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Abstract

The state-of-the-art machine teaching techniques overestimate
the ability of learners in grasping a complex concept. On one
side, since a complicated concept always contains multiple
fine-grained concepts, students can only grasp parts of them
during a practical teaching process. On the other side, be-
cause a single teaching sample contains unequal information
in terms of various fine-grained concepts, learners accept them
at different levels. Thus, with more and more complicated
dataset, it is challenging for us to rethink the machine teaching
frameworks. In this work, we propose a new machine teaching
framework called Attentive Machine Teaching (AMT). Specif-
ically, we argue that a complicated concept always consists
of multiple features, which we call fine-grained concepts. We
define attention to represent the learning level of a learner
in studying a fine-grained concept. Afterwards, we propose
AMT, an adaptive teaching framework to construct the per-
sonalized optimal teaching dataset for learners. During each
iteration, we estimate the workers’ ability with Graph Neural
Network (GNN) and select the best sample using a pool-based
searching approach. For corroborating our theoretical find-
ings, we conduct extensive experiments with both synthetic
datasets and real datasets. Our experimental results verify the
effectiveness of AMT algorithms.

1 Introduction

In the last decades, the increasingly sophisticated dataset for
training machine learning (ML) models necessitates the need
for cultivating more specialized annotators. Namely, more an-
notators must acquire domain-specific knowledge to improve
the performance of ML algorithms. Taking computer vision
application as an example, At the early stage, image datasets
of vision applications like CIFAR (Krizhevsky and Hinton
2010) are small and simple. Therefore, most of the annota-
tors can complete the annotation tasks merely based on their
knowledge of the classes from their everyday life (Daniel et
al. 2018). With the advent of larger and more informative
dataset like ImageNet (Russakovsky et al. 2015), annota-
tors with specialized training facilitate the performance of
ML models with more accurate classification. Nowadays, for
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more complicated datasets like Visual Genome (Krishna et al.
2017), the demand for high-performance machine learning
(ML) models far exceeds the supply of specialized annota-
tors. Thus, extensively training annotators to acquire domain
specific knowledge is needed.

Recently, machine teaching emerges as a promising ap-
proach to enhance the specialized skills of normal annota-
tors (Chen et al. 2018; Doroudi et al. 2016). There are mainly
two categories of teaching techniques, the batch machine
teaching and interactive machine teaching. The batch ma-
chine teaching assumes the learner using a hypothesis transi-
tion model based on observed feedback (Singla et al. 2014).
Representing a new machine teaching paradigm, iterative ma-
chine teaching (IMT) selects teaching examples adaptive to
the learning progress of the crowd (Liu et al. 2017). Sequen-
tially, more intelligent machine teaching frameworks (Zhou,
Nelakurthi, and He 2018) enable the teaching process to
achieve better converge rate in theory and in practice.
There are also massive applications (Dontcheva et al. 2014;
Honnibal and Montani 2017), which adopt machine teaching
to facilitate the annotation tasks.

However, the state-of-the-art machine teaching techniques
are too optimistic, they overestimate the ability of learners in
grasping a complex concept. In education systems (Ambrose
et al. 2010; Alkhatlan and Kalita 2018), students cannot con-
centrate on the overall concept of a complicated item, which
often contains multiple fine-grained concepts. Instead, they
increasingly memorize partial concepts of this item. Taking
the flower classification as an example, learners always no-
tice a few features with every example rather than remember
all the features including shape, texture, etc. Nevertheless,
most of the existing machine teaching schemes overlook the
fact that human beings can only obtain parts of a concept,
which involves multiple features. Meanwhile, a single sam-
ple contains unequal information in terms of various features
during the teaching process. Thus, learners accept the fea-
tures of the whole concept at different levels. Summarily,
current techniques are insufficient for modeling the teach-
ing process of sophisticated concepts. With more and more
complicated dataset, it is challenging for us to rethink the
machine teaching frameworks.

To meet the requirement of increasingly complicated an-
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notation tasks, we first indicate that a complicated concept al-
ways consists of multiple features, which we call fine-grained
concepts. Then, We define attention, which represents the
learning level of a learner in studying a fine-grained concept.
As discussed above, the attention of each fine-grained con-
cept is different for the sake of learners’ ability and teaching
examples. According to education principle, human focus
more on concept which is rarely learned than common con-
cept (Ambrose et al. 2010). Thus, we model attention with
the cumulative learning progress of each fine-grained concept.
For optimization, we extend it to the information diminishing
setting. Based on attention , we propose Attentive Machine
Teaching (AMT), an adaptive teaching framework to con-
struct the personalized optimal teaching set for learners in
each iteration. We estimate the worker prediction with Graph
Neural Network (GNN) and select the best sample using a
pool-based searching approach. To corroborate our theoret-
ical findings, we conduct extensive experiments with real
dataset as well as synthetic dataset sample from Gaussian
distribution. Our experimental results verify the effectiveness
of AMT algorithms. It also shows that AMT can significantly
improve the teaching quality through considering that the
learners pay attention to the different fine-grained concepts.

Overall, we make the following contributions:
• We argue that a complicated concept always consists of

multiple fine-grained concepts. We leverage attention to
represent the cumulative learning progress of a learner in
grasping each fine-grained concept.
• Based on attention, we propose Attentive Machine Teach-

ing (AMT). AMT is an adaptive teaching framework for
constructing the optimal teaching dataset considering the
learners’ attention on different fine-grained concepts.
• During each teaching iteration, we introduce a Graph

Neural Network (GNN) based approach to estimate the
learner’s ability. Then select the best sample through using
a pool-based searching approach.
• We conduct extensive experiments with real dataset as well

as synthetic dataset sample from Gaussian distribution.
Our experimental results show that AMT can significantly
improve the teaching quality.

2 Related Work

2.1 Machine Teaching

Existing research works on machine teaching (Alfeld, Zhu,
and Barford 2016; 2017) can be classified into two represen-
tative categories - batch machine teaching (Singla et al. 2014;
Mac Aodha et al. 2018) and interactive machine teach-
ing (Liu et al. 2017; Zhou, Nelakurthi, and He 2018). Typ-
ically, batch-based techniques focus on teaching the tar-
get concept to learners with the selected dataset in one
shot. Thus, interaction-driven teaching presents a more prac-
tical process. Some of these works (Patil et al. 2014;
Zhou, Nelakurthi, and He 2018) emphasize constructing the
personalized optimal teaching set with consideration of the
ability of different learners, such as Zhou et al. proposes JEDI
teaching framework (Zhou, Nelakurthi, and He 2018), where
each learner has an exponentially decayed memory. Other

works like (Simard et al. 2017; Melo, Guerra, and Lopes
2018) concern the mismatch between teachers’ assumption
on the learners’ performance and the actual performance of
learners. The rest of works aim at improving the learning per-
formance with different approaches (Mac Aodha et al. 2018;
Chen et al. 2018). E.g., Chen et al. analyze the adaptivity
with version space learner (Chen et al. 2018). Differently,
we investigate a newly machine teaching framework which
facilitates the learning of increasingly complicated items.

2.2 Graph-based Semi-Supervised Learning

As one of the most effective semi-supervised learning algo-
rithms, graph-based semi-supervised learning often gather
the information of labels throughout a graph via the form of
explicit graph-based regularization (Zhu, Ghahramani, and
Lafferty 2003). Recently, the graph neural network (GNN)
becomes a promising approach in this field (Wu et al. 2019;
Zhang, Cui, and Zhu 2018; Zhou et al. 2018; Bronstein
et al. 2017). This approach has adopted in many applica-
tions (Yao, Mao, and Luo 2019; Tang, Zhang, and Yang 2019;
Tang, Zhang, and Li 2018; Tang 2019), such as GNN is used
to encode the syntactic structure of sentences in machine
translation (Bastings et al. 2017). Our work differs from
them in that we first combine GNN with machine teach-
ing for maintain the consistency of learners’ hypothesis and
teachers’.

3 The Preliminaries of AMT

3.1 Attention on Fine-grained Concepts

Generally, a complicated concept often contains multiple
fine-grained concepts. As shown in Figure 1(a), the teacher
teaches the learners one image, i.e., one concept at a time.
It begins by showing them an image from the larger labeled
image dataset while concealing the true class label. The
learners/students respond with their estimate of the image’s
class. In an actual teaching process, students cannot grasp
the overall concept. Instead, they increasingly memorize its
fine-grained concepts presented as the Attention part in Fig-
ure 1(a). After obtaining the student’s answer, the teacher
updates his estimation of the student. Finally, the student
will be given the true label and learn from it. This process is
repeated with more images until teaching ends.

Meanwhile, as we can see in Figure 1(b), There are two
classes of fine-grained concepts respectively represented as
triangle and pentagram. A learner will see several selected
examples marked with red color and continuously update
his inner concept. The progress bar presents the degree of a
learner’s attention on different fine-grained concepts. In this
case, the pentagram fine-grained concept attracts more atten-
tion than the triangle since human focus more on the concept
which is rarely learned than common concept (Ambrose et al.
2010). All the above phenomena are ignored by the existing
machine teaching literature.

3.2 Problem Formulation

Without loss of generality, we consider the teaching in a
binary classification task. All the formulations in our pro-
posal can be easily adapted to other settings. Our attentive
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(a) Different learning progress of fine-grained concepts. (b) Unequal information in training example.

Figure 1: Different attentions on fine-grained concepts. In an actual teaching process, students cannot grasp the overall concept.
Instead, they increasingly memorize its fine-grained concepts due to: (a) a learner accepts different knowledge of various
fine-grained concepts; (b) the training example contains unequal information on various fine-grained concepts.

machine teaching problem is formulated as follows. We lever-
age X ∈ R

m to represent the m dimensional features of a
complicated item. These features are related to the m fine-
grained concepts of the target concept w. The target concept
is also a m dimensional vector, namely w ∈ R

m.
Model of Teachers: In our teaching framework, we as-

sume the teacher knows the target concept w∗. But it is im-
possible for him to directly teach it to the students. Thus, the
target concept w∗ is taught with a set of teaching samples
from a teaching pool denoted by T . The selected teaching
sample in iteration t is expressed with a pair of (xt, yt) from
T , where xt ∈ X and yt ∈ {−1,+1}. Thus, the mission of
the teacher is to properly select the teaching sample in each
iteration that can minimize the following objective function.

argmin
(xt,yt)∈T

∥∥wt − w∗∥∥2
2
. (1)

Model of Learners: We assume the student use a linear
inference model y = 〈w, x〉, where parameter w is similar
to (Liu et al. 2017). And we assume that the annotator has a
convex loss function L(f(x), y). The goal of the teaching is
to find a concept w∗ which minimizes this loss function in a
given distribution P(x, y) as shown in Eq. (2),

w∗ = argmin
w

E(x,y)∼P(x,y) [L(〈w, x〉 , y)] . (2)

Without loss of generality, we consider the logistic loss (Hos-
mer Jr, Lemeshow, and Sturdivant 2013) expressed as Eq. (3)
in the following. It is one of the typical convex loss functions.

L = log(1 + exp(−y 〈w, x〉)) , (3)

Meanwhile, similar to previous works, we assume that
the student use a learning algorithm based on the gradient
descent algorithm (Ruder 2016). In iteration t+1, the update
rule is,

wt+1 = wt − η
∂�(

〈
wt, xt+1

〉
, yt+1)

∂wt
. (4)

4 Attention Machine Teaching

4.1 Formalizing the Attention Factor

The attention factor reflects the learner’s learning progress of
massive fine-grained concepts, which is defined as follows.
Definition 1 (Attention Factor). In iteration t, the attention
factor αt is defined as the inverse of accumulated information
in previous iterations,

αt =
Zt

√
INFOt

. (5)

In the above definition, the square root is element-wise
square root of the vector. Zt is the normalized value of in-
terpretation since the interpretation values are different un-
der various scenarios. INFO is the accumulated information,
which is computed in accordance with the following process.

Generally, the annotator is trained with a teaching example
(xt, yt) at the t-th iteration. He reviews his preconceived
concept wt−1 and compares it with what learned from this
teaching example (xt, yt). If there exists a mismatch between
wt−1 and (xt, yt), he update his concept with a gradient
descent algorithm. Therefore, the information received by the
student in iteration t is defined as,

infot =
∂�(

〈
wt−1, xt

〉
, yt)

∂wt−1
�

∂�(
〈
wt−1, xt

〉
, yt)

∂wt−1
, (6)

where the � is the element-wise product operation. We
use this representation to make the information always pos-
itive. These are also similar to some optimization tech-
niques (Duchi, Hazan, and Singer 2011; Kingma and Ba
2015). Then, we formulate the accumulated information until
iteration t as,

INFOt =

t−1∑
p=1

infop , (7)

It is remarkable that the learner often pays more attention
to rare concepts in each teaching iteration. Therefore, we use
the inverse value of the maximum INFOt−1 to computed
the attention factor in Eq. (5). Based on the above analysis,
formula (4) is updated to
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wt+1 = wt − ηαt ∂�(
〈
wt, xt+1

〉
, yt+1)

∂wt
. (8)

In the following of the paper, to simplify the notation, we use
∇t to denote the gradient of data sample (xt, yt), namely,

∇t =
∂�(

〈
wt−1, xt

〉
, yt)

∂wt−1
=

−ytxt
1 + exp (yt 〈wt−1, xt〉) (9)

4.2 Information-Diminishing AMT

According to (Zhou, Nelakurthi, and He 2018), a human
learner will forget partial information learned from the pre-
vious teaching examples because of the memory decay. The
forgotten rate approximately follows an exponential curve
(Loftus 1985). Therefore, it is more practical to model the
accumulated information with consideration of the forgotten
information. It is a combination of previous accumulated
information and information gotten in iteration t,

INFOt = βINFOt−1 + infot , (10)
where β ∈ (0, 1) is the forget parameters for memory decay.
Expanding this formula, we can get the following equation,

INFOt = βtINFO0 +

t∑
p=1

βt−pinfot , (11)

where the INFO0 is always zero for an annotator with no
background knowledge. Meanwhile, the learning procedure
is guide by the concept momentum (Zhou, Nelakurthi, and
He 2018).

vt = γtv0 +

t∑
p=1

γt−p ∂�(
〈
wp−1, x

〉
, yp)

∂wp−1
.

In the above equations, the γ is the individual memory decay
rate. The concept momentum in iteration 0 is always set to 0,
namely, v0 = 0. Then the learning algorithm turns into

wt = wt−1 − ηαtvt . (12)

4.3 Objective Analysis

Then in each iteration, we want to minimize the objective
function, the decomposition is expressed as follows,∥∥wt+1 − w∗∥∥2

2
=

∥∥wt − ηαt v
t+1 − w∗∥∥2

2

=
∥∥wt − w∗∥∥2

2︸ ︷︷ ︸
T1:Discrepancy in iter. t

+η2

∥∥∥∥∥∥
Zt

∑t
p=1 γ

t−p∇p√∑t
p=1 β

t−p 〈∇p,∇p〉

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
T2:Attentive Hardness in iter. t

− 2η

〈
wt − w∗,

Zt
∑t

p=1 γ
t−p∇p√∑t

p=1 β
t−p 〈∇p,∇p〉

〉
︸ ︷︷ ︸

T3:Attentive Diversity in iter. t

.

(13)
The first part is the discrepancy between the target concept

w∗ and the learned previous concept wt. The second part
models the attentive hardness of the teaching sequence. The
third part is the attentive diversity of the teaching sequence.

Algorithm 1 Attentive Machine Teaching Algorithm (AMT)

1: Input: Initial concept w0, target concept w∗, learning
rate η, teaching pool T , maximum teaching iteration
maxIter, converge threshold ε

2: Set t← 0;
3: while ‖wt − w∗‖ ≥ ε and t < maxIter do
4: Select the teaching sample (xt, yt) by solving Eq. (14)
5: Student annotate teaching sample xt;
6: Teacher reveal the label yt and student perform learn-

ing based on Eq. (12)
7: t← t+ 1
8: end while

4.4 Teaching Algorithm

Since the T1 part is a constant in iteration t, final object is,

argmin
(x,y)∈T

η2T2 − 2ηT3 . (14)

Based on these observations, we propose a information-
diminishing AMT as shown in Algorithm 1. By giving the
annotator’s initial concept, the target concept and the learn-
ing rate, this algorithm will select the teaching sample to
optimize the objective function in Eq. (14) iteratively.

Aforementioned teaching is based on the omniscient
teacher who knows everything about the learner. However, it
is difficult for the teacher to obtain every information of the
learners. Therefore we propose the blackbox AMT algorithm
for this more challenging scenario.

5 Blackbox AMT

In this section, we propose to solve blackbox AMT prob-
lem. Firstly, we use the convexity to bypass the unreachable
concept, then a GNN-based learning algorithm is adopt to
estimate the learner’s master degree of the target concept.

5.1 Unreachable Concept

In annotator teaching, we cannot get the annotator’s concept,
while we can get the output of prediction 〈wt, x〉. Thus we
use the convexity of the loss function to help this process (Liu
et al. 2017). That is,〈

wt − w∗,
∂�(

〈
wt, x

〉
, y)

∂wt

〉
� L(〈wt, x

〉
, y)− L(〈w∗, x〉 , y) .

By using this equation, we can replace it with its lower bound.
Thus, we can only need the output 〈wt, x〉 from the student
instead of directly accessing the concept wt. In addition,
when teaching continues, ‖wt − w∗‖ is becoming smaller,
thus this approximation becomes much more accurate.

5.2 Estimation of Student’s Performance

Since it is impossible to get student’s prediction 〈w, x〉 for ev-
ery data sample in T , The teacher need estimate the student’s
prediction based on his past answers. Due to the limit of
the labeled examples training a supervised model to imitate
the student is difficult, so there are some researches (Zhou,
Nelakurthi, and He 2018; Johns, Mac Aodha, and Brostow
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2015) adopting the semi-supervised learning method in Gaus-
sian fields and Harmonic functions proposed in (Zhu, Ghahra-
mani, and Lafferty 2003) to estimate this. However, these
estimations only use the similarity of data. It discards most of
the information in the feature space. Also, it’s hard to scale
to a larger dataset due to the computational expensive matrix
manipulate operations. These all limit its effectiveness in
recent teaching tasks.

Recently, the GNN-based approach has gained promising
result in semi-supervised learning task. It has shown its ability
on large scale dataset (Ying et al. 2018). We firstly construct
the graph using the teaching set in the KNN graph way. The
distance is defined using the RBF kernel.

distance = exp
(
−γ ‖xi − xj‖22

)
. (15)

Based on this distance measurement, we can construct a
graph G = (V,E) where each node v ∈ V(|V| = n) repre-
sents a teaching sample in T , and each edge e ∈ E represents
the similarity relationships. Also all the features of the teach-
ing dataset compose a feature matrix X ∈ Rn×m, where
m is the dimension of feature vector. Then, we construct a
adjacent matrix A, and add self-loop to it Ã = A + IN . we
use a two-layer GCN network to predict the label of unseen
data (Kipf and Welling 2017), where the second layer shares
the same dimension as the first one. We lastly add a softmax
to get the probabilistic result.

Z = softmax (LReLU (LXW0)W1) , (16)
where L is the symmetric graph Laplacian. It can be calcu-
lated as L = D− 1

2 ÃD
1
2 , where D is the degree matrix with

Dii =
∑

j Ãij . The softmax is applied in row wise. Next, we
use the cross-entropy error over all labeled teaching samples
Tl as the loss function,

L = −
∑
l∈TL

D∑
f=1

Ylf lnZlf , (17)

where TL is the set of teaching samples already answered by
students. D is the dimension of the output features. It equals
to the number of classes (as discussed in Section 1). Y is
the label indicator matrix. The weights W0 and W1 can be
trained via gradient descent. After the training, we can get
the prediction from the network as p(y|x). Then, based on
the error prediction rate of probability, we can estimate the
prediction on unseen data as,

〈w, x〉 = 1

y
log

1− p(y|x)
p(y|x) . (18)

5.3 Teaching Algorithm

The detail of the teaching algorithm in is proposed in Algo-
rithm 2. This algorithm works as follows, Firstly, it set initial
value for the parameters and randomly select sample to start
the teaching process (Line 1-3). Then, we construct a KNN
graph, and estimate the prediction of the student on unseen
data using GNN (Line 4-7). After that, teaching sample is
selected by solving the objective function or randomly (to
escape from the bad estimation in the beginning) (Line 8-
12). Finally, we release the teaching sample to student and
perform the update of labels (Line 13-16).

Algorithm 2 Blackbox AMT Algorithm

1: Input: Initial concept w0, target concept w∗, learning
rate η, teaching pool T , maximum teaching iteration
maxIter, converge threshold ε, Random selection thresh-
old α and T .

2: Randomly select one training sample (x1, y1) and get
the prediction from student.

3: Set t← 1;
4: while ‖wt − w∗‖ ≥ ε or t < maxIter do
5: Construct the KNN graph of the data in T with Eq.

(15)
6: Train a GNN defined in Eq. (16) with loss function

defined in Eq. (17)
7: Estimate the prediction of the student using Eq. (18)
8: if random variable σ ≤ αt and t ≤ T then
9: Random select teaching sample with probability p.

10: else
11: Select the teaching sample (xt+1, yt+1) by solving

Eq. (14) with the estimate values
12: end if
13: Student annotate teaching sample xt+1;
14: Teacher reveal the label yt+1 and student perform

learning based on Eq. (12)
15: t← t+ 1
16: end while

6 Performance Evaluation

6.1 Experiment Setup

Baseline teaching methods: In order to analyze the pro-
posed AMT strategy, we compare AMT with benchmark and
the state-of-the-art machine teaching methods. Firstly, We
consider SGD, a naive case that the student learns without
the teacher’s guidance. In this case, the student can be viewed
as being guided by a random teacher who randomly feeds
an example to the student in each iteration. Secondly, we
consider Iterative Machine Teaching (IMT) (Liu et al. 2017),
which models the learning process with gradient descent, and
only consider basic teaching settings. Lastly, we compare
with Adaptive Crowd Teaching with Exponentially Decayed
Memory Learners (JEDI) (Zhou, Nelakurthi, and He 2018)
which models the learning process with concept momentum.
To guarantee a fair comparison, all these methods are tested
using the same initial concept and learning rate.

Teaching tasks: In this paper we consider the following
teaching tasks to validate the teaching methods. The first is
2D Gaussian dataset, which is a synthetic two-dimensional
dataset drawn from Gaussian distribution for selected sample
visualization. The second is 10D and 100D Gaussian dataset,
which is a synthetic dataset for validating the effectiveness
of the proposed method in medium and high dimensions.
The third is the hate speech detection dataset (Davidson et
al. 2017), which contains three categories including ”hate
speech”, ”offensive language” and ”neither”. We select the
first two to form a binary classification problem.

Evaluation metrics: To measure the effectiveness, we
use two evaluation metrics: (1) The accuracy of the student
model. (2) The value of the objective function. We use the
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(a) SGD (b) IMT (c) JEDI (d) AMT

Figure 2: The unique examples in the teaching sequences of SGD, IMT, JEDI and AMT.

(a) Comparison of performance (b) Comparison of obj. value

Figure 3: Performance on 2D Gaussian.

cross entropy as a measurement of the learning degree.

6.2 Selection of Teaching Samples

In this paragraph, we firstly show the selected teaching sam-
ples of different algorithms. We test these teaching schemes
with 2D Gaussian mixture dataset. The data is generated from
the following distribution.

p+(x) =
2

3
N (x|μ1,Σ1) +

1

3
N (x|μ2,Σ2)

p−(x) =
2

3
N (x|μ3,Σ1) +

1

3
N (x|μ4,Σ2) ,

(19)

The parameters are, μ1 = [0, 8], μ2 = [8, 0], μ3 = [−8, 0],
μ4 = [0,−8], Σ1 = [[36, 8], [8, 36]],Σ2 = [[10, 5], [5, 10]].
For each class we generate 150 data samples. The learning
rate is set to 0.004 and the initial concept w0 for all the
schemes is set with the standard normal distribution. In order
to get the target concept, we train a logistic regression model
and get the weight as the target concept w∗.For clarity, we
remove the redundant teaching examples.

As shown in Figure 2, the two color types mean two classes
(class 1 and class 2). The dimension 1 and 2 represent two
fine-grained concepts considered in this teaching task. The
cross and circle shape respectively present whether the sam-
ple is chosen by the teaching algorithm. For example, orange
cross means that the chosen data is class 1. Besides, we use
different size of the shape to represent the example is se-
lected in which iteration, the larger size of a cross or a circle
presents it is selected in later iterations. According to Figure
2(a), it is obvious that the SGD algorithm selects plethoric
teaching samples, which almost covers the overall dataset.

(a) Comparison of performance (b) Comparison of obj. value

Figure 4: Performance on 10D Gaussian

Additionally, the order of the selection is randomly thus it
will cause the learning process hard to converge. The IMT
algorithm chooses much less teaching samples than the other
methods as shown in Figure 2(b). It always selects the same
training examples (the results of prior iteration is hidden by
the latter one) at each iteration. This can severely overlook
the learners’ attention on various fine-grained concepts. Fig-
ure 2(c) demonstrates that JEDI can select more informative
and diverse teaching samples. This is mainly due to the use
of concept momentum of learners. Reversely, our proposal
can adaptively adjust the teaching example according to the
learners’ attention on various fine-grained concepts.

6.3 Evaluation on Extensive Datasets

The above observation has shown that different teaching al-
gorithms leverage different teaching samples to teach the
learners. It is hard to conclude a larger and more complicate
set of teaching samples is better or not. Therefore, we com-
pare the accuracy and convergence speed of these algorithms
with their selected dataset. In this section, we consider 4
datasets as shown in Section 6.1. The AMT algorithm lever-
ages the protocol as shown in Algorithm 1. We conduct the
experiment with the 2D, 10D and 100D Gaussian dataset.
The 10D and 100D Gaussian dataset in this section has a
distribution of (0.5,· · · ,0.5) (label: +1) and (-0.5,· · · ,-0.5)
(label: −1) as mean. Its covariance matrix is the identity ma-
trix. We generate 1000 training data points for each label.
The results is shown in Figure 3, 4 and 5.

For 2D Gaussian case, we find that AMT teaching algo-
rithm obviously converges fastest within 30 iterations. In
Figure 3(a), we observe that the students learn faster with a
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(a) Comparison of performance (b) Comparison of obj. value

Figure 5: Performance on 100D Gaussian

(a) Comparison of performance (b) Comparison of obj. value

Figure 6: Performance on Hate Speech Detection.

teacher than without the teacher (SGD). It also shows that
the accuracy of AMT is highest among the compared meth-
ods. Although the result of JEDI algorithm is similar to the
AMT’s, it takes more iteration to converge. Figure 3(b) il-
lustrates that AMT has the smallest value of the objective
function, which means that it teaches the target concept to the
learners most accurately. Furthermore, the teaching proce-
dure is more steady for AMT, that means the teaching sample
selection is more suitable.

For 10D case, we observe the similar trends in 2D Gaus-
sian data, however the differences between JEDI and AMT
is larger. Then in 100D Gaussian data, we observe that AMT
converges fastest with no more than 50 iterations with the ac-
curacy over 98%. While JEDI needs more than 100 iterations
to reach the same performance. Summarily, with the classi-
fication tasks becoming more and more complicated, AMT
always performs better through considering the attention of
the learners on various fine-grained concepts, while others
overlook the actual learning progress of the learners.

6.4 Hate Speech Classification

To test our proposed method in a harder text classification
problem, we choose hate speech detection. As a major threat
on the web, hate speech has been especially prevalent in on-
line forums, chatrooms, and social media. The difficulty of
hate speech detection largely depends on the domain and
the context, and it’s quite a subject, which means a seem-
ingly neutral sentence can be offensive for one person and
not bother another. We use 20% of the data as the testing
dataset. And we use the common techniques to preprocess
the dataset including: remove the stop words and convert all
characters to lowercase before tokenizing. Finally, we build a
vocabulary that only considers the top 1000 features ordered
by term frequency across the corpus. The final feature value
is calculated through the TF-IDF. As we can see in Figure 6,
AMT performs better than the other schemes in both accu-

(a) Comparison of performance (b) Comparison of obj. value

Figure 7: Impact of Memory Parameters.

(a) Comparison of performance (b) Comparison of obj. value

Figure 8: Blackbox AMT in Hate Speech Detection.

racy and objective value, and the gaps of different teaching
strategy is significant.

6.5 Memory Size Analysis

In the previous experiments, we set the memory parameters
β and γ to 0.9 for simplicity. In this section we analyze the
impact of multiple memory parameters, namely different
memory size. The selected memory parameters in this part
contains 0.5, 0.6, 0.7, 0.8 and 0.9. As seen in Figure 7, we
plot the results of the proposed AMT algorithm with different
memory size using the hate speech detection dataset. As we
can see in these results, the learner with larger memory will
learn faster which is similar to the result in (Zhou, Nelakurthi,
and He 2018).

6.6 Blackbox AMT

In this section, we conduct experiments on the more challeng-
ing teaching in the blackbox scenario. The algorithm used
for AMT is proposed in Algorithm 2. Since the original IMT
algorithm is not supported for estimating the prediction of
students, we omit it in this comparison. As we can see in
Figure 8, the proposed AMT algorithm performs well at the
latter time. It converges the fastest. In the beginning, due to
the lack of the labeled data, the estimation of student’s per-
formance in different data sample is inaccurate. Sometimes
this may lead to the bad choice (maybe even worse than the
random teacher). Besides, we find that the GNN-based esti-
mation is fast enough in this task. For larger graph it is also
faster than the label propagation approach (3-10x faster in
our experiments). Also we found that the blackbox setting
is much more challenging, the teaching will sometimes fall
into the bad direction due to inaccurate estimation.

7 Conclusion

In this paper, we propose the Attentive Machine Teaching
(AMT) framework that models the annotator’s attention of
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learning a complicated concept. Base on the concept mod-
eling, we propose a teaching algorithm that addresses the
teaching problem in real world teaching scenario. The work
in this paper is promising in modeling the real learning ability
of human learners, that help the machine teaching techniques
apply to real world teaching.
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