
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Cost-Accuracy Aware Adaptive Labeling for Active Learning

Ruijiang Gao
University of Texas at Austin

ruijiang@utexas.edu

Maytal Saar-Tsechansky
University of Texas at Austin

maytal@mail.utexas.udu

Abstract

Conventional active learning algorithms assume a single la-
beler that produces noiseless label at a given, fixed cost, and
aim to achieve the best generalization performance for given
classifier under a budget constraint. However, in many real
settings, different labelers have different labeling costs and
can yield different labeling accuracies. Moreover, a given la-
beler may exhibit different labeling accuracies for different
instances. This setting can be referred to as active learning
with diverse labelers with varying costs and accuracies, and
it arises in many important real settings. It is therefore benefi-
cial to understand how to effectively trade-off between label-
ing accuracy for different instances, labeling costs, as well as
the informativeness of training instances, so as to achieve the
best generalization performance at the lowest labeling cost.
In this paper, we propose a new algorithm for selecting in-
stances, labelers (and their corresponding costs and labeling
accuracies), that employs generalization bound of learning
with label noise to select informative instances and labelers so
as to achieve higher generalization accuracy at a lower cost.
Our proposed algorithm demonstrates state-of-the-art perfor-
mance on five UCI and a real crowdsourcing dataset.

Introduction

Supervised learning has achieved great successes over the
years and has a significant impact on practice in a growing
variety of predictive tasks. In many settings, however, labels
for training instances are not readily available, but can be
acquired from different labelers at different costs; often, dif-
ferent labelers may exhibit varying labeling accuracies, and
a given labeler can have different labeling accuracies across
different instances, possibly as a result of experience or prior
knowledge. Given this setting and a model induction algo-
rithm, it is important to understand how to best select label-
ers and instances they will label so as to induce a model with
the highest generalization performance for a given labeling
cost. In practice, such challenges arise in important appli-
cations, where scientists, medical professionals, or crowd of
lay workers can be used to label a possibly large number
of instances. In recent years, large-scale crowdsourcing and
online labor market platforms, such as Amazon Mechanical
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Turk (AMT), have emerged to offer unprecedented scalabil-
ity towards such tasks. Nevertheless, in the settings we con-
sider here, selecting labelers’ (and corresponding costs and
accuracies) and the instances they will label to produce the
best model at a given cost remains an open problem.

Traditional active learning (Lewis and Gale 1994; Gal,
Islam, and Ghahramani 2017; Tang and Huang 2019) has re-
ceived significant attention, and considers the problem of se-
lecting instances for labeling when a single labeler produces
labels at the same, fixed cost and with perfect labeling accu-
racy. Because labels of all instances are assumed to have the
same accuracy and cost, traditional active learning frame-
works aim to identify the most informative training instances
from which to induce a model. However, in many real set-
tings, acquiring labels from labelers presents greater com-
plexity. AMT, for example, offers access to workers from
around the world, with different expertise and varying costs.
Indeed, prior social science research has shown that different
payments lead to different qualities of work, and that differ-
ent relationships between payment and quality can arise at
different times or for different tasks (Mason and Watts 2009;
Kazai 2011; Kazai, Kamps, and Milic-Frayling 2013).

More recent work considered multiple noisy workers,
yet assumed that either all labelers exhibit the same qual-
ity (Ipeirotis et al. 2014; Lin, Weld, and others 2014;
Donmez, Carbonell, and Schneider 2010), or that all la-
belers have the same cost per label and that the label-
ing quality is independent of the instance being labeled
(Donmez, Carbonell, and Schneider 2009; Yan et al. 2011;
2014). The closest work to the problem we consider here
is by Huang et al. (2017), where instance difficulty, la-
beler expertise, and varying costs across labelers are con-
sidered. Huang et al. (2017) use a different criterion to se-
lect labelers and instance than the one we develop here; as
we discuss below, in the most common setting in practice,
where labelers are not adversarial (Ipeirotis et al. 2014;
Yan et al. 2011; Lin, Weld, and others 2014; Donmez, Car-
bonell, and Schneider 2009), this criterion appears to be
prone to consistently choose low payment options, even
when the labeling quality is poor and such choices under-
mine learning significantly.

In this paper, we propose a novel criterion utilizing gen-
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eralization bound of learning with label noise to evaluate
the cost-effectiveness of labeler-instance pair. The criterion
we propose is motivated by the goal of directly minimiz-
ing the generation error of the classifier. To the best of our
knowledge, this work is the first to use generalization bound
for guidance of selecting labeler-instance pairs in this set-
ting. We empirically evaluate the effectiveness and robust-
ness of our method for settings with different cost-accuracy
trade-offs reported in prior work to arise in crowdsourcing
markets, and for five UCI datasets and a real crowdsourcing
dataset. Our results show that our approach offers state-of-
the-art performance across settings.

Related Work
Active learning has been studied extensively and is getting
more important with the emergence of modern artificial in-
telligence. Most active learning research has considered set-
tings where there is only one perfect labeler. Active learn-
ing algorithms for these settings thus aim to select the most
informative training instances to label, so as to reduce the
number of instances. However, when crowdsourcing plat-
forms are used to acquire labels, annotation is done by dif-
ferent, noisy annotators, whose labels can be acquired at dif-
ferent costs and who may exhibit different levels of accura-
cies. Recently, more research has considered acquiring la-
bels and learning from noisy labelers. Donmez, Carbonell,
and Schneider (2009) and Zheng, Scott, and Deng (2010)
estimate the accuracy rates of labelers and then selects for
annotation labelers with high accuracies. Zhao, Sukthankar,
and Sukthankar (2011) actively select instances for label-
ing, but do not select labelers. All these works assume that
a labeler exhibits the same accuracy for all instances they
label. Yet, in practice, different workers may have differ-
ent expertise or prior experience and can consequently ex-
hibit different accuracies when labeling different instances.
Yan et al. (2011) propose a probabilistic framework to esti-
mate workers’ accuracies and select the worker estimated to
be the most accurate for a given instance. Fang, Yin, and
Tao (2014) and Ambati, Vogel, and Carbonell (2010) con-
sider the different expertise of workers and aim to match
instances with different worker with varying accuracies in
the task domain; yet, these works do not consider varying
labeling costs may be incurred by different labelers. Geva,
Saar-Tsechansky, and Lustiger (2019) consider acquiring la-
bels from labelers with varying accuracies and costs based
on the estimated effect on generalization error, but do not
consider selecting instances for labeling. The most closely
related work is by Huang et al. (2017): the proposed method
estimates workers’ labeling accuracies based on a small set
of ground-truth data, and then estimates the value of ac-
quiring the label for a given instance from a given worker
as the weighted labeling accuracy divide by worker’s cost.
As we discuss in more detail below and reflected in our
empirical evaluations, in the most common setting in prac-
tice, when labelers are not adversarial (Ipeirotis et al. 2014;
Yan et al. 2014), this heuristic criterion is prone to select low
payments.

Some prior work considered the cost-effectiveness of ma-
jority voting by multiple labelers for same instance as com-

pared to singly-labeled data. These works considered work-
ers who exhibit the same accuracy and cost. Ipeirotis et al.
(2014) shows how in some cases majority voting can im-
prove the performance of given classifier for a given cost,
and Lin, Weld, and others (2014) demonstrates how the op-
timal choice depends on the dataset, classifier, and labeling
accuracy. Yet, these works do not address how to effectively
trade-off performance and cost. Importantly for this work,
the trade-off between acquiring a single or multiple labels
per instance can also be viewed as a special case of having
multiple labelers of varying costs and accuracies. Hence, a
method that can effectively select amongst different label-
ers of accuracies can also apply to select whether or not to
acquire multiple labels for a given instance. Other research
explored the generalization error bounds for learning with
label noise. Simon (1996) and Aslam and Decatur (1996)
study the error bounds for learning from noisy labels for
PAC-learnable concepts. Kearns (1998) develop a bound
for concepts that are Statistical-Query-learnable. We rely on
these theoretical results and propose a novel criterion to se-
lect instance-labeler pairs that minimize the generalization
error and achieve state-of-the-art results.

Problem Statement

Suppose we have a dataset D = {xi, yi}Ni=1, concept C,
an unlabeled set U = {xi}Nnl+1, and a set of labelers
A = {a1, . . . , an} , who exhibit costs {c1, . . . , cn} and la-
bel accuracies {ρ1, . . . , ρn}, respectively. In addition, sup-
pose that an initial labeled dataset is available with ground-
truth labels L = {xi, yi}nl

1 that have also been labeled by
each of the labelers in A. We assume the most common set-
tings where labelers are not adversarial, i.e. their labeling
accuracy rates are higher than 50% (Ipeirotis et al. 2014;
Yan et al. 2011; Lin, Weld, and others 2014; Donmez, Car-
bonell, and Schneider 2009).

Further, labelers can have different expertise for different
instances. Thus, for example, in an image classification task,
Amy may be an expert at identifying species of flora while
Bob excels in identifying fauna. We illustrate this notion in
Figure 1, where labelers, L1, L2, and L3, have diverse ex-
pertise across different image categories. If each image cat-
egory has the same number of samples, the overall labeling
accuracies for L1, L2, L3 are 0.83, 0.73, 0.66 respectively.
Yet, each labeler exhibits higher (and lower) labeling accu-
racies on some of the categories. Experiments in online labor
markets (Kazai 2011; Kazai, Kamps, and Milic-Frayling
2013; Mason and Watts 2009) reveal that often higher ac-
curacies can be obtained by offering higher payments. For
simplicity, in this work we consider the price levels of 3, 2,
and 1, for labelers L1, L2, and L3, respectively.

Finally, we consider an iterative setting, where at each it-
eration, a labeler from A is selected for labeling a selected
instance from U . Given a limited budget B, we aim to ac-
quire labels from labelers for certain instances so as to in-
duce a classifier with the best generalization performance.
Thus, an algorithm for selecting labelers and instances ought
to decide from which labelers and for what instances to ac-
quire labels so as to yield the best generalization perfor-
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Figure 1: Diverse labelers’ performance on different image
categories: Flora, Fauna and Cars. Labels L1, L2, L3 demon-
strate different labeling accuracies on different category, and
their overall accuracies are 0.83, 0.73 and 0.66, respectively
(assuming equal numbers of instances in each category).

mance with a given budget; for example, it ought to deter-
mine whether it would be more cost-effective to acquire flora
labels from the more accurate (and pricier) L1 than acquir-
ing lower accuracy labels for 3 different flora images from
L3, thereby compiling a larger training set for learning at the
same cost.

Algorithm

Recall that our approach aims to select instance-labeler pairs
so as to improve the generalization performance for a given
labeling budget. Below, we first discuss briefly how we
quantify instance usefulness. Because the closest work to
the contributions we present here is by Huang et al. (2017),
we then outline the main elements of the CEAL algorithm
(Huang et al. 2017) and then describe how our algorithm
builds on this contributions.

Instance Usefulness

There are many algorithms that propose various criteria for
selecting instances for labeling; the more prominent mea-
sures include: uncertainty sampling that uses the posterior
probability of predicted class (Gal, Islam, and Ghahramani
2017; Lewis and Gale 1994), model expected change that se-
lects the sample the affects the model most (Freytag, Rodner,
and Denzler 2014) and data diversity that chooses the data
that helps labeled pool better represent the underlying pop-
ulation (Sener and Savarese 2017; Nguyen and Smeulders
2004). In general, any measure for quantifying instance use-
fulness can be used in our approach. In this paper, our main
focus is on a cost-effective selection of labelers, we simply
follow the setting in (Huang et al. 2017) and use uncertainty
sampling as shown in Equation 1. P (y|xj) is the posterior
probability predicted by the classifier trained at current iter-
ation.

r(xj) = 1−max
y∈Y

P (y|xj) (1)

CEAL (Huang et al. 2017)

CEAL estimates annotators’ labeling accuracies of given in-
stance xj ∈ U based on the accuracy of labelers’ respec-
tive responses on the labeled set L with ground truth la-
bels. Specifically, the accuracy of labeler i for instance xj ,
ρi(xj) is a weighted mean of labeling accuracy, weighted
by the similarity between xj and each of its nearest neigh-
bors xk ∈ N (xj), as shown in Equation 2, where 0 ≤
s(xk, xj) ≤ 1, N (x) represents that nearest neighbors of
x in L and

∑
k s(xk, xj) = 1.

ρi(xj) =
∑

xk∈N (xj)

s(xk, xj)I[yk == ŷik] (2)

The final instance-labeler pair is selected by Equation 3 and
4. At each iteration, the product qi(xj)r(xj) is computed
for every instance-labeler pair (xj , ai), xj ∈ U , ai ∈ A, and
the pair with maximum product is selected for labeling. As
a result, CEAL tends to select samples that are quite useful,
and labelers that are good enough, yet cheap.

qi(xj) =
ρi(xj)

ci
(3)

(x�, a�) = argmax
ai,xj

qi(xj)r(xj) (4)

However, this heuristic tends to select instance-labeler
pairs that maximize labeling accuracy per cost, and it does
not assess the implications of different labeling accuracies
and costs on subsequent generalization performance. To il-
lustrate how CEAL prioritizes amongst different labelers,
suppose we have five labelers whose labeling costs are
1,2,3,4,5 respectively. We further suppose labelers are not
adversarial (Ipeirotis et al. 2014; Yan et al. 2011; Lin, Weld,
and others 2014; Donmez, Carbonell, and Schneider 2009),
thus ρi(xj) is greater than 0.5 for all i. When a low cost la-
beler offers near-random accuracy, while all others offer per-
fect accuracy, it is easy to see that CEAL will always prefer
the least costly labeler with near-random labeling accuracy.

ρi(xj)

1
≥ 0.5

1
≥ max ρ(x)

2
=

1.0

2
>

1.0

3
>

1.0

4
>

1.0

5
(5)

Similarly, in the example shown in Figure 1, given all label-
ers’ accuracies are above 0.5, CEAL will select the labeler
with the lowest cost.

Proposed Algorithm

As we discussed above, in CEAL, the value of a labeler is
quantified by the ratio between the labeler’s labeling quality
and cost, and as such does not necessarily reflect the im-
pact on generalization performance as done in (Geva, Saar-
Tsechansky, and Lustiger 2019). We seek to develop an al-
gorithm that aims to address this: identify labeler-instance
pairs that would have the greatest benefit to generalization
performance per cost.

However, generalization error is intractable in most su-
pervised learning problems. There are some prior works that
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explore different ways to estimate it. In the context of tra-
ditional active learning, (Roy and McCallum 2001) pro-
poses to use (empirical) Estimated Error Reduction (EER) as
an estimation to the generalization error reduction to select
useful training instances for labeling. (Settles, Craven, and
Ray 2008; Freytag et al. 2013) maximize Expected Model
Change (EMC) by evaluating expected changes in model
parameters, but this approach lacks a theoretical connec-
tion to error reduction. (Freytag, Rodner, and Denzler 2014)
proposes to use expected model output change as an upper
bound to generalization error. While it gives no guarantee
when we are interested in maximization, it shows good per-
formance in active learning problems. However, all these ap-
proaches consider settings with a single and perfectly accu-
rate labeler, and it is unclear how they can apply in our set-
ting when multiple noisy workers are present.

Meanwhile, research on generalization error bound for
different concepts when learning from noisy labels, provides
an upper bound on the decreasing speed on the general-
ization error of concept classes of interest (Simon 1996;
Aslam and Decatur 1996; Kearns 1998), but is rarely used
in empirical research. The upper bound of the generaliza-
tion error can also be thought of as incorporating uncertainty
of the classification error. Inspired by the notion of guid-
ing acquisition by expected error reduction (Geva, Saar-
Tsechansky, and Lustiger 2019), we propose a novel cri-
terion that utilizes the theoretical results on generalization
bound for learning with noisy labels to select cost-effective
labelers. Based on the generalization bound proposed in
Theorem 1 (Simon 1996; Aslam and Decatur 1996), our al-
gorithm combines theoretical analysis into active learning to
select the labeler that minimize error as shown in Equation
8, where ρ̂i, and ni denote the estimated label accuracies and
number of samples labeler i can purchase under a fixed bud-
get. The VC dimension of a classifier measures the size of
the largest finite subset of points that it is capable of classi-
fying correctly (shatter). A higher VC dimension thus corre-
sponds to weaker inductive bias. For simplicity, we treat the
fail probability term as a constant since the VC dimension is
not known.

Theorem 1 (Simon 1996; Aslam and Decatur 1996) PAC
learning a function class F with Vapnik-Chervonenkis di-
mension VC(F) in the presence of classification noise ρ and
fail probability δ requires a sample of size

Ω
( VC(F)

ε(2ρ− 1)2
+

log(1/δ)

ε(2ρ− 1)2

)
(6)

i� = argmin
i

1

(2ρ̂i − 1)
√
ni

(7)

= argmax
i

(2ρ̂i − 1)
√
ni (8)

The cost-normalized benefit to generalization performance
from selecting labeler i to label instance xj can thus be cap-
tured by the term in Equation 9.

qi(xj) =
2ρi(xj)− 1√

ci
(9)

However, recall that we aim to select labelers that lead to
lowest generalization error. We should therefore consider the
expected cumulative accuracies for all options so far. Also,
importantly, (Lin, Weld, and others 2014) shows how more
accurate labels may be preferred early on the learning curve,
while cheaper and noisier labels may be more cost-effective
for learning when number of samples are sufficiently large.
Methods such as CEAL and Equation 9 neglect such learn-
ing dynamics; hence, we propose a second, adaptive crite-
rion shown in Equation 10, where ρ0, n0 is the estimated
accuracy and number of instances so far, and b denotes the
unit budget we consider for estimating the future expected
generalization error.

qi(xj) = (2
ρ0n0 + ρi(xj)� b

ci
�

n0 + � b
ci
� − 1)

√
n0 + � b

ci
� (10)

E(ai, xj) = r(xj)qi(xj) (11)

(x�, a�) = argmax
ai,xj

E(ai, xj) (12)

Similar to CEAL, we estimate labelers’ accuracies us-
ing Equation 2. At each iteration, we calculate Equation 11
for each instance-labeler pair and select the pair with the
highest value, as in Equation 12; after the label from the
chosen labeler for the instance is acquired, the labeled in-
stance is added to current training set, and next iteration be-
gins. The acquisitions continue until the budget is exhausted.
The complete Generalization Bound based Active Learning
(GBAL) algorithm based on the criterion in Equation 9, and
the Adaptive GBAL (AGB)1 are shown in Algorithms 1, 2.

Algorithm 1 Generalization Bound based Active Learning
(GBAL)

Input:
L: a small labeled set
U : the pool of unlabeled data for active selection
A: all possible labelers
Ŷ : the labels given by all labelers in A on L
repeat

for each xj ∈ U and labeler ai do
calculate the uncertainty for xj in Equation 1
calculate expected generalization bound as in

Equation 9 or 3
calculate the effectiveness as in Equation 11

end for
Select the pair (x�, a�) in Equation 12.
Query the label of x� from a�, denoted by ŷ�.
L = L ∪ (x�, ŷ�); U = U \ x�.
Train classifier on L and test it on test set.

until the budget is used up

1Code is availble in https://github.com/ruijiang81/AGB
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Algorithm 2 Adaptive GBAL (AGB)

Input:
L: a small labeled set
U : the pool of unlabeled data for active selection
A: all possible labelers
Ŷ : the labels given by all labelers in A on L
b: unit budget for estimating Equation 10

Initialize:
ρ = 1
repeat

for each xj ∈ U and labeler ai do
calculate the uncertainty for xj in Equation 1
calculate the the expected generalization bound as

in Equation 10
calculate the effectiveness as in Equation 11

end for
Select the pair (x�, a�) in Equation 12.
ρ = (ρn+ ρ̂�(xj))/(n+ 1)
Query the label of x� from a�, denoted by ŷ�.
L = L ∪ (x�, ŷ�); U = U \ x�.
Train classifier on L and test it on test set.

until the budget is used up

Experiment

We compare our methods with four baselines:

• ALC: (Yan et al. 2011) ALC selects the most uncertain
sample from the unlabeled set and uses the most accurate
labeler for annotation at each iteration.

• CEAL : (Huang et al. 2017) CEAL selects instance-
labeler pair that maximize Equation 3.

• All: Select the most uncertain sample and use majority
voting based on all labelers annotations for the sample at
each iteration.

• Random: Select the most uncertain sample and randomly
choose a labeler from the set of all labelers to annotate the
sample at each iteration.

The main goal of the evaluation is to compare the effec-
tiveness of labelers (costs and accuracies) chosen by differ-
ent algorithms. The effectiveness of uncertainty sampling
has been established in prior work (Huang et al. 2017;
Lewis and Catlett 1994; Gal, Islam, and Ghahramani 2017).
Algorithm 1 and 2 are referred to as GB and AGB in this
section.

Label Simulation

We use the publicly available UCI datasets, and therefore
we simulate the labels produced by different labelers for
these datasets. The label generating process we use is sim-
ilar to that in (Yan et al. 2011). Specifically, in order to
create diverse labelers, we first create 30 clusters using
KMeans (Jain, Murty, and Flynn 1999) for each dataset. In
addition, as in (Huang et al. 2017), we simulate five label-
ers with cost levels: 5, 4, 3, 2, 1 which are associated with
overall labeling accuracies from high to low, respectively.
Each labeler is an ‘expert” in some random set of clusters by

Labeler W1 W2 W3 W4 W5
Pen Digits 0.90 0.79 0.70 0.62 0.56

Audit 0.94 0.91 0.71 0.67 0.66
Mushroom 0.92 0.82 0.76 0.68 0.61
Spambase 0.95 0.81 0.79 0.71 0.58
German 0.93 0.87 0.74 0.68 0.57

Table 1: Worker Label Accuracy on UCI Datasets

exhibiting a high probability of correctly labeling instances
from the corresponding cluster. In particular, the probabili-
ties that a labeler correctly labels instances in her “expert”
clusters are 0.95, 0.925, 0.9, 0.875, and 0.85; these probabil-
ities for “non-expert” clusters are 0.61, 0.585, 0.56, 0.535,
and 0.51 respectively. The resulting overall worker accura-
cies on UCI datasets are shown in Table 1. This process pro-
duces a diverse label distribution, where different labelers
also incur different costs. As demonstrated in Table 1, given
the KMeans produce different clusters for different datasets,
a labeler of a given cost can yield different overall labeling
accuracy across different datasets – this allows us to explore
the robustness of our proposed algorithm under a wide vari-
ety of price-accuracy trade-offs.

UCI Dataset

We evaluated our approach using the following datasets:
German, Mushroom, Pen Digits, Spambase, Audit (Hooda,
Bawa, and Rana 2018) from UCI Machine Learning Repos-
itory (Bache and Lichman 2013). The statistics of these five
datasets can be found in Table 5.

We divide each dataset into initial, train and test set, con-
sisting of 5%, 65% and 30% of the data, respectively. The
algorithm’s performance will be better if the size of initial
set is larger, but more data with ground truth is also harder
to acquire. Logistic Regression is used as classifier in our ex-
periments. We report classification accuracy on test set after
each acquisition iteration. The results shown are averages
over 20 runs.

Our main results are shown in Figure 2. We also report
the average cost, query numbers and label accuracies in Ta-
bles 2, 3, and 4, respectively. As we discussed in the pre-
vious section, our results show that CEAL often selects
the cheapest labelers, and the resulting noisy annotations
can yield poor generalization error. ALC tends to select
many expensive (and accurate) labelers and yields the high-
est label accuracy amongst all methods. These results also
demonstrate that the most accurate labels may not be the
most cost-effectiveness to acquire. A similar conclusion is
also drawn in (Khetan, Lipton, and Anandkumar 2017;
Snow et al. 2008; Geva, Saar-Tsechansky, and Lustiger
2019). The costs incurred by AGB and GB are relatively
higher than the cost of random, but lower than the cost of
ALC. This allows the AGB and GB methods to compile a
larger number of instances with sufficient labeling accuracy
to produce good generalization performance. AGB and GB
perform quite well in all the tasks, and AGB outperforms all
other methods in all datasets, suggesting that an adaptive es-
timate can offer a better assessment of the expected benefits
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Methods Audit Pen Digits Spambase German Mushroom
CEAL 1.04 1.01 1.01 1.03 1.01

Random 3.01 3.01 3.04 3.01 3.03
ALC 4.53 4.63 4.59 4.54 4.40
GB 2.97 3.14 1.50 2.68 2.30

AGB 3.26 4.12 2.57 3.59 3.67

Table 2: Average cost on UCI Datasets of different methods
Methods Audit Pen Digits Spambase German Mushroom
CEAL 0.67 0.51 0.67 0.59 0.57

Random 0.81 0.70 0.76 0.74 0.71
ALC 0.95 0.94 0.93 0.92 0.79
GB 0.91 0.82 0.81 0.82 0.73

AGB 0.93 0.88 0.88 0.85 0.77

Table 3: Average Label Accuracy on UCI Datasets of different methods
Methods Audit Pen Digits Spambase German Mushroom
CEAL 194.8 200 200 195.4 200

Random 68.3 68.2 67.8 68.1 67.4
ALC 46.0 44.7 45.3 45.6 47.3
GB 69.4 66.4 136.7 77.2 91.8

AGB 63.4 50.2 81.5 57.5 57.4

Table 4: Average Number of Queries on UCI Datasets of different methods

Figure 2: Cost-Accuracy Curves for Active Learning on UCI Datasets: we report accuracy after each iteration and X-axis
represents cost so far in active learning. We can see AGB consistently outperforms other baselines. Results are averaged over
20 runs.
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#Instance #Feature
German 1000 24

Mushroom 8124 117
Pen Digits 10992 16
Spambase 4601 57

Audit 776 24

Table 5: Statistics of five UCI Datasets

of different labelers.

Real Dataset

In addition to the simulated UCI datasets, we also per-
formed experiment using a real crowdsourcing dataset. We
use a sentiment analysis dataset, introduced in (Rzhetsky,
Shatkay, and Wilbur 2009), and that includes 1000 sentences
labeled by five real crowdsourcing workers. The annotators
labeled each sentence along three dimensions: Focus, Po-
larity and Evidence. However, the overall accuracies of the
five labelers along the Polarity and Evidence labels are all
very high and thus not very diverse; we thus used only the
Focus dimension, where labelers exhibit diverse accuracies.
We henceforth refer to this as the Focus data set. We bina-
rized the response variable and use bag-of-words features
for training the model. After removing stopwords, the fea-
ture set consists of 292 features. The overall labeling accu-
racy of each real labeler is shown in Table 6. We simply
set a labeler’s cost to be the same as the labeler’s accuracy
in Table 6. As before, Logistic Regression is used as clas-
sifier and dataset is randomly split into 5%, 65% and 30%
as initial, train and test set, respectively. Result on Focus,
averaged over 30 runs, are shown in Figure 3.

Labeler W1 W2 W3 W4 W5
Label Accuracy 0.82 0.931 0.892 0.904 0.641

Table 6: Label Accuracy on Focus Dataset

As shown, given the different price levels for the Focus
dataset are very similar (around 0.9) for all workers, besides
W5, the performance of AGB is similar to that of ALC and
random. Indeed, when all price options are the same and
workers’ accuracies are similar, all methods will have the
same effect. However, as shown in Figure 3, even in this
setting AGB outperforms all other methods. This result is
consistent with our results on the UCI datasets.

Conclusion

In this paper, we propose that the generalization bounds
from theoretical analysis of settings with noisy labels can
be effectively used to address the cost-effective active learn-
ing task with labelers of varying expertise and costs. We ex-
amine the shortcomings of existing algorithms proposed for
this and other similar settings, and empirically demonstrate
the effectiveness of our algorithms on various datasets. It is
worth noting that our proposed algorithm can also apply to
choose between singly labeling and the acquisition of multi-
ple labels per instance for majority voting strategies, which

Figure 3: Cost-Effective Active Learning on Real Dataset ,
Results are averaged over 30 runs

we leave for future work. However, the optimal instance-
payment selection ought to account for domain, concept
class, and price-accuracy tradeoffs. We use a particular gen-
eralization bound as an upper bound which allows us to ac-
count for these elements through a model-data free criterion,
though clearly not optimally. We leave the design for a more
complex model-data dependent algorithm for future work.
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