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Abstract

Research has shown that deep neural networks are able to
help and assist human workers throughout the industrial sec-
tor via different computer vision applications. However, such
data-driven learning approaches require a very large number
of labeled training images in order to generalize well and
achieve high accuracies that meet industry standards. Gath-
ering and labeling large amounts of images is both expensive
and time consuming, specifically for industrial use-cases. In
this work, we introduce BAR (Bounding-box Automated Re-
finement), a reinforcement learning agent that learns to cor-
rect inaccurate bounding-boxes that are weakly generated by
certain detection methods, or wrongly annotated by a human,
using either an offline training method with Deep Reinforce-
ment Learning (BAR-DRL), or an online one using Contex-
tual Bandits (BAR-CB). Our agent limits the human inter-
vention to correcting or verifying a subset of bounding-boxes
instead of re-drawing new ones. Results on a car industry-
related dataset and on the PASCAL VOC dataset show a con-
sistent increase of up to 0.28 in the Intersection-over-Union of
bounding-boxes with their desired ground-truths, while sav-
ing 30%-82% of human intervention time in either correcting
or re-drawing inaccurate proposals.

1 Introduction

Over the years, Deep Learning (DL) has demonstrated great
superiority over traditional learning-based approaches in a
wide range of computer vision applications (Yang et al.
2019). Object detection and recognition DL techniques al-
low machines to visualize their environments with high ac-
curacy (Zhang et al. 2018). Hence, companies in many in-
dustrial sectors started integrating DL approaches in order to
assist human workers and speed up chain processes at their
manufacturing sites (Wang et al. 2018) by installing cameras
and gathering images specific for their use-cases. Unfortu-
nately, accurately labeling these datasets requires excessive
human effort and a considerable amount of time, and the
confidentiality of the data renders the use of crowd-sourcing
platforms such as Amazon’s Mechanical Turk (Buhrmester,
Kwang, and Gosling 2011) impossible. Furthermore, the im-
age annotation process is highly prone to human error. For
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instance, target objects might be wrongly labeled when a hu-
man annotator is biased to label one side of the target object.
Moreover, after the whole dataset has been labeled, the Re-
gion of Interest (RoI) of the target object might change be-
cause of industrial circumstances. In these cases, all labels
need to be re-adjusted, resulting in unexpected delays and
extra costs.

A lot of research (Papadopoulos et al. 2014; 2016; 2017;
Yao et al. 2012; Konyushkova et al. 2018) has been recently
oriented at reducing the labeling time and avoiding crowd-
sourcing techniques by developing methods that are less
time consuming than manual labeling. To the best of our
knowledge, existing methods generate bounding-boxes (b-
boxes) around the target object and no attempts have been
made in the literature to correct inaccurate b-boxes.

This work aims at enhancing the accuracy of existing
b-boxes, i.e. annotations, to obtain “cleaner” data1 to be
used in industrial use-cases, while reducing the human in-
tervention needed. For this purpose, we implemented BAR
(Bounding-box Automated Refinement), a Reinforcement
Learning (RL) agent that learns from human examples to
correct inaccurate annotations. Hence, instead of manually
labeling new images to increase the dataset size, human ef-
fort is limited to correcting inaccurate annotations. After
learning to find an optimal strategy to correct these annota-
tions, BAR applies its knowledge on new images. We adopt
two approaches in order to train BAR: an offline approach
using Deep Reinforcement Learning (DRL) in which the
agent is trained by batches, and an online approach using
Contextual Bandits (CB) in which the agent is re-trained af-
ter every new image. We also compare the advantages and
limitations of both approaches with different initializations,
i.e. methods that generate initial b-boxes. Finally, we show
that for all initializations, at least one of the two approaches
successfully improves the annotations, with an increase in
Intersection-over-Union (IoU) with the ground-truths of up
to 0.28, and a decrease in human intervention by 30%-82%.

Our contributions in this work are:
• BAR, an RL agent that improves the quality of existing

b-boxes through offline (DRL) and online (CB) methods.
1“Clean” data means it is uniformly annotated across the dataset

and the b-boxes tightly enclose the RoI of the target object
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• BAR-CB, an online-based approach that successfully im-
proves some initializations with the advantage of real-
time suggestions of new b-boxes.

• BAR-DRL, an offline-based approach that reaches
“cleaner” and more accurate annotations when tested with
five different initializations, improving over state-of-the-
art work while reducing human input.
The remaining of this paper is organized as such: the lit-

erature is presented and compared to this work in section
2. Then, the problem is formally defined in section 3 and
both training methods are introduced in section 4. Finally
experiments are run and the advantages of BAR are shown
in section 5, while section 6 concludes our work.

2 Background and Preliminaries

In this section, we highlight the main applications related
to our proposed offline and online approaches, and compare
our scheme to the most related literature.

2.1 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) (Mnih et al. 2015)
has gained interest in object detection, mainly to reduce the
search space during training. In (Bueno et al. 2017), the au-
thors present an agent that learns to progressively zoom in
on a target object. At every step, the agent divides its obser-
vation into 5 sub-regions: upper-left, upper-right, lower-left,
lower-right and center. It then chooses the best sub-region to
zoom in on, and repeats this process until reaching an accu-
rate b-box. (König et al. 2019) refine further the b-box by
using 4 additional actions: left, right, up or down.

In (Caicedo and Lazebnik 2015), the agent learns to zoom
in on the object by sequentially deforming a b-box: starting
with a b-box covering the whole image, the agent modifies it
by choosing one of its possible transformation actions (right,
left, up, down, bigger, smaller, fatter or taller), or ends the
detection by selecting the terminal action.

Similar work includes Tree-RL (Jie et al. 2016), which lo-
calizes objects using sequential scaling and local translation
actions, and (Wu et al. 2018) which applies Tree-RL in a pa-
rameterized action space, where actions are associated with
continuous rather than discrete parameters.

2.2 Contextual Bandits

A multi-armed bandit (MAB) (Vermorel and Mohri 2005)
problem is comparable to a gambler facing different slot
machines, each of which will give the player a distinct
gain or loss. At every time step, the gambler has to choose
one machine and receives a feedback for his/her choice,
in an attempt to maximize cumulative rewards. Contextual
Bandits (CB) are a derivation of MAB (Li et al. 2010;
Chu et al. 2011) in which the agent has additionally access to
a representation of the state. A popular application of CB is
personalized news articles recommendation (Li et al. 2010)
where the agent determines which articles should appear
on a user’s web-page based on his/her preferences collected
from previous articles he/she clicked on. The LinUCB algo-
rithm developed in (Li et al. 2010) allows for re-training on
every incoming input and therefore real-time improvements

of personalized suggestions. Other applications of MAB and
CB range from healthcare and finance to specific problems
in machine learning, such as active learning in (Bouneffouf
and Rish 2019) which aims at reducing labeling time in a
supervised classification setting by selecting the most useful
French utterances to label. To the best of our knowledge, CB
have not yet been utilized in object detection or recognition.

2.3 Related Work

Some of the existing work aims at replacing the manual
drawing of b-boxes with easier and less time consuming
tasks, such as eye tracking (Papadopoulos et al. 2014), click-
supervision (Papadopoulos et al. 2017), and human verifica-
tion (Papadopoulos et al. 2016). An interactive object an-
notation method is presented in (Yao et al. 2012) through
which an object detector is incrementally updated while
additional annotations are provided by humans. Finally, in
(Konyushkova et al. 2018), an agent is trained to iteratively
ask the human to verify or correct a b-box in order to reach
an accurate annotation in a minimal amount of time.

In summary, existing work focuses on reducing the time
spent by human annotators on manual labeling. While, in the
literature, this goal is achieved by finding alternative ways to
generate b-boxes proposals, our work focuses on learning to
correct inaccurately generated b-boxes to later refine anno-
tations regardless of their initialization.

3 Problem Formulation

Every image contains exactly one annotated target ob-
ject whose b-box is represented by its upper-left corner
(xmin, ymin) and its lower-right corner (xmax, ymax). This
b-box is considered inaccurate if its IoU with the ground-
truth is below a threshold, denoted by β. Given an image
and an inaccurate b-box enclosing the target object, the goal
of the agent is to correct the b-box as shown in figure 1. The
agent achieves this goal by executing a series of actions that
modify the position and aspect-ratio of the b-box. This se-
ries of actions corresponds to an episode that ends with the
final correction of the agent.

Figure 1: BAR agent workflow during the testing phase.
Given an image and an inaccurate b-box enclosing the target
object, BAR chooses the path TE with T = {up,up,left}

The dynamics of an episode are as follows: At time step 0,
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the b-box is given by a weak initialization, i.e. a method that
generates inaccurate b-boxes. At time step 1, the agent per-
forms an action and determines the quality of the new b-box
based on its IoU with the ground-truth. If the IoU is below
β, the agent needs to modify the b-box in the next time step;
otherwise, the agent stops and the episode terminates. The
length of an episode is limited to 10 actions to prevent cases
where the agent fails to converge to an accurate b-box.

During an episode, the agent is allowed to either move
according to a set of predefined translation actions listed in
table 1, or to end the episode by choosing the stop action.
Table 1 reports the equations according to which each of the
translation actions changes the corners of the b-box, where
c1 is the percentile of the box’s current dimensions (width or
height) that is added to or removed from its coordinates. To
prevent the b-box from over-scaling, c2 is set to c1/2.

action corresponding equations action corresponding equations

up xmin − c1 × height wider ymin − c2 × width
xmax − c1 × height ymax + c2 × width

down xmin + c1 × height taller xmin − c2 × height
xmax + c1 × height xmax + c2 × height

left ymin − c1 × width fatter xmin + c2 × height
ymax − c1 × width xmax − c2 × height

right ymin + c1 × width thinner ymin + c2 × width
ymax + c1 × width ymax − c2 × width

Table 1: The set of translation actions

Given the goal of the agent and the dynamics of an
episode, the b-box correction problem can be formulated
as a Sequential Decision Making Problem (SDMP); specifi-
cally, an episodic RL problem. The agent interacts with the
environment (as images) to learn a policy that determines
the optimal path to change an initial inaccurate b-box into
an accurate one. The path is composed of a list of transla-
tion actions T , where 0 ≤ |T | ≤ 9, and a terminal action E
that ends the correction. The task of the agent for the path
TE is therefore to find 1) the optimal actions T that modify
the b-box and 2) the step at which to end the episode when
an accurate b-box is reached.

4 Training Methods

To solve this SDMP, two approaches are proposed: an
offline-based with BAR-DRL, where images are accumu-
lated by batches before training starts, and an online-based
with BAR-CB, where training is done after every image.

4.1 BAR-DRL

In this method, the problem is cast as a Markov Decision
Process (MDP). An MDP is characterized by the follow-
ing factors: the set of states S{s1, s2, . . . }, the set of ac-
tions A{a1, a2, . . . }, the transitional probability function
P(s, a, s′) where s′ is the state reached from s through ac-
tion a, the discount factor γ where 0 ≤ γ ≤ 1 and the reward
function R(s, a, s′).

The agent is trained according to the Deep Q-Network
algorithm presented in (Mnih et al. 2015). The agent’s
environment is an image, and it takes actions that modify
the state, namely the region enclosed in the b-box. The

Deep Q-Network relies on Q-Learning, a method that uses
a neural network to approximate a value Q at every step and
for every action when the transitional probability function
is unknown. Specifically, at time step t, the agent updates
its Q-value estimate in the following manner:

Qt+1(s, a) = (α− 1)Qt(s, a) + α(r + γmax
a′

Qt(s
′, a′))

(1)
The agent is therefore trained to maximize its cumulative
reward during each episode. The three main components of
BAR-DRL are:

1. State: The state is composed of a feature vector ∈ R
1238

extracted using ResNet50 (Szegedy et al. 2017) pre-
trained on ImageNet (Deng et al. 2009), and a history
vector. The b-box enclosed region is resized to 224×224,
then fed to the feature extractor that outputs a vector of
size 2048. The history vector encodes the 10 actions of
the episode, each of which is represented as a one hot
encoder.

2. Actions: These are the eight translation actions shown in
table 1 and the stop action.

3. Reward: The reward for a translation action a at step t is:

r(at) =

{
1, if IoUt > IoUt−1

−3, otherwise
(2)

A higher negative value is necessary when the IoU de-
creases to prevent the agent from worsening the initial
b-box, which defeats the purpose of a correcting agent.
The reward for the stop action is:

r(at) =

{
+r1 + c ∗ Γ, if IoUt ≥ β

−r2, otherwise
(3)

where: Γ = 10−t
10 , r1 = 6, c = 4, r2 = 3.

Starting off with heuristics from the literature, the ef-
fect of coefficients r1, c and r2 were determined through
many experiments. The reward r1 should be a high pos-
itive value in order to prevent long episodes that could
worsen the b-box, while r2 follows the same dynamics
as for a translation action. An additional reward c dis-
counted by the relative number of steps Γ encourages the
agent to find the optimal sequence of actions in the low-
est number of steps. This characterization of the reward
essentially favors short episodes, while still encouraging
the agent to take long ones when needed.

4.2 BAR-CB

To train BAR-CB, the LinUCB (Li et al. 2010) algorithm
was adapted to an episodic scenario. Every image is as-
sociated with an episode as described in section 3, during
which BAR-CB fills its knowledge matrix with experiences
(s, a, p). When the episode terminates, it re-fits on the newly
accumulated experiences.

At every time step t, BAR-CB observes the state s of the
environment and the set of actions A. It constructs a fea-
ture vector for every action that summarizes information
of the state and that action. Based on previous payoffs, it
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chooses an action a and receives an associated payoff p. Fi-
nally, it improves its strategy by adding the new experience
(s, a, p) to its knowledge matrix. The three main compo-
nents of BAR-CB are:

1. State: BAR-CB learns in an online fashion which necessi-
tates the use of a simple yet meaningful representation of
the current observation. The Histogram of Oriented Gra-
dients (HOG) capture well the edges and the outline of
the object of interest which makes it suitable to represent
the state. To obtain the feature vector ∈ R

2916, the b-box
enclosed region is first resized to 224 × 224. Then, a bi-
lateral filter is applied to eliminate the noise and make the
hard edges more salient in the image. Finally, the features
are extracted using 9 orientation bins, 12× 12 pixels per
cell and 1× 1 cell per block with an L2 block normaliza-
tion.

2. Actions: These are the eight translation actions shown in
table 1 and the stop action.

3. Reward: Since rewards are binary in the LinUCB algo-
rithm, the reward for a translation action a at step t is:

r(at) =

{
1, if IoUt > IoUt−1

0, otherwise
(4)

and for the stop action:

r(at) =

{
1, if IoUt ≥ β

0, otherwise
(5)

5 Experiments

5.1 Experimental Setup

The experiments were run on a GeForce GTX 1080 with
11,000 MiB memory and Cuda version 10.0. The dataset
used consists of four car industry-related classes as shown
in figure 2. There are approximately 800 available images
for each class, 200 of which are used for testing. The classes
First Aid Kit (FA-Kit) Right, Left and Middle correspond to
first aid kits located in the back of a car, and the class Stickers
corresponds to a sticker in the front of the car that indicates
the presence of airbags. Each image of the dataset contains
one object and its ground-truth provided by a human expert.
For a fair comparison with the literature, BAR-DRL is ad-
ditionally evaluated on the aeroplane class of the publicly
available PASCAL VOC dataset (Everingham et al. 2010).

(a) (b) (c) (d)

Figure 2: (a) FA-Kit Right, (b) Left, (c) Middle and (d) Stick-
ers classes

(a) (b) (c) (d)

Figure 3: Initial b-boxes (red) vs ground-truth (blue) on in-
stances of Stickers class with (a) distribution-based, (b) hu-
man, (c) RetinaNet and (d) template matching initializations

5.2 Experimental Design

First, initial b-box proposals are generated using one of the
initialization methods detailed in this section. The corre-
sponding ground-truth b-boxes are obtained by letting hu-
man annotators correct these generated b-boxes. The agent
is then trained with parameters β and c1 chosen according
to the quality of the initial proposals. Finally, BAR is used
to correct future inaccurate b-boxes, leaving only a subset
of annotations to be corrected by humans. Five experiments
are designed, each with a different initialization method and
tested with BAR-DRL and/or BAR-CB training methods:

Exp. 1: Distribution-Based Initialization This experi-
ment determines the effect of hyper-parameters on the per-
formance of BAR. The initial proposals are generated ac-
cording to the following IoU distribution: 5% in the range
0.4-0.55, 35% in the range 0.55-0.6, 50% in the range 0.6-
0.7, 5% in the range 0.7-0.75 and 5% in the range 0.75-0.95.
Then, BAR-DRL is trained for β = 0.70, 0.75 and 0.80. The
size of the training set varies from 50 to 100 and 150 with
c1 = 0.1. BAR-CB is trained with a single configuration of
50 training images, β = 0.75 and c1 = 0.1.

Exp. 2: Hierarchical Detector (Bueno et al. 2017) Initial-
ization The goal of this experiment is to test the perfor-
mance of the agent on the public dataset PASCAL VOC and
compare to (Bueno et al. 2017) and (König et al. 2019). To
obtain initial proposals, a detector is trained as in (Bueno et
al. 2017) on the aeroplane class of PASCAL 2012 trainval,
and then used to obtain b-box proposals on PASCAL 2007
trainval. BAR-DRL is trained on the latter, with 309 training
examples, β = 0.6 and c1 = 0.2. The pipeline is tested on
PASCAL 2007 test data and compared to (Bueno et al. 2017)
who trained their detector on PASCAL 2007 and 2012 train-
vals, and the extended approach in (König et al. 2019). BAR-
CB is not used for this experiment, since instances of the
aeroplane class vary greatly and both the algorithm and the
HOG features cannot generalize well when the data changes
in shape, texture, context, viewpoint etc.

Exp. 3: Human Annotator Initialization The goal of this
experiment is to test the agent in an actual industrial sce-
nario where annotators wrongly annotated an object across
an entire dataset. Four cases are considered on our indus-
trial classes: a shift to the right for FA-Kit Right, a missing
region of the RoI for FA-Kit Left, an up-scaling for FA-Kit
Middle and a missing region of the RoI for the Stickers class
as shown in figure 3. BAR-DRL and BAR-CB are trained
using 50 training images, β = 0.85 and c1 = 0.1.
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Exp. 4: RetinaNet (Lin et al. 2017) Initialization This
experiment tests the performance of BAR with good initial
proposals. RetinaNet, pretrained on ImageNet (Deng et al.
2009), provides better initial proposals than previous meth-
ods as shown in figure 3 when trained on our 4 classes using
20 training images. BAR-DRL is trained on 30 images, with
β = 0.80 and c1 = 0.05. BAR-CB is not used for this initial-
ization since HOG features fail at capturing minor changes.

Exp. 5: Template Matching (Bradski and Kaehler 2008)
Initialization This experiment shows the performance of
BAR for the widely known template matching (TM) de-
tection method, which detects objects by comparing an
input image to a template. Initial proposals are obtained
using OpenCV (Bradski and Kaehler 2008) TM function
with cross-coefficient normalized similarity index on the 4
classes. These proposals are highly inaccurate compared to
the ones provided by other initializations as shown in fig-
ure 3. BAR-DRL and BAR-CB are trained on 50 images
with β = 0.70 and c1 = 0.1.

5.3 Parameters of Training Methods

The neural network consists of two fully-connected layers of
500 neurons each with Relu activation and random normal
initialization, and an output layer of 9 neurons with linear
activation. Mean square error loss with Adam optimizer and
learning rate of 0.001 are used, and the discount factor γ for
the Q-function is set to 0.90. BAR-DRL is trained for 80
epochs using an experience replay with maximum memory
length of 2000, and epsilon-greedy exploration with ε = 1.0
initially and linearly annealing to 0.1 for 15 epochs.

BAR-CB is trained using the implementation of (Cortes
2018). To kick-start its training, it is initially fitted to expert
human examples: first, a human annotator corrects half the
data, then the series of actions used in the correction is deter-
mined by a script and the agent is trained on these examples.
Second, the agent corrects the remaining half of the b-boxes
while receiving human feedback as a b-box verification if it
is accurate or a manual correction otherwise. 2

5.4 Experimental Results

Metrics and Evaluation The metrics reported in the re-
sults are the Average Precision (AP), the number of True
Positives (TP) and False Positives (FP). The notation X@xx
represents the metric X (AP, TP or FP) at an IoU of 0.xx,
with xx=50, 70, 75 or 80, depending on the desired quality
of new detections. The mean Average Precision (mAP) is the
AP averaged over all classes. The value of TP@xx (FP@xx
resp.) corresponds to the number of predictions whose IoU
is higher (lower resp.) than 0.xx.

The percentage of human intervention saved is deter-
mined by the ratio of the number of additional TP after the
correction stage to the number of FP before it.

Exp. 1 The initial IoU for this case is 0.60 on average as
reported in table 2. With BAR-DRL, an increase of 0.14 in
IoU on average and an improvement to up to 80% in the

2Code available at https://gitlab.com/MorganeAyle/bar

AP@70 are achieved as seen in table 3. As expected, set-
ting a higher β increases the final IoU reached, and often
compensates for a small number of images: training on 50
images and a β of 0.80 performs similarly to training on 100
images and a β of 0.70. However, this is not always the case:
the FA-Kit Middle class, which has a lower initial AP than
other classes, performs better with lower β values, especially
with smaller amount of images. Therefore, when the initial
proposals are far from the ground-truths, a high β can nega-
tively affect the training.

With BAR-CB, the AP@70 and number of TP@70 in-
creased for all classes as seen in table 4. However, the
AP@50 decreased, indicating that some of the b-boxes con-
siderably worsened due to the inability of BAR-CB to gen-
eralize well when the initial proposals vary randomly.

Class FA-Kit right FA-Kit left FA-Kit middle stickers
Average IoU 0.60 0.59 0.60 0.59

AP@50 84.64 87.58 75.18 84.64
TP@50 184 186 158 184
FP@50 16 14 42 16
AP@70 1.39 1.73 1.4 1.14
TP@70 21 22 20 17
FP@70 179 178 180 183

Table 2: Metrics of initial proposals in Exp. 1

Exp. 2 As seen in table 4, the initial detector trained on
PASCAL 2012 performs worse than the one in (Bueno et
al. 2017) trained with PASCAL 2007 and 2012. However, it
outperforms it after the correction trained on PASCAL 2007
especially for recall > 0.1. This highlights the added value
of using a subset of the training images for an additional cor-
rection stage rather than an exclusive detection stage. Table 5
shows that the initial detector resulted in a 7.9% AP@50,
32% of TP@50 and 68% of FP@50. BAR-DRL outperforms
(König et al. 2019) by increasing the AP@50 to 23.5% and
the TP@50 to 57% versus a maximum achieved of 39%
TP@50 for (König et al. 2019) as reported in table 5.

0 0.1 0.2 0.3 0.4
0

0.5

1

Recall

Pr
ec

is
io

n

Before Correction
After Correction

(Bueno et al. 2017)

Figure 4: Precision-Recall curve in Exp. 2

Exp. 3 This initialization causes the mAP@70 of ini-
tial proposals to decrease to 13% compared to the desired
ground-truths for 3 of the 4 classes as seen in table 6, and the
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Class FA-Kit right FA-Kit left
Number of images 50 100 150 50 100 150

β 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80
Average (Avg) IoU 0.72 0.73 0.75 0.74 0.77 0.80 0.76 0.80 0.81 0.73 0.76 0.78 0.74 0.76 0.80 0.75 0.77 0.80

AP@50 92.2 91.8 91.5 95.6 97.9 97.8 99.1 97.3 98.6 95.2 95.6 95.4 96.9 99.4 98.0 99.2 98.6 99.2
TP@50 191 191 191 195 197 198 199 197 198 194 195 194 197 199 198 199 199 199
FP@50 9 9 9 5 3 2 1 3 2 6 5 6 3 1 2 1 1 1
AP@70 39.1 45.2 52.5 48.4 68.0 71.0 63.2 77.9 82.1 48.3 59.0 72.2 63.0 60.0 79.0 57.0 70.5 84.9

TP@70 124 133 145 136 164 168 160 176 181 132 149 166 156 152 175 148 163 178
FP@70 76 67 55 64 36 32 42 24 19 68 51 34 44 48 25 52 37 22
Class FA-Kit middle stickers

Number of images 50 100 150 50 100 150
β 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80 0.70 0.75 0.80

Avg IoU 0.67 0.68 0.68 0.69 0.71 0.70 0.68 0.70 0.69 0.71 0.75 0.76 0.73 0.74 0.79 0.73 0.77 0.79
AP@50 78.5 85.6 79.5 91.1 85.1 87.5 84.7 89.7 89.3 95.5 98.1 95.8 97.5 97.6 99.0 98.9 98.2 100

TP@50 175 184 177 190 183 185 181 187 187 195 198 195 197 197 199 199 198 200
FP@50 25 16 23 10 17 15 19 13 13 5 2 5 3 3 3 1 2 0
AP@70 21.1 23.4 27.8 25.2 33.9 30.1 29.4 31.7 26.8 34.9 52.7 58.0 46.6 48.9 76.8 45.7 66.6 75.6
TP@70 90 96 104 97 115 108 103 107 101 114 143 148 130 134 171 126 158 170
FP@70 110 104 96 103 85 92 97 93 99 86 57 52 70 66 29 73.7 41.7 30

Table 3: Results of BAR-DRL in Exp. 1. Best case across a) fixed number of images underlined, b) all class cases in bold

Class FA-Kit right FA-Kit left FA-Kit middle stickers
Avg IoU 0.66 0.64 0.59 0.57
AP@50 81.0 79.3 65.3 60.4
TP@50 180 178 160 151
FP@50 20 22 40 49
AP@70 14.4 12.0 6.0 6.89
TP@70 75 69 47 48
FP@70 125 131 153 152

Table 4: Results of BAR-CB in Exp. 1

AP@50 % of TP@50 % of FP@50
Initial 7.9 32 68

BAR-DRL 23.5 57 43
(König et al. 2019) − 39 56

Table 5: Initial and BAR-DRL metrics in Exp. 2 compared
to (König et al. 2019)

AP@80 for the FA-Kit Left class to decrease to 73.3%. Using
BAR-DRL, the mAP@70, TP@70, mAP@80 and TP@80
increase by 56%, 47%, 43% and 49% respectively. Starting
off with 6 TP@70 for the FA-Kit Middle class, the agent in-
creases this value to 192, hence correcting 96% of the inac-
curate b-boxes. BAR-CB also increases the AP and TP for
all classes as shown in table 6. For example, TP@70 and
TP@80 improve by 66 and 62 respectively on average.

Exp. 4 RetinaNet sometimes generates more than one b-
box for the same object, or no b-box at all. That is why ini-
tially TP + FP ≥ 200, and after correction, TP + FP <
200 since BAR acts only on the b-box with greatest con-
fidence. Starting with an initial mAP@75 of 39.2%, BAR-
DRL consistently increases the AP@75 and decreases the
FP@75 as shown in table 7. For example, with an initial IoU
of 0.74 and 10.8% AP@75 for the Stickers class, BAR-DRL
successfully corrects 43% of the detections. This shows that
even with a good initialization, BAR can further enhance the
detections.

Class FA-Kit right FA-Kit left FA-Kit middle stickers
Bias Action shift right missing part up-scale missing part

In
iti

al

AP@70 7.4 100 0.3 31.3
TP@70 52 200 6 108
FP@70 148 0 194 92
AP@80 0.7 73.3 0.0 1.5
TP@80 14 168 0 24
FP@80 186 32 200 176

B
A

R
-D

R
L

AP@70 83.6 96.1 93.1 77.9
TP@70 182 196 192 168
FP@70 18 4 8 32
AP@80 50.4 90.0 64.2 39.5
TP@80 141 187 160 108
FP@80 59 13 41 92

B
A

R
-C

B

AP@70 72.9 98.4 50.8 41.3
TP@70 170 198 142 121
FP@70 30 2 58 79
AP@80 44.3 84.19 22.6 7.0
TP@80 132 181 94 45
FP@80 68 19 106 155

Table 6: Initial, BAR-DRL and BAR-CB metrics in Exp. 3

Class FA-Kit right FA-Kit left FA-Kit middle stickers

In
iti

al

Avg IoU 0.78 0.79 0.76 0.74
AP@75 53.6 53.5 38.8 10.8
TP@75 138 135 113 61
FP@75 86 66 98 139

TP+FP@75 224 201 211 200

B
A

R
-D

R
L Avg IoU 0.80 0.81 0.79 0.81

AP@75 59.9 69 48 64.2
TP@75 154 161 145 147
FP@75 45 38 48 34

TP+FP@75 199 199 193 181

Table 7: Initial and BAR-DRL metrics in Exp. 4

Exp. 5 Table 8 shows that template matching (TM) pro-
vides annotations with very low initial IoU (0.36 on average)
and that the initial AP for class Stickers is lower than for the
other classes. This can be explained by the fact that TM pro-
vides many initial proposals with 0 IoU, i.e. an observation
that doesn’t contain any part of the desired object.

BAR-DRL increases the IoU by 0.16 on average and the
mAP@50 by 46.5% as seen in table 8, with the classes FA-
Kit Right and Left showing notable increases of 0.20 and
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Figure 5: Example of an episode on Stickers class in Exp. 5

0.28 respectively. The average number of TP@50 increases
by 70. Since many b-boxes for the Stickers class had an ini-
tial IoU of 0, some of the training parameters need to be
adapted. By setting c1 = 0.2 and β = 0.5, the agent can
reach an accurate b-box in fewer steps and is rewarded for
lower IoU values. It can now be seen from figure 5 that
even with initial proposals completely missing the object,
the agent moves towards the target object.

Table 8 shows that BAR-CB increases the AP for the first
three classes, but not for the Stickers class due to initial b-
boxes completely missing the object. The AP@50 for class
FA-Kit Right doubles and the TP@50 increases by 20%, for
a total of 60% TP@50.

Class FA-Kit right FA-Kit left FA-Kit middle stickers

In
iti

al

Avg IoU 0.51 0.40 0.35 0.16
AP@50 25.01 2.7 8.41 5.06
TP@50 99 33 58 32
FP@50 101 167 142 168

B
A

R
-D

R
L Avg IoU 0.70 0.68 0.48 0.21

AP@50 88.5 79.9 18.3 8.9
TP@50 187 177 85 51
FP@50 13 23 115 149

B
A

R
-C

B

Avg IoU 0.60 0.55 0.48 0.17
AP@50 50.2 41.2 25.1 5.23
TP@50 141 124 99 30
FP@50 59 76 101 170

Table 8: Initial, BAR-DRL and BAR-CB metrics in Exp. 5

Human Intervention Depending on the initialization
method, our agents successfully correct a subset of the b-
box proposals, relieving humans from either correcting them
or re-drawing accurate b-boxes. Even though a few b-boxes
could get worsened when the agent fails to converge, the
number of TP (FP) always increases (decreases), and the
overall number of b-boxes to be corrected by a human is al-
ways lower than it was before the correction stage. As seen
in figure 6, BAR-DRL and BAR-CB save up to 82% and
58% of human time respectively (c.f. section 5.4: Metrics
and Evaluation). It is to be noted that the reported values
at 0% correspond to cases where the agent could not be ap-
plied. The highest achieved percentages are obtained in Exp.
3, which corresponds to the actual industrial scenario. A cor-
rection agent is therefore of great advantage for industrial
applications in saving human time and achieving higher ac-
curacies. Additionally, the inference time of BAR-DRL and
BAR-CB on 1 image are 15ms and 2.5sec on average respec-
tively, with BAR-CB having the convenient online property.
Clearly, both agents result in a lower total correction time
than letting human annotators perform the task.

Exp.1 Exp.2 Exp3 Exp.4 Exp.5

0

20

40

60

80

%

BAR-DRL
BAR-CB

Figure 6: Percentage of human intervention saved for the 5
experiments. BAR-CB could not be used in Exp.1, 2 and 4.

6 Conclusion

In this work, BAR, a novel RL agent, was implemented to
accurately correct “weak” b-boxes while reducing human in-
tervention. During the training phase, our agent requires la-
belers to correct few inaccurate b-boxes instead of drawing
new ones as in existing methods, and learns an optimal strat-
egy to determine the correction path on new b-boxes during
testing. The correction agents BAR-DRL and BAR-CB were
tested on a real industrial dataset, and BAR-DRL was addi-
tionally tested on PASCAL VOC. Depending on the initial-
ization method and on the desired quality of b-boxes, BAR-
DRL and BAR-CB allow for a reduction in human interven-
tion needed by 37%-82% and 30%-58% respectively while
increasing the IoU of b-boxes by up to 0.28. BAR-DRL per-
forms almost twice as good as BAR-CB, which only im-
proved the proposals of 2 out of the 5 initializations con-
sidered. However, BAR-CB has the advantages of a faster
training time, an online setting, and the ability to suggest
acceptable b-boxes after seeing only one training image. Fi-
nally, BAR was able to converge to the target object even
when the initial detection completely missed it.

7 Future Work

This work focuses on images with a single object, and the
proposed methods are easily applicable to multiple objects
as long as they do not overlap. A potential extension is to
exploit approaches that can handle overlapping objects.

Since human intervention through correction is an impor-
tant factor in training, the problem could be formulated in
an active learning setting in which the agent asks for human
feedback while training when it is uncertain. This could also
help in reducing the effect of noisy data provided by humans.
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Another approach is to introduce Hybrid BAR, which
chooses to use either the CB or DRL method depending on
the use-case and image structural similarity of the dataset.

Finally, to obtain a better measure of the human inter-
vention being saved, real-life measurements could be per-
formed on a sample population. Using a continuous rather
than fixed parameter for translation actions would also al-
low BAR to easily adapt to different types of initializations
independently from parameter tuning.
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