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Abstract

Decoding visual contents from human brain activity is a
challenging task with great scientific value. Two main facts
that hinder existing methods from producing satisfactory re-
sults are 1) typically small paired training data; 2) under-
exploitation of the structural information underlying the data.
In this paper, we present a novel conditional deep generative
neural decoding approach with structured intermediate feature
prediction. Specifically, our approach first decodes the brain
activity to the multilayer intermediate features of a pretrained
convolutional neural network (CNN) with a structured multi-
output regression (SMR) model, and then inverts the decoded
CNN features to the visual images with an introspective condi-
tional generation (ICG) model. The proposed SMR model can
simultaneously leverage the covariance structures underlying
the brain activities, the CNN features and the prediction tasks
to improve the decoding accuracy and interpretability. Further,
our ICG model can 1) leverage abundant unpaired images to
augment the training data; 2) self-evaluate the quality of its
conditionally generated images; and 3) adversarially improve
itself without extra discriminator. Experimental results show
that our approach yields state-of-the-art visual reconstructions
from brain activities.

Introduction

Brain-sensing signals usually convey rich information about
the external stimuli. Effectively decoding these signals
could lead to new insights into brain function and boost
the development of brain-computer interfaces (BCIs). A
challenging task in this filed is visual information decod-
ing, which aims to classify (Haxby et al. 2001; Kami-
tani and Tong 2005), identify (Kay et al. 2008; Horikawa
and Kamitani 2017) or reconstruct (Miyawaki et al. 2008;
Naselaris et al. 2009) the perceived visual stimuli from the
evoked brain activities measured by functional magnetic res-
onance imaging (fMRI). Recently, the hierarchical visual
features from convolutional neural networks (CNNs) are
found to be helpful for connecting the visual stimuli and
brain signals. To overcome the small paired training data is-
sue, researchers have tried to use external database to pretrain
the CNNs and then reconstruct human faces (Güçlütürk et al.
2017), handwritten characters (Du et al. 2018a) and natural
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images (Shen et al. 2019) from the CNN features decoded
from brain activities.

In deep neural decoding, the most critical point is how to
convert the brain activities into the hierarchical CNN features.
Almost all existing methods assume that the units of a CNN
are conditionally independent of each other, and hence they fit
multiple independent single-output linear regression models
to decode the CNN features from the fMRI voxels (Horikawa
and Kamitani 2017; Wen et al. 2017). However, the CNN
features are often related to each other via some underlying
structures, and this structural information may be useful for
decoding prediction. Throughout the paper, we refer to the
dependencies among the different CNN features as output
structure, which can be seen as the covariance structure in
the output noise. Also, the fMRI voxels are generally highly
correlated, and the correlation can carry relevant information
about the stimuli. Exploiting the dependencies among the dif-
ferent voxels not only benefits generalization but also helps
us to understand the functional networks in the human brain.
We refer to the dependencies among the fMRI voxels as in-
put structure. Finally, treating each single-output regression
model as a learning task, we refer to the dependencies among
different tasks as task structure, which can be captured un-
der the multi-task learning (by imposing some appropriate
constraints on the regression coefficients of different tasks).
Traditional neural decoding methods ignore these structural
informations when modelling the mappings between multi-
variate inputs and outputs. This greatly limits their decoding
performance and interpretability. It is therefore desirable to
simultaneously leverage all these three kinds of structures
in deep neural decoding for improved predictions and better
interpretability.

On the other hand, how to accurately reconstruct the cor-
responding image based on the decoded CNN features is
also a very important problem. Typically, this problem can
be solved by maximum a posteriori (MAP) estimation. For
example, one can apply gradient-based optimization to find
an optimal image that minimizes the reconstruction error in
the CNN feature space with a natural image prior such as to-
tal variation (TV) regularizer (Mahendran and Vedaldi 2015)
or deep generation network (Nguyen et al. 2016; Shen et al.
2019). Alternatively, one can train a de-convolutional neural
network (De-CNN) on a large training set of natural images
to minimize the reconstruction error in image space (Doso-
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vitskiy and Brox 2016b). Nevertheless, both ways mentioned
above have their own drawbacks. The former is very slow
and the latter often leads to blurry results, which are not
desired. Recent studies have shown that the conditional gen-
erative adversarial nets (CGANs) (Mirza and Osindero 2014;
Dosovitskiy and Brox 2016a) are promising for generating
high-fidelity visual images. However, CGANs still face chal-
lenges in training stability and sampling diversity. Condi-
tional variational autoencoders (CVAEs) (Sohn, Lee, and Yan
2015) can overcome the weaknesses of CGANs, but generally
yield not that realistic images.

Contributions. In this paper, we present a novel condi-
tional deep generative neural decoding approach with struc-
tured intermediate feature prediction (see Figure 1). Specif-
ically, our approach first decodes the brain activity to the
multilayer intermediate features of a pretrained convolutional
neural network (CNN) with a structured multi-output regres-
sion (SMR) model, and then inverts the decoded CNN fea-
tures to the visual images with an introspective conditional
generation (ICG) model. Our main contributions can be sum-
marized as follows.
• Employing a matrix-variate Gaussian prior, we develop a

Bayesian structured multi-output regression (SMR) model
which can simultaneously leverage the covariance struc-
tures underlying the fMRI voxels, CNN units and predic-
tion tasks to improve the neural decoding performance.

• We build an introspective conditional generation (ICG)
model, which can 1) leverage abundant unpaired images
to augment the training data; 2) self-evaluate the quality
of its conditionally generated images; and 3) adversarially
improve itself without extra discriminator.

• We collected a new fMRI dataset, which can be used for
validating the performance of neural decoding models. Our
fMRI data will be shared online.

• Experimental results show that our approach yields state-
of-the-art visual reconstructions from brain activities.

Related Work
DNN-based neural decoding. Many neural decoding meth-
ods used deep neural network (DNN) features for perceived
image reconstruction in recent years (Wen et al. 2017;
Du, Du, and He 2017; Shen et al. 2019). For example, (Wen
et al. 2017) first used linear regression to convert brain ac-
tivities into CNN features, and then they trained the de-
convolutional neural network to perform image reconstruc-
tion. (Shen et al. 2019) also used linear regression to convert
brain activities into CNN features, and then they applied
gradient-based optimization to find an optimal image which
minimizes the reconstruction loss of the decoded CNN fea-
tures. The above methods assume that the units of a CNN are
conditionally independent of each other, and hence they fit
multiple independent single-output linear regression models
to decode the CNN features from the fMRI voxels. This lim-
its their decoding performance and interpretability. Different
from them, we developed a structured multi-output regres-
sion model to decode the CNN features, and then we use a
conditional deep generative models (DGMs) to reconstruct
the visual images.

Multi-output regression. Most of the exsiting multi-
output regression models are restrictive in the sense that 1)
they usually exploit partial structures (input structure, output
structure or task structure, but not all), and 2) their prior as-
sumptions about such structures are too strong which may not
always be appropriate. For example, the multivariate regres-
sion with covariance estimation (MRCE) model (Rothman,
Levina, and Zhu 2010) only considered the output structure
and therefore fails to account for the input and task structures.
Further, (Rai, Kumar, and Daume 2012) proposed an exten-
sion of the MRCE model by simultaneously leveraging the
output and task structures, but this model still cannot capture
the correlation among the inputs. More recently, (Zhao et
al. 2017) proposed a multi-task learning model by explicitly
modeling the input and task structures, but this model ignores
the output structure which is important in multi-output regres-
sion problems. In contrast, our SMR is a more comprehensive
extension over the above multi-output regression models. It
simultaneously leverages all three kinds of structures which
are learned from the data automatically.

Generative neural decoding. Recently, there has been
research interest in applying DGMs to neural decoding
(Güçlütürk et al. 2017; Seeliger et al. 2018; Du et al. 2018a;
2018b; Han et al. 2019; Du, Du, and He 2019). For example,
(Du et al. 2018a) proposed a multi-view DGM, in which they
first used the sparse linear model to map the brain activities to
the latent representation of the VAE, and then used the VAE
decoder to reconstruct the image. Furthermore, (Güçlütürk et
al. 2017) proposed an adversarial neural decoding method by
combining probabilistic inference with the GAN idea. (Du
et al. 2018b) developed a multi-view adversarially learned
inference model, which formulates the neural decoding prob-
lem as a cross-view retrieval task. However, these methods
still face challenges in improving neural decoding quality or
training stability. Our ICG model is motivated by the suc-
cess of introspective adversarial learning in image generation
(Huang et al. 2018), which combines the advantages of both
VAEs and GANs.

Methodology

In the neural decoding dataset, we assume Y =
[y1, ...,yN ]� ∈ R

N×M and X = [x1, ...,xN ]� ∈ R
N×D

denote the matrices of N training visual images and the
evoked fMRI activities, respectively. Here, M and D denote
the dimensions of Y and X, respectively. For any image
yn, its hierarchical visual features can be obtained by for-
ward propagating it through a pretrained CNN model (e.g.,
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) consid-
ered in this paper). Here, we use H = [h1, ...,hN ]� ∈
R

N×K to denote the intermediate CNN features of all train-
ing images Y, where K denotes the number of units in that
CNN. The proposed approach involves two cascaded stages:
Voxel2Unit and Unit2Pixel (see Figure 1). Below, we will
introduce them respectively.

Voxel2Unit: structured multi-output regression

In this stage, we develop a structured multi-output regres-
sion (SMR) model to simultaneously leverage the covariance

2630



Structured 

Multi-output

Regression

Introspective 

Conditional 

Generation

Predicted CNN featuresBrain fMRI voxels Voxel2UnitVisual stimulus
Reconstructed 

image
Unit2Pixel

Conv3Conv2Conv1

Figure 1: An overview of the proposed neural decoding framework. It involves two cascaded stages, 1) Voxel2Unit: decoding the
CNN features from fMRI activity and 2) Unit2Pixel: reconstructing the perceived image using the decoded CNN features.
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Figure 2: Voxel2Unit: Structured multi-output regression.
The red and blue dashed rectangles represent the possible de-
pendencies between the inputs and the outputs, respectively.

structures underlying the fMRI voxels, the CNN features
and the prediction tasks (each single-output regression model
is regarded as a task) to improve the neural decoding accu-
racy and interpretability. Specifically, our goal is to learn the
functional relationship between the inputs xn ∈ R

D (fMRI
voxels) and the outputs hn ∈ R

K (CNN features) (see Figure
2), i.e.,

hn = W�xn + b+ εn ∀n = 1, ..., N. (1)

Here W = [w1, ...,wK ] ∈ R
D×K denotes the weight ma-

trix where its column wk ∈ R
D denotes the regression

coefficient of the k-th output and its row wd ∈ R
K de-

notes the corresponding coefficient of the d-th input. b =
[b1, ..., bK ]� ∈ R

K is a vector of bias terms for the K out-
puts, and εn = [εn1, ..., εnK ]� ∈ R

K is a vector consisting
of the Gaussian noise for each of the K outputs.

Prior with input and task structures. To take into ac-
count both the covariance among the fMRI voxels and the
covariance among the prediction tasks, we assume the fol-
lowing (unnormalized) structured prior distribution on W:

p(W) =

( K∏
k=1

N (wk|0, ID)

)
MN (W |0D×K ,Σr,Σc),

(2)

where ID is a D × D identity matrix, 0 ∈ R
D is a D-

dimensional vector of all 0s, MN (M,A,B) denotes a
matrix-variate Gaussian distribution (Gupta and Nagar 2018)
with mean M ∈ R

D×K , row covariance matrix A ∈ R
D×D

and column covariance matrix B ∈ R
K×K . In this struc-

tured prior, the N (wk|0, ID) factors regularize the weight
vectors wk individually, and the MN (W |0D×K ,Σr,Σc)
factor couples the D rows of W by the covariance matrix
Σr, and the K columns of W by the covariance matrix Σc.
In other words, the input structure and the task structure can
be discovered by learning Σr and Σc, respectively.

Likelihood with output structure. The above structured
prior can characterize a part of the correlations among the
K outputs, but it may be incomplete, due to the limited
expressive power of linear predictors. To take into account
the potentially residual structural information among the K
outputs (i.e., output structure) that is not explained by the task
structure, we assume a full covariance matrix Ω ∈ R

K×K

on the output Gaussian noise distribution. For a set of N i.i.d.
observations, the likelihood can be written as:

p(H|X,W,b) =

N∏
n=1

N (
hn|W�xn + b,Ω

)
. (3)

Note that most previous neural decoding methods (Horikawa
and Kamitani 2017; Wen et al. 2017; Shen et al. 2019) can
not capture the output structure information among the K
outputs, since they assume the output Gaussian noise distri-
bution has a diagonal covariance (i.e., Ω = I).

Given the prior distribution over W and the likelihood
function, we can write down the posterior distribution of W:

p(W|X,H,b,Ω,Σr,Σc) ∝
( N∏

n=1

N(
hn|W�

xn + b,Ω
))

( K∏
k=1

N (wk|0, ID)

)
· MN (W |0D×K ,Σr,Σc).

(4)

Taking the log of the Eq. (4) and simplifying the resulting
expression (ignoring the constants), we can solve W by maxi-
mum a posteriori (MAP) estimation. Specifically, the negative
log-posterior of W can be written as:

J = tr
(
(H−XW − 1b�)Ω−1(H−XW − 1b�)�

)

−N log |Ω−1|+ λtr(WW�) + λ1tr(Σ
−1
r WΣ−1

c W�)

−K log |Σ−1
r | −D log |Σ−1

c |, (5)

where tr(·) denotes matrix trace, 1 denotes a N × 1 vector of
all 1s, and | · | denotes matrix determinant. Here, λ and λ1 are
the introduced regularization hyperparameters, which control
the trade-off between data-fit and model complexity. Note
that the tr(Σ−1

r WΣ−1
c W�) term captures the dependencies

among the rows of W by learning the input inverse covari-
ance matrix Σ−1

r , and the dependencies among the columns
of W by learning the task inverse covariance matrix Σ−1

c .

Sparse covariance selection. The inverse covariance ma-
trices Ω−1, Σ−1

r and Σ−1
c will be learned from the data.

Sparsity on these parameters is appealing for two reasons:
1) sparsity leads to improved robust estimates of Ω−1, Σ−1

r
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Figure 3: Unit2Pixel: Introspective conditional generation. Weight sharing between the decoder and the generator, and similarly
for the two encoders. In test phase, we use the generator pθ(y|z,h) to obtain image reconstructions, where z ∼ p(z) and h is the
decoded CNN features.

and Σ−1
c (Friedman, Hastie, and Tibshirani 2008); 2) spar-

sity supports the notion that the dependencies among in-
puts/outputs/tasks tend to be sparse – not all pairs of vox-
els/units/tasks are related. For example, when Σ−1

r is sparse,
a zero entry in it indicates no direct interaction between the
two corresponding voxels in the multi-output regression. Sim-
ilar explanations are in Σ−1

c and Ω−1. Therefore, we impose
sparsity constraints on Ω−1, Σ−1

r and Σ−1
c via the �1 penalty.

Let Θ = {W,b,Ω−1,Σ−1
r ,Σ−1

c }, then the regularized ob-
jective function is:

min
Θ

Js = J + λ2||Ω−1||1 + λ3(||Σ−1
r ||1 + ||Σ−1

c ||1),
(6)

where || · ||1 is the �1-norm of a matrix, and {λ2, λ3} are the
introduced regularization hyperparameters, which control the
sparsity of the inverse covariance matrices.

Unit2Pixel: introspective conditional generation

In this stage, our goal is to reconstruct the perceived images
using the CNN features decoded from the first stage. Recent
studies have shown that it is a promising way to use the con-
ditional DGMs such as conditional variational autoencoders
(CVAEs) (Sohn, Lee, and Yan 2015) and conditional gener-
ative adversarial nets (CGANs) (Mirza and Osindero 2014;
Dosovitskiy and Brox 2016a) to invert the CNN features back
to visual images. Treating the output of the SMR model (i.e.,
the predicted CNN features H) as conditions, the object of
CVAE is to minimize the following objective:

LCVAE = −Eqφ(z|y,h)[log pθ(y|z,h)]
︸ ︷︷ ︸

LAE

+KL(qφ(z|y,h)||p(z))︸ ︷︷ ︸
DKL

, (7)

where qφ(z|y,h) and pθ(y|z,h) are the encoder and the de-
coder, respectively, with the observable variables y, the latent
variables z and the condition h (see the gray sub-panel in

Figure 3). Here θ and φ are the parameters of the decoder and
the encoder, respectively. In Eq. (7), the LAE term denotes
the reconstruction error, and the DKL term regularizes the
encoder by encouraging the approximate posterior qφ(z|y,h)
to match the prior p(z). Though CVAEs are theoretically ele-
gant and easy to train, it tends to produce blurry images that
lack details.

Inspired by previous work (Huang et al. 2018), here we
build an introspective conditional generation (ICG) model
(see Figure 3), which can self-estimate the differences be-
tween conditionally generated and real images and then
update itself to produce more realistic images. In model
training, the KL divergence term DKL is adversarially opti-
mized along with the reconstruction error term LAE , which
increases the difficulty of distinguishing between the real
and fake (i.e., reconstructed or generated) images for the en-
coder. Specifically, the encoder attempts to minimize DKL

for real images while maximize it for the fake images. In
contrast, the decoder/generator attempts to mislead the en-
coder by minimizing DKL for the fake images. Formally,
we use the following objectives to iteratively optimize the
decoder/generator and the encoder until convergence:

θ̂ = argmin
θ

[LAE + αDKL(qφ(z|yf ,h)||p(z))], (8)

φ̂ = argmin
φ

[LAE + βDKL(qφ(z|y,h)||p(z))
− αDKL(qφ(z|yf ,h)||p(z))]. (9)

Here yf denotes the fake images drawn from pθ(y|z,h),
where z ∼ p(z) or z ∼ qφ(z|y,h). Note that the LAE term
in (8) and (9) builds a bridge between the decoder/generator
and the encoder. Intuitively, both cooperative learning and ad-
versarial learning exist between (8) and (9). For the real data
points, (8) and (9) are cooperative. Specifically, both (8) and
(9) aim to minimize the reconstruction error LAE , and Eq.
(9) also tries to minimize the DKL(qφ(z|y,h)||p(z)), which
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is equivalent to optimize the objective of CVAE in Eq. (7).
For the fake data points, (8) and (9) are adversarial. Specif-
ically, (8) aims to minimize the DKL(qφ(z|yf ,h)||p(z))
term, while (9) aims to maximize it, which forms the adversar-
ial learning like CGAN. α and β are user-defined parameters,
which are used to balance the impact of CVAE and CGAN.
For example, when α = 0, β = 1 the proposed method
collapses to the standard CVAEs, and when α = 1, β = 0
the proposed method is equivalent to a regularized CGAN.
Compared to most VAE and GAN hybrid models (Larsen
et al. 2016; Bao et al. 2017), our ICG model requires no
extra discriminator (because the encoder also plays a role of
discriminator), which reduces the complexity of the model.

Optimization

Instead of training the above two-stage approach in an end-
to-end manner, we learn each stage individually. The moti-
vations are twofold: 1) after the training of the first stage,
we can select some CNN units with high decodability for
the training of the second stage; 2) end-to-end training needs
a large number of paired (stimuli-responses) data, which is
usually not satisfied in neural decoding, while we can use the
augmented large scale image datasets to train our ICG model
individually.

Training SMR model. The objective function Js in Eq.
(6) is not jointly convex over all variables but is individu-
ally convex w.r.t. each variable when others are fixed. Here,
we adopt an alternating optimization strategy to learn the
proposed SMR model. For example, when b,Ω−1,Σ−1

r and
Σ−1

c are fixed, we solve the following subproblem to update
W :

min
W

LW = tr
(
(H−XW − 1b�)Ω−1(H−XW − 1b�)�

)

+ λtr(WW�) + λ1tr(Σ
−1
r WΣ−1

c W�). (10)

Proposition 1. Eq. (10) can be solved in closed form in
O(K3D3 + K2ND2) time; the optimal solution satisfies:
vec(Ŵ) = U−1V, where U = Ω−1 ⊗ (X�X) + λIKD +
λ1Σ

−1
c ⊗Σ−1

r and V = vec(X�(H− 1b�)Ω−1).
The proof is provided in Appendix A. Here ⊗ denotes

the Kronecker product and vec(W) denotes the vectoriza-
tion of W. Ŵ can then be obtained simply by reformatting
vec(Ŵ) into a D × K matrix. The closed form solution
shown above requires us to explicitly form a matrix of size
KD × KD. This can be intractable even for moderate K
and D. In such cases, we can alternatively use gradient de-
scent method with ∇WLW = X�(H−XW−1b�)Ω−1+
λW + λ1Σ

−1
r WΣ−1

c to obtain an approximate solution.
The updating rules of the other variables (b,Ω−1,Σ−1

r
and Σ−1

c ) are provied in Appendix B.

Training ICG model. The decoder/generator and the en-
coder in our ICG model can be jointly trained by optimizing
the different objective functions in Eq. (8) and Eq. (9) it-
eratively. In each iteration, the model parameters (θ or φ)
can be estimated efficiently in the stochastic gradient vari-
ational Bayes (SGVB) (Kingma and Welling 2014) frame-
work. Specifically, we assume the prior p(z) ∼ N (0, I), and

the encoder qφ(z|y,h) is designed to output two individual
variables, μ and σ, and then we assume the approximated
posterior qφ(z|y,h) ∼ N (μ, diag(σ2)). In this setting, the
KL-divergence term in Eq. (8) and Eq. (9) can be computed
as:

DKL(qφ(z|y,h)||p(z))

=
1

2

N∑
i=1

dz∑
j=1

(1 + log(σ2
ij)− μ2

ij − σ2
ij), (11)

where dz is the dimension of the latent variable z. For the
reconstruction error LAE in Eq. (8) and Eq. (9), we choose
the commonly-used pixel-wise mean squared error:

LAE(y,yr) =
1

2

N∑
i=1

M∑
j=1

‖yr,ij − yij‖22, (12)

where yr denotes the reconstructed image.

Experiments

Datasets. Here we briefly introduce the two datasets used
in our experiments (and see Appendix C for more details).
1) Vim-1: a publicly available fMRI dataset, which contains
the blood-oxygen-level dependent (BOLD) responses of two
subjects when they are presented with grayscale natural im-
ages (Kay et al. 2008). The dataset is partitioned into distinct
training and test sets which consist of 1750 and 120 instances,
respectively. 2) FaceBold: We collected a new fMRI dataset,
which comprises grayscale face stimuli and the correspond-
ing BOLD responses of six subjects. In total, 720 faces were
presented once for the training set, and 80 faces were pre-
sented twice for the test set. For our ICG model, we use the
gray scale ImageNet-1k (Deng et al. 2009) and CelebA (Liu
et al. 2015) datasets to augment the training sets of Vim-1
and FaceBold, respectively. The properties of the datasets
used in our experiments have been summarized in Table 1.

Table 1: The details of the datasets used in our experiments.

Dataset Training (N ) Test Voxels (D) Units (K) Pixels
Vim-1 1750 120 8428 438856 128×128

FaceBold 720 80 5000 438856 128×128

Compared methods. In Voxel2Unit, we compare our SMR
with 1) SLR: single-output linear regressions (Horikawa
and Kamitani 2017); 2) BCCA: Bayesian canonical corre-
lation analysis (Fujiwara, Miyawaki, and Kamitani 2013).
In addition, we also study various different configurations
of our SMR framework, e.g., 3) SMR-O: SMR with only
output structure, which corresponds to fixing Σ−1

r = I and
Σ−1

c = I (Rothman, Levina, and Zhu 2010); 4) SMR-IT:
SMR with only input and task structures, which corresponds
to fixing Ω−1 = I (Zhao et al. 2017). In Unit2Pixel, we com-
pare our ICG model with 1) CVAE (Du et al. 2018a; Sohn,
Lee, and Yan 2015); 2) CGAN: (Mirza and Osindero 2014;
Dosovitskiy and Brox 2016a); 3) Grad-TV: gradient-based
optimization with a total variation (TV) regularizer (Mahen-
dran and Vedaldi 2015); 4) De-CNN: de-convolutional neural
network (Dosovitskiy and Brox 2016b).
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Parameter settings. For SMR model, we experiment with
its two variants. One without the sparsity assumptions on the
inverse covariance matrices, and the other with the sparsity
assumptions on the inverse covariance matrices. We fix the
hyperparameter λ as 0.001 for both cases. For non-sparse
case, we fix λ2 = λ3 = 10−6, and λ1 is selected using
five-fold cross-validation within the range [10−5, 103]. For
sparse case, we use the same value of λ1 that was selected
for non-sparse case, and only λ2 and λ3 are selected by cross-
validation. For ICG model, we treat the top 5000 decodable
CNN units (according to the rank of each unit’s decodability)
as condition, and set {α = 0.5, β = 1} to combine the
advantages of both CVAE and CGAN. We set {α = 0, β =
1} and {α = 1, β = 0} in ICG to implement CVAE and
CGAN, respectively. The latent variable z is randomly drawn
from a N (0, I) distribution, with the dimension set to 512
and 256 on the Vim-1 and FaceBold datasets, respectively.

Experimental Results

Voxel2Unit: CNN feature decoding. Here we compare
our SMR with non-structured baselines and we also study the
ablation of SMR (its various different configurations, SMR-
O, SMR-I, etc.). The results on both datasets are summarized
in Table 2. Several observations can be drawn as follows.
First, by comparing SMR against the baselines, we can find
that SMR performs considerably better in all cases. Second,
by examining SMR against SLR and BCCA which make no
structure assumptions, we can find that SMR always outper-
form them. This supports our motivation that the covariance
structures over the fMRI voxels, CNN features and predic-
tion tasks are important in multi-output regression. Third,
SMR shows better performance than its six special cases.
This result shows that simultaneously leveraging the multi-
ple covariance structures are also important. Finally, we also
note that the sparse cases always perform better or as good
as the non-sparse cases on the both datasets, which suggests
that explicitly encouraging zero entries in the inverse covari-
ance matrices leads to better estimations of the structures (by
avoiding spurious correlations). This can potentially improve
the prediction performance.

Table 2: Average normalized mean squared error (NMSE)
across 5 random runs (the lower the better).

Method Vim-1 FaceBold
Non-sparse Sparse Non-sparse Sparse

SLR - .641 ± .024 - .724 ± .025
BCCA - .693 ± .025 - .785 ± .026
SMR-T .582 ± .024 .578 ± .023 .680 ± .025 .672 ± .025
SMR-I .579 ± .023 .580 ± .025 .676 ± .026 .673 ± .025
SMR-O .586 ± .023 .578 ± .022 .694 ± .024 .672 ± .024
SMR-OT .568 ± .024 .564 ± .024 .669 ± .023 .668 ± .023
SMR-IT .563 ± .023 .560 ± .024 .667 ± .024 .659 ± .025
SMR-IO .565 ± .024 .562 ± .023 .672 ± .023 .664 ± .023
SMR .562 ± .023 .549 ± .022 .660 ± .024 .651 ± .023

Performance layer-by-layer. Figure 4 shows the results
of the Pearson correlation coefficient (PCC) between the true
CNN feature and the SMR predicted ones. We see that fea-
tures from deep layers (conv3 to fc8) generalize better than

features from shallow layers (conv1, conv2). Intuitively, the
use of the hierarchical features with higher prediction accu-
racy will be good for reconstructing the perceived images.

Figure 4: The distributions of decoding accuracy of all indi-
vidual units in each layer. Blue bars denote mean prediction
accuracies averaged across all units.

Unit2Pixel: perceived image reconstruction. Figure 5
shows several representative examples of the test stimuli
and their reconstructions based on the CNN features decoded
by our SMR model (more results are shown in Appendix D,
including image reconstructions based on the CNN features
decoded by the baselines). The first row shows the original
test stimuli, and the second row shows the reconstructed
stimuli from the true CNN features. The second row can be
regarded as the upper limit of the reconstruction performance
of our ICG model. Because they are the best possible recon-
structions that we can expect to achieve with a perfect SMR
model that can exactly predict the CNN features from brain
activities. The following rows show the reconstructions of all
approaches using the CNN features predicted by our SMR.
Visual inspection of the reconstructions produced by our ICG
model reveals that they match the test stimuli in several key
aspects, such as contour, texture and some semantic features.
Table 3 shows two evaluation metrics in terms of the ratio
of the reconstruction accuracies obtained from the decoded
CNN features and the true CNN features. We see that our
method achieves better quantitative performance than the
competitors on both datasets.

Table 3: Reconstruction accuracy measured by Pearson cor-
relation coefficient (PCC) and structural similarity index
(SSIM).

Method Vim-1 FaceBold
PCC SSIM PCC SSIM

Grad-TV .263 ± .055 .350 ± .039 .374 ± .051 .432 ± .044
De-CNN .458 ± .044 .545 ± .027 .548 ± .046 .755 ± .037
CVAE .475 ± .045 .592 ± .030 .577 ± .048 .794 ± .031
CGAN .493 ± .044 .625 ± .029 .595 ± .045 .831 ± .025
ICG .551 ± .044 .675 ± .024 .658 ± .042 .872 ± .025

Covariance structures visualization. We show the learnt
sparse inverse covariance matrices in Figure 6. To better visu-
alize, we only present 30 voxels from the brain area V1 and
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Figure 5: Examples of reconstructed natural images and human faces on the Vim-1 and the FaceBold datasets, respectively. Since
only top 5000 decodable CNN units (according to the rank of each unit’s decodability) are used as the input, the performance
of ICG ceilings maybe not the best. The ceiling performance can be improved if we use more CNN units, but the computing
complexity will also increase accordingly.

20 CNN units from the first layer of AlexNet. From Figure 6,
we can find some well organized structures, which reflect the
mutual dependence among multiple different variables. For
example, the voxels #20−#22 are highly correlated with
each other in Figure 6 (a). We think it is these structural infor-
mations that make our SMR model perform better prediction
than the baselines.

(a) Input structure Σ−1
r (b) Task structure Σ−1

c (c) Output structure Ω−1

Figure 6: Visualization of the inverse covariance matrices
learned by SMR on the Vim-1 dataset. From Figure 6 (a),
we observe that the fMRI voxels are not independent of each
other, and the voxels #20−#22 are highly correlated with
each other.

Convergence study. We also study the convergence prop-
erties of our SMR method. Figure 7 shows the plots of the
log value of the objective function (given by Eq. (6)) and
the average MSE with increasing number of iterations on the
Vim-1 dataset. The plots show that our alternating optimiza-
tion procedure converges in roughly 50 iterations.

Conclusion

We have proposed a two-stage neural decoding method to
tackle the perceived image reconstruction problem. In the

Figure 7: The convergence properties of the proposed SMR
model. We see that our SMR method converges in roughly
50 iterations

first stage, we developed a structured multi-output regression
model, which can simultaneously take into account the co-
variance structures of the fMRI voxels, the decoding tasks
and the CNN features. In the second stage, by combining
the maximum likelihood estimation with adversarial learning,
we proposed an introspective conditional generation model,
which can be trained stably to generate sharper images. Our
method can fully explore the structural information under-
lying the data and can make full use of the large number
of image data to improve the neural decoding performance.
Experimental results have confirmed the superiority of the
proposed method.

Leveraging the semi-supervised learning (Du, Du, and He
2019) and cycle consistency learning (Du et al. 2018b) to
further improve the neural decoding performance are two
promising directions.
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