explicability.

Runtime Complexity

Next we establish how our approach compares in terms of
runtime to previous work. In particular, we will use as refer-
ence the optimistic and approximate version of the balanc-
ing approach in (Chakraborti, Sreedharan, and Kambham-
pati 2019) that identifies only one optimal plan per search
node and the search ends as soon as it finds a node where
the optimal plan produced has the same cost as the robot
plan and is executable in the robot model. This means all the
solutions we generate are guaranteed to be better (in terms
of cost) than that generated by the other. For comparison,
we selected five IPC domains and for each domain, we cre-
ated three unique models by introducing 10 random updates
in the model, except in the case of Gripper and Driverlog
where only 5 were removed. Each of these five domains
were paired with five problem instances and then tested on
each of the possible configurations. Each instance was run
with a limit of one hour, all explanatory actions were re-
stricted to the beginning of the plan and the cost of explana-
tory actions were set to be twice the cost of original action.
Table 1 lists the time taken to solve each of these problems.
For calculating the average runtime, we used 3600 secs as
the stand in for the runtime of all the instances that timed
out. We used h max (admissible) as the heuristic for all the
configurations.

The table shows that the new approach does better than
the original method for generating balanced plans for most
of the domains. Gripper seems to be the only domain, where
model search seems to perform slightly better but this is also
a domain that had the smallest number of model differences.
This indicates that the ability to leverage planning heuris-
tics can make a marked difference in domains with a large
number of explanatory actions.

Related Work
We end with a review of existing literature and emphasize
the key differentiators for our framework.
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New Compilation Model Space Search

coverage runtime coverage runtime

Blocksworld 13/15 569.38 13/15 2318.73
Elevator 15/15 59.20 1/15 3382.462
Gripper 5/15 2301.90 6/15 2093.54

Driverlog 4/15 2740.38 2/15 3158.59
Satellite 2/15 3186.93 0/15 3600

Table 1: Coverage and average runtime (sec) for explana-
tions generated for a few standard IPC domains.

Epistemic Planning It is well understood in social sci-
ences that explanations must be generated while keeping
in mind the beliefs of the agent receiving the explanation
(Miller 2018). As such, epistemic planning makes for an
excellent framework for studying the problem of generat-
ing these explanations. While the most general formula-
tion of epistemic planning has been shown to be undecid-
able, many simpler fragments have been identified (Bolan-
der, Jensen, and Schwarzentruber 2015). In human-aware
planning settings too, there is wide consensus that epis-
temic planning could be an extremely useful tool. Readers
can refer to (Miller 2017) for an overview of works done
in employing epistemic planning for “social planning”. Re-
cently, there have been a lot of interest in developing effi-
cient methods for planning in such settings (Muise et al.
2015; Kominis and Geffner 2015; 2017; Le et al. 2018;
Huang et al. 2018). Cohen and Perrault (1979) have also in-
vestigated the use of speech acts in planning problems. Fol-
lowing the conventions of (Cohen and Perrault 1979), the
explanatory actions studied within this paper can be viewed
as INFORM acts.

Model Reconciliation Among the works related to model
reconciliation, the work that is most closely connected to
ours is (Chakraborti, Sreedharan, and Kambhampati 2019).
The idea of balanced plans were first proposed in that work.
Unfortunately, the actual algorithm study there is incomplete
and is not guaranteed to produce the least expensive bal-
anced plan. Even the complete version they hypothesize in
their paper relies enumerating all the possible optimal plans
for a given updated model, which can be extremely ineffi-
cient, particularly since it is expected to be performed for
every possible model in the model space. As we see in the
empirical evaluations, our method (which is also complete)
is often faster against the optimistic approximate version.
Moreover the methods discussed in that paper are unable to
utilize task-level actions with epistemic side effect or take
into account task level constraints for purely communicative
actions and the effects of execution on an observer, as we
illustrate through examples.

Communicative Actions Our work also looks at the use
of explanatory actions as a means of communicating in-
formation to the human observer. The most obvious types
of such explanatory action includes purely communica-
tive actions such as speech (Tellex et al. 2014) or the use
of mixed reality projections (Chakraborti, Sreedharan, and

Kambhampati 2018; Ganesan 2017). Recent works have
shown that physical agents could also use movements to
relay information such as intention (MacNally et al. 2018;
Dragan, Lee, and Srinivasa 2013) and incapability (Kwon,
Huang, and Dragan 2018). Our framework allows for a nat-
ural trade-off between these different types of communica-
tion.

Contrastive Explanations and Inferential Capabilities
Many recent works dealing with explanation generation for
planning have looked at characterizing explanations in terms
of the types of questions they answer (Fox, Long, and Mag-
azzeni 2017; Smith 2012). This characterization is orthog-
onal to the question of what type of information constitutes
valid explanations. Putting aside questions regarding observ-
ability, the reason why a user may request an explanation
is either due to knowledge mismatch (incomplete or incor-
rect knowledge of the task) or due to limitations of their
inferential capabilities. The answer to any of these ques-
tions would require correcting the human’s model of the
task and/or providing inferential assistance. Works that have
looked at model reconciliation explanations have mostly fo-
cused on the former. Explanations discussed in this paper
can be viewed as an answer to the question “Why this plan?”
(which can also be viewed as a contrastive question of the
form “Why this plan and not any other plan?”). This is not
to say that in complex scenarios just the model reconcilia-
tion information would suffice, but it would need to be sup-
plemented with information internal to the model that can
address the differences in inferential capabilities. Use of ab-
stractions (Sreedharan, Srivastava, and Kambhampati 2018),
providing refutation of specific foils (Sreedharan, Srivas-
tava, and Kambhampati 2018) and providing causal expla-
nations (Seegebarth et al. 2012) could be used to augment
model reconciliation.

Explicable Planning Explicable planning looks at cases
where the agent is incapable of updating the users’ expecta-
tions and can choose to following the plan that best matches
the user expectations and is valid in the robot model. Two
representative works in this direction are (Zhang et al. 2017)
and (Kulkarni et al. 2019). (Zhang et al. 2017) investigates
scenarios where the human model may be unknown while
(Kulkarni et al. 2019) proposes an iterative planning formal-
ism that tries to find the most explicable plan by generating
all possible valid solutions of a given cost threshold and then
tries to find the most explicable plan from that set. Unlike the
work presented here they look at more general distance mea-
sures for explicability, some of which are based on global
plan properties. We can extend our current formulation to
take into account such scores by turning these distances into
the cost of an extra GOAL action (similar to the balancing
formalism that allows for sub-optimality).

Conclusion
The paper presents a unifying formulation for the task of
planning in the presence of users with incorrect mental mod-
els of the planning agent’s capabilities. The formulation al-
lows us to unify, for the first time, explanatory and expli-
cable paradigms into a single framework plus is also com-
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pilable to classical planning. We discuss how this formula-
tion can be extended to capture novel explanatory behaviors
hitherto unexplored in literature while being computation-
ally more efficient than methods that rely on direct model
space search. One of the exciting features of our work is
that we are able to place Expectation-Aware planning within
the realm of epistemic planning, thereby laying the ground
work to study more complex interaction scenarios includ-
ing cases with more levels of nesting, uncertainty about
mental models, more expressive models, incorporating non-
deterministic effects, and so on. It would also be worth in-
vestigating specific considerations for choosing heuristics or
formulating new ones for such problems.
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